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Abstract: Background: Maintenance of the ratio of glutathione in the reduced (GSH) and oxidised
(GSSG) state in cells is important in redox control, signal transduction and gene regulation,
factors that are altered in many diseases. The accurate and reliable determination of GSH and
GSSG simultaneously is a useful tool for oxidative stress determination. Measurement is limited
primarily to the underestimation of GSH and overestimation GSSG as a result of auto-oxidation of
GSH. The aim of this study was to overcome this limitation and develop, optimise and validate a
reverse-phase high performance liquid chromatographic (HPLC) assay of GSH and GSSG for the
determination of oxidant status in cardiac and chronic kidney diseases. Methods: Fluorescence
detection of the derivative, glutathione-O-pthaldialdehyde (OPA) adduct was used. The assay was
validated by measuring the stability of glutathione and glutathione-OPA adduct under conditions
that could affect the reproducibility including reaction time and temperature. Linearity, concentration
range, limit of detection (LOD), limit of quantification (LOQ), recovery and extraction efficiency and
selectivity of the method were assessed. Results: There was excellent linearity for GSH (r2 = 0.998)
and GSSG (r2 = 0.996) over concentration ranges of 0.1 µM–4 mM and 0.2 µM–0.4 mM respectively.
The extraction of GSH from tissues was consistent and precise. The limit of detection for GSH and
GSSG were 0.34 µM and 0.26 µM respectively whilst their limits of quantification were 1.14 µM and
0.88 µM respectively. Conclusion: These data validate a method for the simultaneous measurement
of GSH and GSSG in samples extracted from biological tissues and offer a simple determination of
redox status in clinical samples.
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1. Introduction

Oxidative stress is defined as the imbalance between reactive oxygen species (ROS) production
and antioxidant defences in a biological system [1]. ROS are unstable and highly reactive oxygen
species with a single electron and an unpaired electron in the outer orbit. ROS including superoxide
anions (O2

•) and hydroxyl radicals (OH•) hydrogen peroxide (H2O2) are produced by endothelial
cells, inflammatory cells and the mitochondrial electron transport system [2]. The production of ROS
radicals (Figure 1) starts by the one electron reduction of oxygen (O2) to O2

• which under the influence
of the enzyme superoxide dismutase is converted to H2O2. These two ROS then form the basis for the
generation of further and even more dangerous radicals.
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Figure 1. Reactive oxygen species (ROS) generation and effect in a cardiomyocyte. It begins with 
partial reduction of oxygen (O2) to give superoxide (O2•), ultimately generating hydroxyl radical 
(OH•). ONOO• (peroxynitrite), hydrogen peroxide (H2O2), arginine (Arg), nitric oxide (NO), oxidised 
glutathione GSSG, reduced glutathione GSH, water (H2O). 

The glutathione system consisting of glutathione reductase, glutathione oxidase and 
glutathione, maintains the concentration of O2• and H2O2 at physiological levels necessary for tissue 
repair and immune defence [3]. Therefore, the ratio of oxidised and reduced glutathione indicates the 
redox state of a cell and may represent a valuable tool for the assessment of oxidative stress and a 
target for drug-based antioxidant therapies [4]. Under chronic pathological conditions, compromised 
or ineffective antioxidant capacity including the glutathione system results in excess ROS generation. 
Consequences of this include oxidative damage to DNA, proteins and cell membrane lipids, and 
altered cellular signal transductions as observed in many disorders such as diabetes, cardiovascular, 
autoimmune and chronic kidney diseases [5]. The pathway of systemic and tissue level oxidative 
stress in these diseases is complex leading to inflammation and subsequent effects on vascular 
remodelling, endothelial function and mitochondrial dysfunction [6,7]. 

