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1 Introduction

Over the last 40 years, most developed economies have experienced a steady increase

in the relative supply of skilled workers, which has not been accompanied by a deteri-

oration of the skill premium. The wage gap between skilled and unskilled workers has

even increased in some countries, such as the US.

Several works have postulated the existence of a latent technological change that is

favoring skilled workers over the unskilled to explain this apparent contradiction. This

skill-biased technical change (SBTC) has raised the productivity of the skilled over the

unskilled, driving up the premium. Papers that defend this thesis include Bound and

Johnson (1992) and Katz and Murphy (1992).

An alternative explanation is related to the decline of the relative price of the in-

vestment in equipment during the same years, which has led to a substantial increase

in the use of capital in the workplace. If the Griliches (1969) capital-skill complemen-

tarity hypothesis (CSC) holds, and capital is more complementary to skilled than to

unskilled labor, the observed increase in the quantity of capital may have raised the

relative productivity of skilled labor and, thus, its relative wage (see, e.g., Krusell et

al. 2000).

CSC and SBTC represent different characteristics of the production function. While

CSC is related to the curvature of the isoquants, and hence, to the ease with which

an input can be substituted by other input without changing the amount of output

produced, SBTC originates from non-parallel shifts in those isoquants, which modify

the relative productivity of the inputs. The validity of these hypotheses has core

implications in growth, trade, and development, as argued, e.g., in Stokey (1996).1

Consequently, a battery of studies has looked for their empirical support (Acemoglu,

2002, makes an excellent review). While many works stress the importance of SBTC

to explain skill premium changes, the evidence in favor of the CSC hypothesis has

been much more elusive. For example, Fallon and Layard (1975), Krusell et al. (2000)

1Stokey (1996) shows that if CSC is the main force behind the increasing wage inequality, partially
opening the economy to trade in capital goods with a larger and more developed economy has a much
larger impact on the skill premium than full economic integration. The reason is that the emigration
of unskilled workers to the developed country counteracts the change in skill premium caused by the
movement of capital goods. The effects of these two trade-policy regimes are very different if, instead,
SBTC is the main driving force of the skill premium.
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and Bergstrom and Panas (1992) document that capital is more complementary to

skilled than to unskilled. Other papers, like Duffy et al. (2004) and Papageorgiou and

Chmelarova (2005), find null or weak support for the CSC. On the contrary, SBTC has

found plenty of support in the literature (see, e.g., Bound and Johnson, 1992; Katz

and Murphy, 1992; Berman et al., 1998; Baller and van Reens, 2013).

Our work contributes to this literature by rigorously assessing the evidence for both

the SBTC and the CSC hypotheses in several literature-suggested sets of industry ag-

gregates of the US economy within an integrated empirical framework. Previous work

generally focuses only on one of these two hypotheses, employing either manufacturing

or completely aggregated data. The studies based on aggregated data, on the one hand,

omit the large differences in input structures and technological progress of the different

industries stressed, for example, by Jorgeson and Timmer (2011) and Herrendorf et al.

(2015). This omission may mask meaningful relationships among inputs present at a

lower aggregated level. On the other hand, studies based only on manufacturing data

neglect the important role of the different service industries, which account for about

three-quarters of the total value-added and hours worked in many developed economies.

Our results also provide information about certain features of the production functions,

such as the elasticity of input substitution and the importance of input-biased techno-

logical change, which are necessary for multi-sectoral models, nowadays employed to

understand many economic issues of interest.

To assess the strength of the CSC and SBTC conjectures at the sector level, we

use data from the EU KLEMS dataset and estimate a translog model specification for

a set of representative sectors of the US economy suggested by Jorgeson and Timmer

(2011). Following Valentinyi and Herrendorf (2008), we also investigate their empirical

support in two-sector splits of the aggregate economy suggested by theoretical models.

The great flexibility of the translog model allows for a more consistent characterization

of the SBTC and CSC hypotheses in terms of the estimated parameters than alternative

specifications like the CES or Cobb-Douglas production functions. Moreover, as shown

in Ruiz-Arranz (2002), the translog can be employed to gauge the relative contribution

of the CSC and SBTC to the observed growth in the skill premium, which is essential

because both hypotheses may found support in the data.

Our work is closely related to Fallon and Layard (1975) and Richter (2013). Fallon
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and Layard use cross-sectional data to estimate reduced form equations derived from

a two-level CES production function for a single year. They find mild (though statis-

tically not significant) evidence in favor of the CSC hypothesis at the aggregate level

but strong evidence at sector level. However, the authors do not have capital data for

the different sectors and must rely on cross-sector efficiency. The EU KLEMS data-

base contains detailed capital and labor numbers at a sector level; so, we can directly

evaluate the CSC hypothesis allowing as well for differences in efficiency across sec-

tors. Besides, the time dimension of the data gives us the possibility to accommodate

SBTC, which is not considered in Fallon and Layard (1975). Richter (2013), in turn,

carries out a translog analysis of the evolution of the wage skill premium in different

2-digit US industries. However, she neither tests for the CSC and SBTC hypothesis

nor quantifies the role of other factors than ICT and technology on the evolution of

the skill premium.

Our results can be summarized as follows:

1. At the aggregate level, there is strong evidence for both CSC and SBTC, with

the two phenomena being equally important in explaining the observed trend in

the skill premium.

2. At the sectoral level, the empirical support for the SBTC is strong in all sectors.

The evidence for CSC is also wide, although not as much as for SBTC; that is,

we find that the SBTC is often the most important driver of the skill premium.

However, we also find that the contribution of CSC to the skill premium raises

with the level of aggregation.

3. Regarding the sources of CSC, we find that non-ICT capital is usually its main

source. Yet, CSC originated in ICT capital is essential to explain the skill pre-

mium pattern of specific sectors, such as financial and business services.

The paper is organized in the following way. Section 2 provides a theoretical exam-

ple to understand the importance of sectoral analysis. Section 3 briefly describes the

translog model. Section 4 discusses the empirical framework and describes the data.

Section 5 presents the estimation results for a baseline translog specification with three

inputs (skilled and unskilled labor, and capital) for the set of sectors discussed in
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Jorgenson and Timmer (2011). These results are extended in Section 6 by explicitly

distinguishing between ICT and non-ICT capital, and also by considering two-sector

splits of the aggregate economy common in the macroeconomic literature. Section 7

makes some concluding remarks.

2 A Simple Model

To illustrate the effect of sectoral differences on the skill premium, we can consider

an economy composed of two sectors that use skilled labor (S), unskilled labor (U),

and capital (K) to produce two final goods (Y1 and Y2) according to the following

production function:

Yi =
�
(K

ρi
i + U

ρi
i )

σi/ρi + (AiSi)
σi
�1/σi

. (1)

The elasticity parameters ρi and σi belong to the interval (−∞, 1). As the elasticity

parameters increase, the degree of substitution between the associated inputs rises.

It can be shown that CSC requires that σi < ρi, it is, capital is less substitutable

for skilled than for unskilled.2 The variable Ai captures the level of sector-specific

skill-biased technical change.

Let us suppose, for simplicity, that ρi > 0 and that the economy-wide supplies of

skilled and unskilled workers are constant, whereas Ai and Ki can grow. Let us also

denote by wS and wU the wage of skilled and unskilled workers, respectively. If all

markets are competitive, wages will equal the marginal product of labor. It is easy to

obtain that the wage skill premium will be equalized across sectors and given by:

wS
wU

=
Aσii
S1−σii

U
1−ρi
i

(K
ρi
i + U

ρi
i )

σi
ρi
−1

, for i = 1, 2. (2)

The effect of SBTC can be observed in the numerator of equation (2). Its direction

is going to depend on whether σi is larger or smaller than zero. If skilled labor is a

relative substitute of the capital-unskilled composite (σi > 0), a rise in Ai will increase

the skill premium. However, if they are relative complements (σi < 0), wage inequality

will decrease with Ai. The impact of the CSC, on the other hand, works through

capital. As Ki goes up, so does the skill premium provided that σi < ρi, that is, if

2See, e.g., Duffy et al. (2004).
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and only if there is CSC. When σi > ρi, in turn, the wage ratio falls if the amount of

capital rises.

But the elasticities of substitution among inputs can vary between the two sectors.

If, for example, σ1 > 0 > σ2, skill-biased technical change may not show up in the

aggregate data as a driver of the skill premium, even though it has clear effects in each

of the two sectors separately. More specifically, SBTC in sector one will push wage

inequality up and attract additional skilled workers, while SBTC in sector two will

push the wage ratio down and free skilled labor.