Glutathione (GSH) is a ubiquitous thiol tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) found in 
a range of cells including cardiomyocytes [8], hepatocytes and erythrocytes [9]. The majority of GSH 
(90%) is found in the cytosol with a small but significant amount in the mitochondria and 
endoplasmic reticulum (ER) [10–12]. GSH is synthesised de novo from glutamate, cysteine and 
glycine [13] with a γ-carboxyl linkage between glutamate and cysteine of GSH, which is only 
susceptible to hydrolysis by γ glutamyltranspeptidase, [14] rather than the usual α-carboxyl group. 
This confers resistance to intracellular degradation. GSH plays a number of important biological 
functions including scavenging oxygen-derived free radicals to ease oxidative stress [15,16]; 
signalling in apoptosis [17,18]; modulating cellular process such as immune response and DNA 
synthesis [8]; detoxifying electrophiles [19]; and acting as cysteine reservoir [20]. The role as an 
oxygen radical scavenging molecule is the current best characterised role of GSH. 

Mitochondrial respiration is crucial for cellular function, but it is also an endogenous source of 
ROS. The flow of electrons through the electron transport chain (ETC) can generate superoxide 
radicals (O2•) at Complexes I and II through the partial reduction of O2 [21,22]. Under normal 
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Figure 1. Reactive oxygen species (ROS) generation and effect in a cardiomyocyte. It begins
with partial reduction of oxygen (O2) to give superoxide (O2

•), ultimately generating hydroxyl
radical (OH•). ONOO• (peroxynitrite), hydrogen peroxide (H2O2), arginine (Arg), nitric oxide (NO),
oxidised glutathione GSSG, reduced glutathione GSH, water (H2O).

The glutathione system consisting of glutathione reductase, glutathione oxidase and glutathione,
maintains the concentration of O2

• and H2O2 at physiological levels necessary for tissue repair and
immune defence [3]. Therefore, the ratio of oxidised and reduced glutathione indicates the redox state of
a cell and may represent a valuable tool for the assessment of oxidative stress and a target for drug-based
antioxidant therapies [4]. Under chronic pathological conditions, compromised or ineffective antioxidant
capacity including the glutathione system results in excess ROS generation. Consequences of this
include oxidative damage to DNA, proteins and cell membrane lipids, and altered cellular signal
transductions as observed in many disorders such as diabetes, cardiovascular, autoimmune and chronic
kidney diseases [5]. The pathway of systemic and tissue level oxidative stress in these diseases is
complex leading to inflammation and subsequent effects on vascular remodelling, endothelial function
and mitochondrial dysfunction [6,7].

Glutathione (GSH) is a ubiquitous thiol tripeptide (γ-l-glutamyl-l-cysteinyl-glycine) found in
a range of cells including cardiomyocytes [8], hepatocytes and erythrocytes [9]. The majority of
GSH (90%) is found in the cytosol with a small but significant amount in the mitochondria and
endoplasmic reticulum (ER) [10–12]. GSH is synthesised de novo from glutamate, cysteine and glycine [13]
with a γ-carboxyl linkage between glutamate and cysteine of GSH, which is only susceptible to
hydrolysis by γ glutamyltranspeptidase, [14] rather than the usual α-carboxyl group. This confers
resistance to intracellular degradation. GSH plays a number of important biological functions including
scavenging oxygen-derived free radicals to ease oxidative stress [15,16]; signalling in apoptosis [17,18];
modulating cellular process such as immune response and DNA synthesis [8]; detoxifying electrophiles [19];
and acting as cysteine reservoir [20]. The role as an oxygen radical scavenging molecule is the current best
characterised role of GSH.

Mitochondrial respiration is crucial for cellular function, but it is also an endogenous source of
ROS. The flow of electrons through the electron transport chain (ETC) can generate superoxide radicals
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(O2
•) at Complexes I and II through the partial reduction of O2 [21,22]. Under normal conditions,

this O2
• is cleared to hydrogen peroxide (H2O2) by superoxide dismutase (SOD) in the mitochondrial

matrix [23]. However, H2O2 can also lead to the production of the more damaging oxygen radical, OH•,
which can initiate a cascade of cellular injury through peroxidation of lipid, protein and DNA [24].
A key role of GSH is to prevent this damage by reducing H2O2 to water (H2O) in the presence of
selenium-dependent glutathione peroxidase, via conversion of GSH to GSSG. In turn GSSG may be
recycled to GSH by glutathione reductase with NADPH as the electron donor.