A similar argument can be used for CSC. If sector one displays strong CSC, and

sector two strong capital-skill substitutability, we may not observe changes in the skill

premium at the aggregate level even if capital is being accumulated rapidly in both

sectors. The parameter restrictions, in this case, are σ1 < ρ
1
and σ2 > ρ

2
. Capital

accumulation in sector one will tend to raise the skill premium, and the sector will

hire a larger amount of skilled labor. Sector two, on the other hand, will push wage

inequality down and free skilled workers.

Which effect dominates at the aggregate level in each of these two scenarios will

depend on the strength of technological progress and CSC in each of the two sectors.

It will also depend on the industry weights in the total economy. For example, it is also

perfectly possible that if the sector with the largest share depicts CSC, the aggregate

economy shows evidence of capital skill complementarity even if there is an important

sector (the other one) that does not. A sectoral analysis of the determinants of wage

inequality is then essential to disentangle the contributions of CSC and SBTC better.

3 The Translog Framework

The joint assessment of both CSC and SBTC requires a sufficiently flexible framework.

Christensen et al. (1973), among others, argues that the translog specification offers

that flexibility and overcomes the drawbacks of the direct estimation of Cobb-Douglas

or (nested) CES production functions. More specifically, the translog framework allows

for separate estimation of the different elasticities of input substitution and the input

biases of technology, so that the CSC and the SBTC hypothesis can be easily tested,

and their different contributions to the evolution to the wage skill premium quantified.
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Moreover, unlike the alternative specifications mentioned previously–which assume

that inputs are substitutes to ensure concavity–the translog imposes no prior restric-

tions over the substitutability or complementarity among production factors. It also

allows for time-varying substitution elasticities.

As Christensen et al. (1973) explain, the translog production function can be inter-

preted as a second-order Taylor series approximation in logarithms to an unspecified

underlying production function. Moreover, applying duality in production theory, we

can characterize the production possibility frontier in terms of the price possibility

frontier and work with the dual problem. That is, assume a translog specification for

the price function.

Assuming in each sector constant returns to scale over hours worked by skilled (S)

and unskilled (U) workers,and capital (K), a three input translog price function can

be written as (sectoral indices are omitted to simplify notation):

lnPt = α0 + α′p ln pt + αT t+
1

2
ln p′tBpp ln pt + ln p

′

tβpT t+ βTT t2; (3)

where Pt is the price of output in the sector, the vector pt contains skill and unskilled

wages and the return to capital, and t is a time trend. As standard in the literature,

the time trend serves as a technology index (see, e.g., Jorgenson et al., 1987, Betts,

1997, Ruiz-Arranz, 2002, and Feng and Serletis, 2008).3

Factor shares (v) can be obtained from equation (3) by applying Shephard’s lemma:

vt =
∂ lnPt
∂ ln pt

= αp +Bpp ln pt + βpT t. (4)

Notice that Bpp is the matrix of share elasticities. The elements of this matrix give

the response of the input shares to proportional changes in the input prices. If the

ij element is positive (βij > 0,where i, j ∈ {S, U,K}), the cost share of the input i

increases with the price of the input j, and the opposite effect arises if the element is

negative. Expression (4) allows non-Hicks-neutral technological progress, so that factor

shares are affected by technology advances. In particular, the vector βpT collects the

possible bias of technical change of the four inputs. If the bias for input i is positive

(negative) then βiT > 0 (βiT < 0), the cost share of that input increases (decreases)

3Jin and Jorgenson (2010) adopt a different approach and model technological progress within the
unobserved component framework, estimating the model with the help of the Kalman filter.
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with technology, and progress is input-i using (saving). The additional properties of

the theory of production can easily be translated into this framework as restrictions in

the parameters. In particular, linear homogeneity and product exhaustion are satisfied

if:
�

i

αi = 1;
�

j

βij = 0;
�

i

βiT = 0; (5)

Symmetry requires:

Bpp = B′

pp. (6)

Non-negativity of the factor cost shares implies that

vt = αp +Bpp ln pt + βpT t ≥ 0. (7)

Finally, concavity holds if the Hessian matrix (H) of second order derivatives of the

translog unit cost function with respect to prices is negative semi-definite:

h′Hh ≤ 0 ∀h, with H =

�
∂2P

∂p∂p′

�
. (8)

The SBTC and CSC hypothesis can be easily formulated in this framework in terms

of model parameters. Specifically, the SBTC is satisfied if the bias of technical change

for skilled labor is larger than the one of the unskilled, that is,

SBTC: βST − βUT > 0. (9)

To state the CSC condition, we need first to define the elasticity between inputs. As

shown in Binswanger (1974), the Allen-Uzawa partial elasticity of substitution (AES)

between any pair of production factors can be computed directly from the parameters

of the translog model as:

σAij =
βij + vivj

vivj
if i 
= j (10)

=
βjj + v2j − vj

v2j
if i = j.

If σij is positive (negative), an increase in the price of one input causes an increase

(decrease) in the quantity demanded of the other, and factors are substitutes (com-

plements) in production. As can be deduced from (10), in the translog framework the
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computation of the AES involves not only the estimated parameters but also the factor

shares.4

Following Griliches (1969), we can write that the CSC hypothesis holds if:

CSC: σASK − σAUK < 0. (11)

Thus, evidence of CSC requires the difference between the elasticities of skilled and

unskilled labor with respect to capital to be negative.

4 Empirical Strategy

4.1 Data description

Our primary source of data is the Standard-Industrial-Classification-based EU KLEMS

database, March 2008 release, which contains detailed measures of labor and capital

inputs at the NACE (Statistical classification of economic activities in the European

Community), revision 1, for the period 1970 to 2005.5 The length of the data is

relatively short, but in line with the other single country studies in the literature (see,

e.g., Katz and Murphy, 1992; Betts, 1997; Krusell et al., 2000; Ruiz-Arranz, 2003;

Antras 2004). For a detailed description of this dataset, see O’Mahony and Timmer

(2009).

The labor data contain detailed information on hours worked and compensations

for three skill levels: high, corresponding to workers with tertiary education or more;

medium, for workers not graduated from college but holding a secondary education

diploma; and low, for workers without a high school degree. We divide labor into two

categories: unskilled and skilled. Following Krusell et al. (2000), we classify the hours

4When the production function contains more than two factors, there are more than one measure
of the elasticity of substitution between inputs. The AES (Allen, 1938, and Uzawa, 1962) is one of
them and possibly the most popular. Far more important for our purposes is that it is the one used
by Griliches (1969) to formalize the idea of the CSC hypothesis in a way consistent with Hicks factor
substitution. The AES quantifies the percentage variation in the ratio of two inputs in response to
a change in the ratio of the two input prices, holding all other prices (but not all other inputs) and
the output quantity constant. Other measures of the elasticity of input substitution include, among
others, the Hicks-Allen direct partial elasticity of substitution (Hicks and Allen, 1934a and 1934b) and
the Morishima elasticity of substitution (Morishima, 1967).

5Most recent waves of the EU-KLEMS lack detailed labor information by skill type for the US.
Besides, they do not dissagregate capital compensation into ICT and non-ICT, wich is used as exten-
sion.
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worked by college graduates as skilled, and aggregate middle and low skilled hours in

a single category as unskilled.

Capital input in the EU KLEMS is defined in terms of capital services rather than

stocks. Thus, capital is measured through its delivery of services in a year in terms of

the user cost. The database provides capital service volume indexes at a given base year

(1995). These indexes are constructed so that the total value of the services matches

capital compensation, which is compatible with the assumption of constant returns to

scale explicitly made in our translog specification. We compute the volume of capital

services by multiplying the volume indices series by capital stock at the base year.6

Input prices required for estimating the system are computed by dividing compen-

sations by their corresponding volume measure. Thus, skilled and unskilled wages are

constructed by dividing the compensation of the particular labor type by the total

number of hours worked provided in a year. Similarly, return to capital is obtained

as the total capital compensation divided by the volume of capital services. In the

translog system, prices can be normalized to one at a reference point (see, e.g., Ryan

andWales, 1998). Without loss of generality, we chose the base year 1995 as a reference

point, which is also the reference year for the time trend that proxies the technology

index.

Following Jorgenson and Timmer (2011), we aggregate the industries included in

the original dataset to obtain a representative set of US market sectors that repre-

sent different patterns of growth and structural change. Non-market activities, such

as public administration, education, and health, are not considered because they are

not driven by the same efficiency considerations as market activities. The first sec-

tor considered is ICT-production, due to the importance of this sector in explaining

economic growth (see, e.g., Jorgenson and Stiroh, 1999, Basu et al., 2004, and Byrne

et al., 2013). ICT-production includes the manufacturing of electrical machinery and

post and communication services; therefore, it combines products from the manufactur-

ing and service industries. Other two sectors come from the rest of industries within

goods production, which are divided between manufacturing (other than ICT) and

6The underlying idea in the construction of the database’s indices is that the factor of proportion-
ality between services and stocks does not remain constant over time but is one at the base year (see,
e.g., Timmer et al., 2007).
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non-manufacturing goods; the latter includes agriculture, mining, utilities, and con-

struction. The remaining three representative market sectors are the result of splitting

services into financial and business services, distribution services, and personal ser-

vices. Aggregated data from the previous six sectors defines t the market economy

aggregation in the EU-KLEMS datase. Table 1 contains a complete definition of all

the sectors considered.

As an extension, we also consider a set of two-sector splits of the market economy

typically found in macroeconomic models. The data for the additional aggregations

are not explicitly reported in the KLEMS database and have been constructed. We

discuss this issue in the corresponding section (Section 6).

Figure 1 provides trends of the relative quantity of skilled hours, the skill premium,

and the share of income earned by skilled labor relative to that of unskilled labor. At

the aggregate level, our data present a typical result in the literature: both the relative

quantity of skilled hours and the skill premium have grown significantly since 1980.

As a consequence, the skilled labor share of income relative to the unskilled have also

grown strong. These findings are also reproduced in the different sectors, but with

different magnitude. For instance, the relative supply of skilled hours in financial and

business services is considerably larger than in the other sectors. The skill premium

has widened more in services, especially in financial and business services and personal

services. At the same time, ICT production and non-manufacturing goods present

much more moderate skill premium patterns.

To illustrate the differences in the use of the inputs, Figure 2 depicts trends in

the income shares of aggregate labor, skilled labor, and capital. These magnitudes

were already analyzed in Jorgenson and Timmer (2011) for the same representative set

sectors, so we refer to that work for a detailed description. Overall, we observe large

disparities in the use of inputs across sectors that call for a sector-specific analysis

of substitutability. Perhaps more interesting, the simultaneous increase in the use of

skilled labor and capital in some sectors may signal complementarity between these

two inputs.
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4.2 Econometric framework

We characterize the structure of technology in each sector by estimating the price func-

tion (3) jointly with the system of the factor cost-shares (4) subject to the restrictions

derived from the theory of production. Although direct estimation of the price func-

tion can be achieved, the estimation of the share equations and the price function as

a system improves efficiency, as it increases the degrees of freedom without requiring

the estimation of additional parameters (Christensen and Greene, 1976).

To complete the stochastic model, we add to each of the equations a zero-mean

disturbance term εit, which can be understood as random errors in cost minimization.

Given that the cost shares add to one, the system of the four share equations subject

to the shocks εt is over-determined. Following standard practice, we solve out the

constraints of the shocks together with homogeneity by arbitrary dropping one of the

equations of the system (the capital equation). The parameters from the dropped

equation can be easily recovered from (5). Finally, we specify that the disturbance

column vector is independently distributed with mean zero and a constant-singular

variance-covariance matrix Ω.

Input prices are determined by demand and supply and must be instrumented. We

accounted for this potential concern and chose GMM 3SLS as our estimation procedure,

which we iterate to reach invariance to the equation drop. In single country studies,

the small number of data points makes the instrument selection a delicate issue since

standard methods cannot properly test the exogeneity of the instruments. If any of

the instruments is endogenous, the estimator become inconsistent.

As we focus on the market-side of the economy, we instrument input prices from

all considered sectors with the corresponding prices of the public administration and

defense sector. For the price function, we also employ as instruments the corresponding

cross-products of this sector input prices. We supplement the instrument set of each

equation with the working-age population, government capital stock, and the average

marginal labor and effective corporate tax rates to have free moment conditions.

The key issue here is that the exogeneity of the instruments seems plausible. As it

is usually assumed in macroeconomics, prices in the public sector, demographic, and
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fiscal variables are not responding (at least contemporaneously) to market prices.7

Besides, a well-known result in the literature is that, in the absence of further

restrictions, the concavity assumption is not satisfied in all sample points (Diewert and

Wales, 1987). We usually find concavity violations in around 25% of the sample points

in all estimations. As a consequence, concavity has to be enforced. While conditions

(5) to (7) translate easily to restrictions on the estimated coefficients, the imposition of

the concavity is slightly more complicated. As noted in expression (8), the assumption

requires the Hessian to be negative semi-definite at all observed prices. Denoting the

diagonal matrix with the shares in the main diagonal by Vt = diag(vt), the concavity

condition implies as well that the matrix

Bpp − vtv
′

t + Vt (12)

is also negative semi-definite. Although global concavity (at any possible point) can

be easily imposed by decomposing the matrix of share elasticities Bpp in terms of its

Cholesky factorization, this procedure imposes unacceptable restrictions that drive out

the flexibility of the translog. To circumvent this problem, we follow Gallant and Golub

(1984) and Ruiz-Arranz (2002) and impose point-wise concavity at all sample points

by means of constrained optimization.

Finally, given the small sample size, we do not make inference based on the asymp-

totic variance of the GMM 3SLS estimator but on moving block bootstrap (Künsch,

1989). The moving block bootstrap is robust to heteroskedasticity and autocorrelation

of unknown forms. Gonçalves and White (2005) show that in the context of a multiple

linear regression model with autocorrelated (and heteroscedastic) errors, confidence

intervals that rely on moving block bootstrap tend to perform better than those that

rely on the asymptotic closed-form variance. We chose a block size of three, based on

Hall et al. (1995) rule of thumb, and simulate 500 replications of each estimated model,

treating the system as a unit to conserve the variance structure across equations.

7As a robustness check, we reestimate all equations using lagged values of the instruments with no
qualitative change in our results. The results are also robust to include (log) prices of the health and
social work category as instruments of the first equation instead of using cross-products as instruments.
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5 Estimation Results

The estimation of the translog model provides coefficients that allow recovering the

technical-change biases and, employing equation (8), the AES elasticities of substitu-

tion. Armed with these estimates, we can assess the empirical evidence on the SBTC

and CSC hypothesis in our sample.

5.1 Elasticities of substitution and the CSC hypothesis

Table 2 presents the estimated (cross) AES calculated using average period shares.

Given the sample size, the table reports bootstrapped standard errors in parenthesis.

Recall that if σAij > 0, an increase in the price of the jth input raises the optimal

quantity of input i, and inputs are substitutes. On the contrary, if σAij < 0, the

quantity of i decreases, then the inputs i and j are complements.

At the aggregated level, skilled and unskilled labor are estimated substitutes in

production. The relationship of the labor inputs with capital is different for each labor

type. While unskilled labor and capital are also substitutes, the AES between skilled

labor and capital is negative, which indicates complementarity. However, this elasticity

is not statistically significant at two standard errors.

Patterns of input substitution across sectors for skilled and unskilled labor and

unskilled labor and capital are similar to the patterns find at the aggregate level. In

the two cases, the corresponding AES are positive and usually significant. There is

more heterogeneity in the relationship between skilled labor and capital across sectors.

In particular, a negative AES between these inputs is obtained in non-manufacturing

goods and personal services. However, like at the aggregate level, this elasticity is

non-significant at two bootstrapped standard errors.8

The CSC hypothesis only requires that capital and skilled labor are relatively more

complementary as inputs than they are capital and unskilled labor. Put differently,

as stated in inequality (11), CSC requires that the elasticity of substitution between

capital and skilled labor is smaller than between capital and unskilled labor so that

8A further decomposition of the services into their primary forming industries generally gives
consistent results. In particular, the AES across the industries that form a particular sector were
quite similar, which indicates that the considered sectors are relatively homogenous. The exception is
non-manufacturing goods, formed by very heterogeneous industries. These results are available upon
request.
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the difference between these two elasticities is negative. The last column of Table 2

reports this difference. The table moves away from central confidence intervals and

provides the 90% bootstrapped percentile bands to assess its statistical significance

more accurately. Note that a 90% interval implies a significance level of 5% if the

interval is employed for the testing of a one-sided hypothesis, such as CSC in (11) or

SBTC in (9).

As Table 2 shows, the CSC finds strong support at the aggregate level. At the

sectoral level, the support is smaller, being the CSC satisfied in half of the sectors.