Mitochondrial GSH homeostasis is particularly important because, under pathological conditions,
excessive generation of ROS results in toxic accumulation of GSSG [25]. This can lead to an imbalance
in the redox potential, export of GSSG and eventual depletion of GSH, a classical state of oxidative
stress [26] observed in a number of diseases including inflammation [27], autoimmune disorders [28,29]
and liver disorders [30]. Hence, the reliable determination of GSH and GSSG in absolute and ratiometric
terms in blood and tissues is regarded a putative tool in oxidative stress studies.

Several methods have been reported for measuring glutathione based on ultra-violet (UV)
absorbance, fluorescence, spectrophotometry, electrochemical and tandem mass spectroscopy,
usually after protein precipitation in biological samples [31–36], all of which have limitations. A recent
excellent review has highlighted the ongoing challenges in using GSH/GSSG titration as a measure of
thiol redox balance and the best pre-analytical and analytical methods for the quantification of these
molecules in biological samples [37]. High performance liquid chromatography (HPLC) techniques
with UV detection have poor limits of detection [38], restricting widespread application. HPLC methods
with either UV or fluorescence detection require derivatisation of GSH prior to detection which causes
further limitations driven principally as a result of enhanced susceptibility to GSH degradation and
auto oxidation, instability of derivatised GSH adduct and suboptimal derivatisation conditions. The use
of HPLC with electrochemical detection can overcome these problems by direct measurement of GSH
and GSSG [39,40] but can be very expensive. Thus, the search for a fast, sensitive and reliable method
for glutathione quantification is still ongoing. Kander et al. [31] developed an HPLC method for the
quantification of GSH and GSSG in human plasma and whole blood using metaphosphoric acid as a
precipitant. Their method showed reduction of GSH by 25% within one hour of sample collection,
potentially due to auto-oxidation and/or degradation. We present a modified version of the method
developed by Kander et al. [31] and we have further optimised conditions to minimise the problems of
auto-oxidation and degradation for the study of oxidative stress in biological tissues.

The objective of this study was to characterise the stability of GSH and its adduct with
O-pthaldialdehyde (OPA) and validate an optimised, rapid and accurate method for the simultaneous
measurement of GSH and GSSG for oxidative stress studies using reverse phase HPLC in cardiac,
skeletal, liver and kidney tissues.

2. Results

O-pthaldialdehyde (OPA) optimisation: Method optimisation identified that a concentration of
purified OPA between 1% and 5% (v/v) overcame complications of interference but with sufficient
reactivity (Figure 2A). Furthermore, OPA reagent reacted with GSH leading to detection of 68.2% of
total glutathione in 400 µmM GSH relative to pure (≥99.0%) OPA (Figure 2B).
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Figure 2. (A) Summary figure of the optimisation of glutathione-O-pthaldialdehyde (OPA) 
concentration using a 2000µM reduced glutathione (GSH) standard. (B) Reactivity of OPA and OPA 
reagent with 400 µM GSH standard. Data are presented as mean ± (standard error of mean (SEM) (n 
= 5, *p < 0.05). Standards prepared using N-ethylmaleimide (NEM) and incubated for up to 10 min 
and assayed by high performance liquid chromatography (HPLC). Peak areas at a wavelength of 450 
nm were measured. 

2.1. Time and Temperature Optimisation 

Since the GSH-OPA adduct may be susceptible to time- and temperature-dependent 
spontaneous degradation, the incubation times were increased to prevent underestimation of GSH 
in biological samples. As shown in Figure 2, incubation of GSH and OPA at 25 °C generated better 
reactivity but when prolonged, resulted in time-dependent degradation (Figure 3A). Incubation time 
of 5–10 min was sufficient for optimal reaction with limited degradation. To confirm the temperature-
dependent stability of the GSH-OPA adduct, the assay was performed at 4 °C, 25 °C and 50 °C (Figure 
3B). These data show that the GSH-OPA adduct was most stable at 4 °C and degraded in a 
temperature-dependent fashion.  
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Figure 2. (A) Summary figure of the optimisation of glutathione-O-pthaldialdehyde (OPA) concentration
using a 2000µM reduced glutathione (GSH) standard. (B) Reactivity of OPA and OPA reagent with
400 µM GSH standard. Data are presented as mean ± (standard error of mean (SEM) (n = 5, * p < 0.05).
Standards prepared using N-ethylmaleimide (NEM) and incubated for up to 10 min and assayed by high
performance liquid chromatography (HPLC). Peak areas at a wavelength of 450 nm were measured.