In particular, we find evidence of CSC in non-manufacturing goods, distribution, and

personal services. Yet, for distribution services, the evidence is weak. For the remaining

sectors, we find capital relatively more complementary to unskilled labor. Importantly,

while the evidence across sectors is mixed, the elasticities between labor groups and

capital are significant only in sectors where the CSC holds, especially personal services

where it shows up super strong. These facts can explain the support of CSC at the

aggregate level.

As a last check, we also evaluate the CSC hypothesis computing the AES at two se-

lected sample points (1975 and 2000) instead of using average period shares. Assessing

the CSC at different sample points is important because the cost shares of the skilled

labor and capital have been rising steadily between 1970 to 2005, as shown in Figure

2. We find a decline over time in the magnitude of the elasticity between capital and

skilled labor pointed out in other studies (see, e.g., Ruiz-Arranz, 2002). This decline

can be easily explained by the increases in both capital and skill labor shares of in-

come.9 However, our findings are qualitatively identical to those reported in Table 2,

and not reported here to save space, although they are available upon request to the

authors.

5.2 Factor non-neutral technological change

The estimated biases of technical change are provided in Table 3. Columns one and

two show the bias for skilled and unskilled labor, respectively, along with the bootstrap

standard errors in parenthesis. Technological change is found unskilled saving both at

9Note that the AES between capital and skilled labor can be rewritten as σA
SK

= 1+ (βSK/vsvk),
falling both with capital and skilled labor shares of income.
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the aggregate level and for the different sectors . At the same time, column one says

that technology advances have augmented the relative share of skilled labor. Moving

now to the capital assets, column three shows that technical progress is capital using.

Therefore, our estimation results suggest that technological change has increased

the share of skilled workers and reduced that of unskilled. Recall from expression (9)

that SBTC is satisfied if the bias of technical change for skilled labor is larger than the

one of the unskilled. In terms of the estimated parameters, this implies that βST −βUT

(given by the fourth column of Table 3) is larger than zero. To check for the statistical

significance, the last two columns of the table provide the 90% bootstrapped confidence

intervals. We can see that the SBTC hypothesis receives strong statistical support.

5.3 Factors behind the observed changes in the skill premium

The results of the previous sections provide supporting evidence for both the CSC

and SBTC hypothesis at the aggregated level and in many sectors. It is, therefore,

necessary to gauge their relative importance in explaining the observed patterns in

the data. We decompose the growth rates of the skill premium into the contribution

attributed to the growth of each different input and each of the different biases. This

implies an alternative definition of the CSC in terms of quantities instead of the prices.

That is to say, we ask by which amount the observed increase in the volume of capital

services during the period 1970-2005 (probably induced by the observed decline in its

price) has raised the relative price of skilled labor.

Following Ruiz-Arranz (2002), the yearly growth rate of the skill premium predicted

by the model is split into three components: a labor quantity effect, a capital quantity

effect, and a technology effect (see the mathematical appendix at the end of this work

for details):

gSP = (φ1gS + φ2gU)� �� 	
Labor quantity effect

+ (φ3gK)� �� 	
Capital quantity effect

+ (ϕ1βST + ϕ2βUT + ϕ3βKT )� �� 	
Technology effect

; (13)

where gk denotes the growth rate in the supply of input k.

The labor quantity effect captures the impact of changes in the quantities of the two

labor inputs on the skill premium. Given the observed trends in the relative supply of
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skilled labor and the sign of the estimated elasticities between the two labor inputs,

we expect this contribution to be mostly negative. Similarly, the capital quantity effect

collects the impact of the growth rates of the two capital inputs. If the CSC hypothesis

is important at explaining the observed pattern in the wage premium, we expect the

capital quantity effect to be positive and large. Finally, the last term in equation (13)

is the technology effect, which measures the impact of all input biases of technological

change. More specifically, the term ϕ1βST +ϕ2βUT captures the influence of the labor

input bias (labor technology effect); whereas the term ϕ3βKT gathers the effect of the

capital input bias (capital technology effect). Therefore, if controlling for potential

complementarities, the SBTC is the major force behind the rise in the skill premium,

the technology effect should be positive and relatively large.

For each sector, we feed equation (13) with the parameters from the estimated cost

share equations and employ the yearly growth rates of input quantities to obtain the

model prediction of the yearly growth rate of the skill premium. We cumulate model

predictions over the 1980-2005 time interval, which is the period where the premium

rises (see Figure 1). The result is presented in the penultimate column of Table 4

(column five), and measures the percentage change over the entire period predicted by

the model. The actual percentage change in the data is provided in the last column of

Table 4 (column six).

As can be observed in the table, the translog model does a good job predicting the

yearly growth rate of the skill premium. As a result, the implied cumulated change

over the entire period is usually close to the observed change in the data.

In columns one to seven of Table 4, we broke down the change predicted in the

model into the components discussed above: a labor quantity effect, a capital quantity

effect, and a factor non-neutral technology effect. The first result that stands out is

contained in column one. In the absence of any compensation mechanism, the skill

premium would have fallen dramatically as a consequence of the observed trend in

skilled labor. Since we do not observe this strong fall, the labor quantity effect must

have been compensated by changes in the volume of capital services or by technical

change (or both).

The capital quantity effect (second column of Table 4) usually has the expected sign,

increasing the skill premium at the aggregate level and in the sectors and industries
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where the CSC holds.10 The magnitude at the aggregate level is large, although not

enough to compensate for the labor quantity effect. The capital quantity effect is

generally less important across sectors than at the aggregate level, although often

contributes decisively to the observed growth in the skill premium as well. However,

consistent with the estimated AES elasticities, the increase in the volume of capital

services has greatly reduced the skill premium in financial and business services and

ICT production.

Finally, columns three and four of Table 4 show that the technical change effect,

split down into its two components, labor technology effect and capital technology

effect. As the table shows, the non-neutral technological change always contributes

to the positive evolution of the wage skill premium. Comparing columns five and six,

note that the positive impact comes from the labor-technology effect, that is, mainly

as a consequence of skill-biased technology advances, as the capital technology effect

is often negative.

Overall, comparing the different effects, our estimates suggest that both CSC and

SBTC are equally important in explaining the premium growth at the aggregate level.

This result, however, does not hold in all sectors, being the labor technology effect usu-

ally larger, being the SBTC the most important driver of the skill premium growth.

Yet, in non-manufacturing goods and personal services, the capital quantity effect dom-

inates, suggesting that CSC is more important than SBTC in explaining the patterns

in the data in some specific sectors. Our results also point towards that the importance

of CSC raises with the level of aggregation. We explore this issue in Section (6).

5.4 Factors behind the observed change in the skilled labor

share of income relative to the unskilled

the simultaneous increase in both the relative quantity of skilled labor and the skill

premium has led to a substantial rise in the share of skilled labor on income relative

to the unskilled. The estimated translog model can also be employed to gauge the

10A positive capital quantity effect is not guaranteed by a negative difference in the AES in Table
2. The numbers in this table are constructed employing average period shares, while results in Table
4 are based on AES computed from yearly shares. Also, the capital quantity effect is not necessarily
positive unless skilled labor and capital are estimated complements that year while, at the same time,
the unskilled labor and capital are estimated substitutes.

17



relative importance of the CSC and SBTC hypothesis on the observed changes in this

magnitude. As with the skill premium, we can disaggregate the yearly growth rate of

the relative skilled labor intensity (grv) as (see the mathematical appendix):

grv = (θ1gS + θ2gU)� �� 	
Labor quantity effect

+ (θ3gK)� �� 	
Capital quantity effect

+ (γ1βST + γ2βUT + γ3βKT )� �� 	
Technology effect

. (14)

Once more, we can plug the estimated translog parameters into the last expression

together with the observed yearly growth rates of input quantities to obtain a model

prediction of the yearly growth rate of the relative share of skilled labor. The last

two columns of Table 5 summarize the percentage change of the relative skilled labor

intensity during the observed period implied by the model predictions and by the data.

As before, we have broken down the predicted change between 1980 and 2005 into the

contribution of the labor quantity (column two), capital quantity (column three), and

non-neutral technology (columns four and five) effects. The numbers in the table make

evident the large increases in this magnitude that have taken place during the observed

period in all sectors and industries. The translog model tracks the changes well, as the

total change predicted by the model is similar to the actual change in the data.

The supply of capital and non-neutral technical change has the same contribution

reported in Table 4, as their contribution to the relative skilled labor intensity comes

through their effect on the relative wage. Consequently, the interest here is the labor

quantity effect. Notice that its sign is a priori undetermined. On the one hand, the rise

in the relative quantity of skilled labor increases the relative share of the skilled. On

the other, the negative effect that this additional amount of skilled has in the relative

wage makes the relative share of the skilled going down. For the market economy, as

well as for personal services, the second effect dominates, and the total labor quantity

effect is negative. We can also find a negative quantity effect in several industries,

such as investment manufacturing, all industries from the personal services sector, and

construction.

6 Extensions

We extend the baseline analysis above along two different directions. First, we assess

CSC and SBTC across several two-sector splits of the market economy common in the
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macroeconomic literature. After, we consider a four input translog specification, where

we treat ICT and non-ICT capital as different inputs.

6.1 Extension I: two-sector splits

In addition to the classification that combines the original industries into six market

sectors, we also divide the market economy into different sets of aggregates that follow

criteria typically employed in macroeconomic models. The purpose here is offering

useful information to these models about certain features of the production function,

such as the elasticity of input substitution and the relative importance of input-biased

technological change. More specifically, following Valentinyi and Herrendorf (2008),

we consider (i) agriculture versus non-agriculture; (ii) tradable versus non-tradable

products; and (iii) investment goods versus consumption products. The analysis would

also help to study whether the importance of the CSC increases with the level of

aggregation, as our previous results suggest. Table 1 contains a precise definition of

the different two-sector splits.

Unlike data for the representative set of sectors, data for the two-sector splits is

not explicitly reported in the EU KLEMS dataset and need to be constructed. Input

compensations and hours worked for each type of labor are computed as the sum across

the industries employed to form the aggregate. The volume of capital services provided

is also constructed proportionally to the stocks of capital in the base year.

In the construction of the investment-consumption aggregates, similarly to Valentinyi

and Herrendorf (2008), a fraction of intermediate manufacturing and services are as-

signed to investment. This fraction is computed from the WIOD (World Input-Output

Database), September 2012 release.11 We take into account that each industry offers

data on its contribution to gross capital formation and to intermediate consumption,

and that a fraction of intermediate consumption is devoted to investment. Hence, the

fraction of the industry gross value added that we attribute to investment–which is

the one that we employ to split inputs and compensations–equals its direct contri-

bution to gross capital formation plus its indirect contribution through intermediate

11WIOD reports data for 35 sectors classified according to ISIC (United-Nations International Stan-
dard Industrial Classification of Economic Activities), review 3, and covers the period 1995-2011; see
Timmer et al. (2015) for details. In the construction of the investment aggregate, we apply the
percentages computed for 1995 to all years between 1970 and 1995.
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consumption, everything divided by the total sector use net of exports. The indirect

contribution to investment through intermediate consumption, in turn, equals interme-

diate consumption times the share of intermediate consumption devoted to investment,

being this last share equal to the proportion attributed to investment from intermedi-

ate manufacturing products, which is solved iteratively. Given the strong assumptions

involved in the construction of the investment and consumption aggregates, results

from this aggregation must be taken with caution.

Results for the three sets of splits are reported in the second block of Tables 2, 3,

4, and 5. As Table 2 shows, the estimated AES between skilled and unskilled labor

and between unskilled labor and capital are positive in all splits. This implies that the

substitution between these inputs is robust to aggregations. The AES between capital

and skilled labor is usually negative, but statistically non-significant, just like at the

aggregate level. Still, the evidence of CSC is always strong except for agriculture. As for

the SBTC, we also find the same results than in our baseline estimations. Technical

advances increase the shares of the skilled labor and capital, and decreases that of

unskilled labor.

We employ the same decompositions in Sections 5.3 and 5.4 to gauge the relative

importance of CSC and SBTC. Both CSC and SBTC appear to be important in ex-

plaining the patterns in the data. Only in agriculture, the increase in the skill premium,

which is smaller than in the other aggregates, is explained by SBTC alone, as the cap-

ital quantity effect is negative in this aggregation. The effect of labor quantity on the

relative share of skilled labor is negative in all aggregation pairs, like with completely

aggregated data.

Overall, the results using the two sample splits are stronger than across the main

sectors considered, very similar than the ones obtained at the aggregate level, and con-

firm previous evidence that CSC increases in importance with the level of aggregation

of the data.

6.2 Extension II: translog specification with four inputs

As a second extension, we consider a four input translog specification, where we treat

ICT and non-ICT capital as different inputs. The distinction between ICT and non-

ICT capital might be important because the former has been accumulating at a faster
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rate, which has made several authors consider this capital type the principal source of

CSC (see, e.g., Krusell et al., 2000).

We have not considered disaggregated capital data as our benchmark because the

return to ICT services computed from the EU-KLEMS data presents unappealing

fluctuations during the 70’s that can bias our estimations. Problems with disaggregated

data during the 70’s are well-known, as those years were a noisy and volatile period.12

Consequently,we present the results of the translog specification with four inputs here

as an extension. However, the results must be taken with some caution.

The estimated AES for the aggregated market economy and the six principal sec-

tors are presented in Table 6. Skilled and unskilled labor are once more estimated

substitutes, both at the market level and across sectors. ICT and non-ICT capital are

also substitutes except in non-manufacturing goods, where the AES is negative, yet

not significant at two bootstrapped standard errors.

The interest here lies, however, in the relationship between labor and the two capital

types. For the aggregated market economy, ICT and non-ICT are complements with

skilled labor but substitutes with unskilled.

There is more heterogeneity at the sector level, although skilled labor and capital

(both ICT and non-ICT) are estimated complements more often than capital and

unskilled. Yet, the evidence of direct complementarities between any labor and capital

type is most often statistically weak.

The last two columns of Table 6 present the estimated difference between the elas-

ticities of the two labor inputs with each capital type. Recall that a negative difference

indicates CSC. As in the baseline specification, we include bootstrapped 90th percentile

bands to judge on its statistical significance. Consistent with the estimated AES, we

find strong evidence of CSC using aggregate data, and skilled labor is more comple-

mentary to ICT and non-ICT capital than is unskilled labor.

At lower levels of aggregation, the evidence of CSC is mixed, depending on the

particular sector and capital type. In general, we find broader and more robust evidence

of CSC originated in non-ICT capital. The non-ICT-CSC hypothesis is satisfied in

all sectors, except manufacturing goods and financial and business services, and is

12We thank the referee for pointing this out. Besides, ICT accounts in the 70’s just for a small
share of total capital compensations and volume.
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generally significant. There is support for the ICT-CSC in many sectors as well, but the

evidence at 5% significance can only be established for financial and business services.

Table 7 present the estimated bias of technical change in the four-input model. As

can be observed in the table, the results follow those of the baseline model. Technical

change is skilled-labor using and unskilled-labor saving. Evidence of SBTC is significant

in all sectors. Concerning the capital biases, the estimates are also positive and present

similar magnitudes, indicating that progress is not favoring any particular capital type

over the other.

To assess the relative importance of (ICT and non-ICT) CSC and SBTC, we quan-

tify the effect of each input quantity and each input bias in the yearly growth rates of

the skilled premium and the relative share of skilled labor predicted by the model, just

as we do in the baseline specification:

gSP = (φ
1
gS + φ

2
gU)� �� 	

Labor quantity effect

+ (φ
3
gI + φ

4
gN)� �� 	

Capital quantity effect

+(ϕ
1
βST + ϕ

2
βUT + ϕ

3
βIT + ϕ

4
βNT )� �� 	

Technology effect

; (15)

and

grv = (θ1gS + θ2gU)� �� 	
Labor quantity effect

+ (θ3gI + θ4gN)� �� 	
Capital quantity effect

+ (γ
1
βST + γ

2
βUT + γ

3
βIT + γ

4
βNT )� �� 	

Technology effect

; (16)

where the sub-indices I and N denote ICT and non-ICT capital, respectively.

The percentage change in the skill premium over the 1980-2005 time-interval, to-

gether with the decomposition in the labor quantity, capital quantity, and technology

effects, is presented in Table 8. In the last two columns, this table shows that the

four-input specification also predicts the data well. The labor quantity effect (column

one) is always negative and strong, consistent with the baseline results.

We split the capital quantity effect into the contribution of ICT (column two) and

non-ICT (column three) capital. Concerning non-ICT capital, its effect on the skill

premium is positive, both at the aggregate level and across sectors. Furthermore, the

magnitude is often relatively large, explaining a considerable part of the skill premium

change. The exception is manufacturing, where the effect is negative, although very

small in magnitude. The ICT capital quantity effect also has the expected sign, con-

tributing positively to the skill premium there where the ICT-CSC holds. This effect

is huge in financial and business services. Therefore, disaggregation of capital into
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ICT and non-ICT is crucial to assess CSC in this sector, as we do not find evidence

of CSC in the baseline estimation. A possible explanation is that the financial and

business services sector has experienced the largest growth in the ICT capital share

of income among all considered sectors, but a relatively small growth in the aggregate

capital share. The ICT quantity effect is also positive and large in personal services, al-

though to a considerably lower extent, but lowers the skill premium in manufacturing,

distribution, and, especially, ICT production.

Finally, columns four and five of Table 8 gather the aggregate effect of the two labor

biases and the two capital biases. Consistent with the previous results, the combined

effect of the two labor biases (labor technology effect) is always positive and strong,

except for financial and business services. Interestingly, the aggregated effect of the two

capital biases often contributes to the premium negatively, as we find in the baseline

estimations.

As for the factors explaining the growth in the skilled labor share of income relative

to the unskilled, the (ICT and non-ICT) capital and technical change effects follow

those in Table 8, because their impact comes through the relative wage only. The-

oretically, as noted before, the aggregated labor quantity effect is uncertain, as the

observed increase in the relative quantity of skilled labor impacts positively through

relative quantities but negatively through the skilled premium. As Table 9 shows, the

overall estimated effect is generally positive.

Overall, the results of the four input specification highlight once more that both

CSC and SBTC contribute to the observed increase in the relative wage of skilled

labor. At the aggregate level, the contribution of CSC and SBTC to the growth of

the skill premium is very similar. Across sectors, the contribution of SBTC is usually

larger, but CSC is also an important driver of the premium. Contrary to what we

expected, we find that the primary source of CSC is often non-ICT capital. Yet,

complementarities arising in ICT contribute decisively to the skill premium growth

in some sectors, especially in financial and business services. The exception is ICT-

production, where SBTC accounts for all the observed growth and seems to have

reduced the skill premium through the accumulation of (ICT) capital. A possible

explanation is the temporary nature of the CSC defended by Goldin and Katz (1998),

Caselli (1999), and Galor and Moav (2000). They suggest that the CSC is more likely
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to exist during the technological transition, but once this transition is completed, the

endogenous outcome may deviate from CSC. The ICT-production sector may have

completed earlier the digital revolution, and there is no particular reason to expect

that (ICT) capital must be more complementary to skilled workers during most of the

observed sample.

7 Conclusion

In this work, we have reexamined the evidence on the CSC and SBTC hypotheses using

sectoral data for the US economy from 1970 to 2005. We find overwhelming evidence

that technological progress has been non-neutral, rising the relative productivity of

skilled workers over unskilled in all considered sectors and aggregations. However,

we also find strong support for the CSC at the aggregate level and in many sectors.

The assessment of the relative contribution of these two phenomena to the observed

changes in the skill premium has revealed that both CSC and SBTC are important

in explaining the observed changes in the premium, especially using data at higher

levels of aggregation. At a more disaggregated level, the contribution of SBTC to

the skill premium growth is often larger, although CSC also contributes decisively

to the skill premium growth in many sectors. Our analysis has also revealed that the

evidence of CSC arising in non-ICT capital is wider and usually more robust. However,

complementarities originated in ICT capital are essential to explain the skill premium

patterns in some sectors, especially in financial and business services.

As any applied work, this study is subject to many drawbacks and limitations. In

our view, the most critical is the limited time span of the data, which may penalize the

efficiency of estimations. As suggested by a referee, we have also estimated the translog

system with a panel of OECD economies using data from the same EU KLEMS data-

base. We find that imposing the sector’s technology to be the same for all countries

in all periods is far too restrictive, even assuming fixed effects. As a result, the esti-

mated translog system fits the data poorly and, more importantly, does an awful job

predicting the skill premium changes across countries. In fact, the skill premium has

evolved differently in the OECD countries, possibly due to their different labor market

institutions (see, e.g., Koeninger et al., 2007). Future research should contribute to
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disentangling these differences across countries in the evolution in the skill premium.

We have left out as well other issues of interest. For example, if CSC is just a

transitory phenomenon arising during technological revolutions, as argued in Goldin

and Katz (1998), Caselli (1999), and Galor and Moav (2000), the degree of maturity

in the use of capital may explain why we find CSC in some sectors but not in others.

Consequently, it would be interesting to study if some of the translog parameters

driving the value of the elasticities of substitution have changed at some point in time.

The existence of nonlinearity would be consistent with the evidence reported in Goldin

and Katz (1989) or Papageorgiou and Chmelarova (2005). Unfortunately, we have too

few observations to detect structural breaks reliably.

Our work also omits other factors, such as trade, which might have also contributed

to the observed rise in the skill premium. In a standard Heckscher-Ohlin model, the

Stolper-Samuelson theorem ensures that the relative wage of skilled workers goes up

when the relatively skill abundant country engages in trade. We do no find signif-

icant differences in the contributions of the different factors to the changes in the

skill premium between the tradables and non-tradables aggregations. However, these

differences exist at a more disaggregated level, implying that trade may still play a

significant role, as found in Feenstra (1996). Besides, trade affects the skill premium

in other ways than the pure Heckscher-Ohlin mechanism (Acemoglu, 2003).

Finally, a related debate, which also requires disaggregated analysis, revolves around

whether the ongoing introduction of “robots” is eroding labor markets (see, e.g., De-

Cannio, 2016; Acemoglu and Restreppo, 2019). Data on robot penetration by sector

or industry is required to address this interesting question. Overall, we find all these

issues exciting avenues for further research.
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Mathematical Appendix

In this appendix, we first show how to decompose the growth rates of the skill wage
premium and the relative share of skilled labor. After this, we discuss how to impose
concavity restrictions. The discussion closely follows Ruiz-Arranz (2002). We refer to
this work for further explanations.

7.1 Decomposition of the growth rates of the skilled premium

and the relative share of skilled

In order to decompose the growth of the skill premium, we apply the Shephard’s lemma
and write the input quantities as:

q =
∂PQ

∂p
=

∂P

∂p
Q+

∂Q

∂p
P =

∂ lnP

∂ ln p

P

p
Q = v

PQ

p
, (17)

where we have suppressed time and sector indices for simplicity. The vector q contains
the input quantities, p is a vector of input prices, and ν is the vector of cost shares.
The variables P and Q denote the output price and quantity, respectively.
From equation (17), we can express the vector of input prices as: p = νPQ/q.

Log-differencing this last equality with respect to time results in gp = gν − gq + gPQ,
where gx is the growth rate of a variable x. From expression (4) in the text, we can
rewrite the growth rate of the cost shares as gν = Λ(Bppgp+βpT ), where Λ is a diagonal
matrix containing the inverse of cost shares in the main diagonal. Combining the last
two equalities obtains:

gp = (ΛBpp − I)−1(gq − ΛβpT − gPQ).

Thus, we can express the growth rate of the skill premium as in equation (13), that is,

gSP = (φ1gS + φ
2
gU) + (φ3gK) + (ϕ1βST + ϕ

2
βUT + ϕ

3
βKT ) ;

where the parameter φi is the element (1, i) minus the element (2, i) of the matrix
(ΛBpp − I)−1, and ϕi is the difference between the elements (1, i) minus the element
(2, i) of the matrix −(ΛBpp − I)−1Λ.
We decompose the growth of the relative share of skilled labor in a similar way.

Using the equality p = νPQ/q inside equation (4), the vector of input shares can be
rewritten as

νt = αp +Bpp ln



ν
PQ

q

�
+ βpT t.

Differentiating with respect to time leads to: gν = Λ[Bpp(gν − gq + gPQ)+ βpT ]; where,
as before, Λ is a diagonal matrix containing the inverse of cost shares in the main
diagonal. Since BppgPQ = 0, we can arrange the previous expression as

gv = (Bpp − Λ
−1)−1(Bppgq − βpT ).

Thus, the growth rate of the relative share of skilled labor can be decomposed as in
equation (14), that is,

grv = (θ1gS + θ2gU) + (θ3gK) + (γ1βST + γ
2
βUT + γ

3
βKT ) ;

where θi and γi are the differences between the elements (1, i) and (2, i) of the matrices
(Bpp − Λ

−1)−1Bpp and −(Bpp − Λ
−1)−1, respectively.
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7.2 Imposing concavity restrictions

We enforce concavity by means of constrained optimization. As noted in equation (8),
the concavity condition requires the matrix

Θt = Bpp − vtv
′

t + Vt

to be non-positive definite at each period observed cost shares. To impose this con-
straint, we fist decompose in terms of its Cholesky decomposition Θt = LDL where

Lt =




1
l21 1
l31 l32 1



 ;Dt =




d1

d2
d3





Identifying these terms (and supressing time indices) leads to:

d1 = β11 + v2
1
− v1

l12 = (β
12
+ v1v2) /d1

d2 = β
22
+ v2

2
− v2 − d1l

2

12

l13 = (β13 + v1v3) /d1
l23 = (β

23
+ v2v3 − d1l12l13) /d2

d3 = β
33
+ v2

3
− v3 − d1l

2

13
− d2l

2

23
;

where simmetry, linear homogeity, and product exaustion imply that d3 = 0.
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TABLES AND FIGURES  
 
TAB. 1—DESCRIPTION OF ALL SECTORS AND AGGREGATIONS 

 Abbrev. NACE1

Market Economy  MARKT ELECOM + MEXELEC + OTHERG + FINBU + DIST + PERS 

PRINCIPAL SECTORS 

ICT Production ELECOM 30t33+64 

Manufacturing goods MEXELEC 15t29+34t37 

Non-Manufacturing goods OTHERG A+B+C+E+F 

Financial and buss. services FINBU J+71t74 

Distribution services DIST 50t52+60t63 

Personal services PERS H+O 

TWO-SECTOR SPLITS                                                                                

Agricultural AGR AtB 

Non-Agricultural non-AGR Other Market 

Tradable TRAD AtC+ 30t33 +MEXELEC + 51 + FINBU +60t63 

Non-Tradable non-TRAD Other Market 

Investment INV 30t33 + MInv + λinter MInt + λter (FINBU+DIST +64) 

Consumption CONS Other Market 

Notes: Minves and Minter stand for intermediate and investment manufacturing. The percentages λinter and λter 
state for the fraction of the final use devoted to investment calculated from the WIOD Input-Output tables.  
 
 
TAB. 2—THREE INPUT MODEL: ALLEN ELASTICITIES AND CS C HYPOTHESIS 

 σSU σSK σUK CSC 

MARKT 1.826 (0.275) -0.503 (0.423) 1.004 (0.370) -1.507 [-2.219; -0.501] 

PRINCIPAL SECTORS 

ELECOM 1.532 (0.483) 0.836 (0.236) 0.393 (0.125) 0.443 [-0.103; 1.008] 

MEXELEC 1.275 (0.470) 1.079 (0.377) 0.504 (0.116) 0.575 [-0.249; 1.168] 

OTHERG 5.443 (2.011) -0.798 (0.584) 0.388 (0.209) -1.186 [-2.654; -0.068] 

FINBU 2.107 (0.514) 1.161 (0.374) 0.094 (0.303) 1.066 [-0.137; 2.009] 

DIST 1.925 (0.391) 0.065 (0.515) 0.186 (0.180) - 0.121 [-1.121; 1.127] 

PERS 1.027 (0.279) -0.538 (0.306) 0.568 (0.123) -1.106 [-1.597; -0.515] 

TWO-SECTOR SPLITS 

AGR 2.569 (0.985) 0.384 (0.303) 0.332 (0.123) 0.051 [-0.590; 0.601] 

non-AGR 1.660 (0.232) -0.411 (0.368) 0.781 (0.176) -1.193 [-1.664; -0.101] 

TRAD 1.595 (0.232) -0.552 (0.380) 1.180 (0.257) -1.763 [-2.183; -0.955] 

non-TRAD 2.043 (0.489) -0.901 (0.566) 0.791 (0.177) -1.692 [-2.359; -0.052] 

INV 1.371 (0.214) 0.073 (0.224) 0.245 (0.113) -0.172 [-0.634; 0.381] 

CONS 2.153 (0.250) -0.893 (0.279) 1.194 (0.231) -1.986 [-2.458; -1.073] 

Notes: AES are computed at average period shares. Bootstrapped standard errors are in parenthesis. Last column 
is the AES between skilled labor and capital minus the AES between unskilled labor and capital. The CSC holds 
if the previous difference is negative. The numbers inside brackets are 90% bootstrapped percentile band, which  
correspond to 5% significance if the band is employed for one-side testing.  
 



 

 

TAB.3 — THREE INPUT MODEL: BIAS OF TECHNICAL CHANGE  AND SBTC HYPOTHESIS  
 βST βUT βKT SBTC 

MARKT 0.004 (0.000) -0.008 (0.000) 0.004 (0.000) 0.012 [0.011; 0.014] 

PRINCIPAL SECTORS 

ELECOM 0.005 (0.001) -0.013 (0.001) 0.004 (0.001) 0.018 [0.016; 0.019] 

MEXELEC 0.004 (0.000) -0.008 (0.000) 0.004 (0.000) 0.013 [0.012; 0.014] 

OTHERG 0.002 (0.000) -0.004 (0.001) 0.002 (0.000) 0.007 [0.005; 0.008] 

FINBU 0.007 (0.001) -0.009 (0.001) 0.002 (0.001) 0.017 [0.013; 0.020] 

DIST 0.003 (0.001) -0.010 (0.001) 0.007 (0.001) 0.013 [0.011; 0.017] 

PERS 0.004 (0.001) -0.006 (0.001) 0.002 (0.000) 0.010 [0.009; 0.013] 

TWO-SECTOR SPLITS 

AGR 0.003(0.000) -0.003 (0.001) 0.000 (0.001) 0.006 [0.004; 0.007] 

non-AGR 0.005 (0.000) -0.009 (0.000) 0.004 (0.000) 0.013 [0.012; 0.015] 

TRAD 0.005 (0.000) -0.008 (0.000) 0.003 (0.000) 0.013 [0.012; 0.014] 

non-TRAD 0.004 (0.001) -0.008 (0.001) 0.004 (0.000) 0.012 [0.011; 0.014] 

INV 0.006 (0.001) -0.011 (0.000) 0.005 (0.000)        0.016 [0.015; 0.018] 

CONS 0.005 (0.000) -0.008 (0.000) 0.003 (0.000) 0.013 [0.012; 0.014] 

Notes: The numbers in the first four columns are the estimated bias of technical change, with bootstrapped 
standard errors in parenthesis. The last column collects the difference between the two labor biases. The SBTC 
hypothesis holds if the difference is positive. Parenthesis show the 90% percentile bootstrapped band for the 
difference, which corresponds to 5% significance to test one-sided hypothesis 
 
 
TAB. 4 — THREE INPUT MODEL: FACTORS BEHIND THE CHAN GE IN THE SKILL PREMIUM  

%               QUANTITY EFFECT            TECH. EFFECT           TOTAL CHANGE 

 Labor Capital Labor Capital MODEL DATA 

MARKT -101 79 83 -25 37 36 

PRINCIPAL SECTORS 

ELECOM -107 -42 141 18 10 11 

MEXELEC -72 -12 89 8 12 18 

OTHERG -35 43 21 -12 17 12 

FINBU -12 -56 89 7 27 29 

DIST -40 8 66 -4 29 28 

PERS -157 123 118 -38 46 40 

TWO-SECTOR SPLITS 

AGR -55 -3 64 0 7 3 

non-AGR -107 72 99 -25 39 37 

TRAD -167 104 120 -27 31 29 

non-TRAD -86 77 83 -34 39 37 

INV -114 27 110 -11 11 23 

CONS -128 102 99 -34 40 36 

Notes: Decomposition of the percentage change in the skill premium between 1980 and 2005 predicted in the 
model into the labor quantity, capital quantity, and non-neutral technical change effects. The last two columns 
provide the percentage change in the model and in the data.  
 
 



 

 

TAB. 5— THREE INPUT MODEL: FACTORS BEHIND THE CHANG E IN THE SHARE OF 
SKILLED LABOR INCOME RELATIVE TO THE UNSKILLED 

%             QUANTITY EFFECT            TECH. EFFECT         TOTAL CHANGE 

 Labor Capital Labor Capital MODEL DATA 

MARKT -26 79 83 -25 112 111 

PRINCIPAL SECTORS 

ELECOM 11 -42 141 18 128 129 

MEXELEC 14 -12 89 8 99 104 

OTHERG 16 43 21 -12 67 63 

FINBU 52 -56 89 7 92 94 

DIST 18 8 66 -4 88 87 

PERS -113 123 118 -38 89 84 

TWO-SECTOR SPLITS  

AGR 27 -3 64 0 89 85 

non-AGR -33 72 99 -25 113 111 

TRAD -74 104 120 -27 124 121 

non-TRAD -33 77 83 -34 93 90 

INV -6 27 110 -11 119 131 

CONS -55 102 99 -34 112 108 

Notes: Decomposition of the percentage change in the skilled labor share of income relative to the unskilled 
between 1980 and 2005 predicted in the model into the labor quantity, capital quantity, and non-neutral 
technical change effects. The last two columns provide the percentage change in the model and in the data.  
 
 
TAB. 6 — FOUR INPUT MODEL: ALLEN ELASTICITIES AND C SC 

 σSU σSI σSN σUI σUN

 
σIN

 
ICT-CSC NonICT-CSC 

MARKT 1.61 

(0.15) 

-0.15 

(0.66) 

-0.63 

(0.18) 

1.36 

(0.35) 

0.88 

(0.13) 

0.09 

(0.44) 

-1.51 

[-2.95; -0.06] 

-1.50 

[-1.87; -0.95] 

PRINCIPAL SECTORS 

ELECOM 1.67 

(0.49) 

2.04 

(0.63) 

-0.14 

(0.50) 

0.36 

(0.34) 

0.44 

(0.31) 

0.87 

(0.46) 

1.68 

[0.21; 3.22] 

-0.58 

[-1.94; 0.79] 

MEXELEC 1.69 

(0.79) 

0.39 

(5.72) 

0.80 

(0.65) 

-0.40 

(1.78) 

0.49 

(0.20) 

3.38 

(1.68) 

0.79 

[-11.49; 12.28] 

0.31 

[-1.05; 1.76] 

OTHERG 4.69 

(0.91) 

-2.34 

(5.23) 

-0.59 

(0.36) 

3.51 

(1.14) 

0.42 

(0.15) 

-0.77 

(0.61) 

-5.85 

[-16.41; 4.01] 

-1.01 

[-1.75; -0.23] 

FINBU 2.92 

(0.53) 

-2.02 

(0.95) 

1.21 

(0.40) 

3.00 

(0.84) 

-0.26 

(0.36) 

3.08 

(0.90) 

-5.02 

[-7.22; -2.04] 

1.47 

[-0.17; 2.72] 

DIST 2.13 

(0.27) 

2.96 

(0.84) 

-1.24 

(0.27) 

-0.14 

(0.31) 

0.60 

(0.11) 

1.67 

(0.55) 

3.10 

[-0.01; 4.90] 

-1.84 

[-1.69; -0.10] 

PERS 0.99 

(0.25) 

-1.66 

(2.88) 

-0.52 

(0.33) 

1.73 

(1.20) 

0.43 

(0.15) 

4.71 

(1.68) 

-3.40 

[-9.61; 4.69] 

-0.95  

[-1.67; -0.10] 

Notes: AES are computed at average period shares (bootstrapped standard errors in parenthesis). Last two 
columns show the AES between skilled labor and (ICT and non-ICT) capital minus the AES between unskilled 
labor and (ICT and non-ICT) capital. The CSC holds if the previous difference is negative. The numbers inside 
brackets are 90% bootstrapped percentile band, which  correspond to 5% significance if the band is employed 
for one-side testing.  



 

 

TAB.7 — FOUR INPUT MODEL: BIAS OF TECHNICAL CHANGE AND SBTC HYPOTHESIS  
 βST βUT βIT βNT SBTC 

MARKT 0.004 

(0.001) 

-0.007 

(0.001) 

0.003 

(0.000) 

0.000 

(0.000) 

0.011 

[0.010; 0.014] 

PRINCIPAL SECTORS 

ELECOM 0.006 

(0.001) 

-0.013 

(0.001) 

0.003 

(0.001) 

0.004 

(0.001) 

0.019 

[0.016; 0.022] 

MEXELEC 0.004 

(0.002) 

-0.010 

(0.003) 

0.001 

(0.001) 

0.005 

(0.001) 

0.014 

[0.006; 0.021] 

OTHERG 0.002 

(0.001) 

-0.003 

(0.001) 

0.000 

(0.000) 

0.000 

(0.000) 

0.005 

[0.003; 0.007] 

FINBU -0.001 

(0.002) 

-0.005 

(0.001) 

0.002 

(0.001) 

0.002 

(0.001) 

0.006 

[0.001; 0.012] 

DIST 0.005 

(0.001) 

-0.010 

(0.003) 

0.003 

(0.000) 

0.003 

(0.001) 

0.015 

[0.013; 0.018] 

PERS 0.004 

(0.001) 

-0.005 

(0.001) 

0.000 

(0.000) 

0.001 

(0.000) 

0.009 

[0.006; 0.013] 

Notes: The numbers in the first four columns are the estimated bias of technical change (bootstrapped standard 
errors in parenthesis).  The fifth column is difference between the technical bias of the two labor inputs. The 
SBTC hypothesis holds if the difference is strictly positive. The numbers inside parenthesis are the 90% 
percentile bootstrapped band for the estimated difference, which corresponds to 5% significance to test one-
sided hypothesis. 
 
TAB. 8— FOUR INPUTS MODEL: FACTORS BEHIND THE CHANG E IN THE SKILL PREMIUM  

%           QUANTITY EFFECT     TECH. EFFECT        TOTAL 

 Labor ICT Non-ICT Labor Capital MODEL DATA 

MARKT -141 19 74 100 -15 37 36 

PRINCIPAL SECTORS 

ELECOM -111 -47 29 141 0 12 11 

MEXELEC -69 -12 -4 88 11 14 18 

OTHERG -32 1 25 24 -2 16 12 

FINBU -91 152 3 1 -33 32 29 

DIST -108 -25 164 89 -77 43 28 

PERS -194 39 102 130 -32 44 40 

Notes: Decomposition of the percentage change in the skilled premium between 1980 and 2005 predicted in 
the model into the labor quantity, (ICT and non-ICT) capital quantity, and non-neutral technical change effects. 
The last two columns provide the percentage change in the model and in the data.  
.  
 
 
 
 
 
 
 
 
 
 



 

 

TAB. 9— FOUR INPUTS MODEL: FACTORS BEHIND THE CHANG E IN THE SKILLED LABOR 
SHARE OF INCOME RELATIVE TO THE UNSKILLED 

% QUANTITY EFFECT TECH. EFFECT TOTAL 

 Labor ICT Non-ICT Labor Capital MODEL DATA 

MARKT -66 19 74 100 -15 112 111 

PRINCIPAL SECTORS 

ELECOM 7 -47 29 141 0 130 129 

MEXELEC 17 -12 -4 88 11 100 104 

OTHERG 18 1 25 24 -2 66 63 

FINBU -26 152 3 1 -33 97 94 

DIST 9 10 17 62 -12 86 87 

PERS -151 39 102 130 -32 88 84 

Notes: Decomposition of the percentage change in the skilled labor share of income relative to the unskilled 
between 1980 and 2005 predicted in the model into the labor quantity, (ICT and non-ICT) capital quantity, and 
non-neutral technical change effects. The last two columns provide the percentage change in the model and in 
the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

FIG.1— RELATIVE QUANTITY OF SKILLED HOURS. SKILL PR EMIUM, AND INCOME 
SHARE OF SKILLED LABOR RELATIVE TO THE UNSKILLED: 1 970-2005 

 

Notes: MARKT: aggregate (market) economy; ELECOM: ICT production; MEXELEC: Manufacturing goods 
(excluding electrical); OTHEG: Non-manufacturing goods; FINBU: Financial and business services; DIST: 
Distribution services; PERS: Personal services.  
 
 
 
 

0

0.5

1

1.5

2

2.5

1970 1975 1980 1985 1990 1995 2000 2005

RELATIVE QUANTITY OF SKILLED HOURS

0.5

1

1.5

2

2.5

1970 1975 1980 1985 1990 1995 2000 2005

SKILL PREMIUM

0

0.5

1

1.5

2

2.5

1970 1975 1980 1985 1990 1995 2000 2005

SKILLED LABOR INCOME SHARE RELATIVE TO UNSKILLED LABOR INCOME SHARE

MARKT ELECOM MEXELEC OTHERG FINBU DIST PERS



 

 

FIG.2 —FACTOR INTENSITIES: 1970-2005 

 

 

 

 

Notes: MARKT: aggregate (market) economy; ELECOM: ICT production; MEXELEC: Manufacturing goods 
(excluding electrical); OTHEG: Non-manufacturing goods; FINBU: Financial and business services; DIST: 
Distribution services; PERS: Personal services.  
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