2.1. Time and Temperature Optimisation

Since the GSH-OPA adduct may be susceptible to time- and temperature-dependent spontaneous
degradation, the incubation times were increased to prevent underestimation of GSH in biological
samples. As shown in Figure 2, incubation of GSH and OPA at 25 ◦C generated better reactivity but
when prolonged, resulted in time-dependent degradation (Figure 3A). Incubation time of 5–10 min was
sufficient for optimal reaction with limited degradation. To confirm the temperature-dependent stability
of the GSH-OPA adduct, the assay was performed at 4 ◦C, 25 ◦C and 50 ◦C (Figure 3B). These data show
that the GSH-OPA adduct was most stable at 4 ◦C and degraded in a temperature-dependent fashion.
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Figure 3. (A) Optimal incubation time required of 4 mM reduced glutathione (GSH) with 5%
O-pthaldialdehyde (OPA) and subsequent degradation. (B) 200µM GSH run at different assay
temperatures. Data are presented as mean ± standard error of mean (SEM) (n = 5, * p < 0.05).
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2.2. NEM Optimisation and Autoxidation

The results of N-ethylmaleimide (NEM) optimisation indicated that 40 mM NEM was sufficient
to conjugate GSH within the limit of the method (200–2000 µM). The data also showed that 10–15%
of GSH was oxidised to GSSG (Figure 4A,B), thus sample preparation must be expedient. As a
result, the time-dependent auto-oxidation of 200 µM GSH was ascertained as shown in Figure 5.
The auto-oxidation experiment was also conducted to determine the impact of temperature. The results
showed that at temperatures greater than 20 ◦C, GSH was degraded rather than auto-oxidised as
indicated by the reductions in level of GSSG by 15% and 67% and consequently decrements in the
GSSG/GSH ratio by 13% and 61% at 25 ◦C and 50 ◦C relative to 4 ◦C. In summary the GS-NEM adduct
was found to be stable under the conditions of the assay (temperature, time and concentration).
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Figure 4. N-ethylmaleimide (NEM) optimisation using different amount of GSH (A) 200µM (B) 2000µM.
The results also showed that 10–15% of GSH is oxidised to GSSG. Data are presented as mean ± SEM
(n = 5, ** p < 0.05).
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Figure 5. Time dependent auto-oxidation of reduced glutathione (GSH) with fold increase in oxidised
glutathione (GSSG). 200 uM GSH was subjected to GSSG assay protocol at different incubation times.
Samples were incubated at 4 ◦C for varying times, 40 mM NEM was added and incubated with
O-pthaldialdehyde (OPA) for 25 min. Data are presented as mean ± SEM (n = 3).
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2.3. Stability of Glutathione Extract

Glutathione extracted from biological samples (cardiac, liver, whole blood or serum) may contain
other substances, including trace metals, which may interact with, and compromise the stability
of GSH. To explore the extent to which GSH measurement may be modified in biological samples,
PCA extract from 200 mg cardiac tissue was incubated at 4 ◦C for varying time periods, and GSH was
measured. The data revealed that after 60 min, the concentrations of GSH in extracts were reduced by
approximately 35% (Figure 6) possibly due to auto-oxidation shown in Figure 5.
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Figure 6. Time-dependent change of the degradation of reduced glutathione (GSH) from extracted
cardiac tissue over time at 4 ◦C. Data are presented as mean ± SEM (n = 3).

Unlike powdered frozen tissue, frozen whole blood or serum requires thawing which could increase
vulnerability to the auto-oxidation or degradation thus far established. Frozen whole blood or serum
extracted (with 5% PCA) simultaneously with thawing (T. Extract) on the day of analysis preserved
endogenous GSH (Figure 7A,B). By contrast, when supernatant of PCA extract snap frozen in liquid
nitrogen (F. Extract), stored at −80 ◦C for 6 weeks was used, it resulted in a greater loss of endogenous
GSH (Figure 7A,B). The GSH-OPA adduct was stable, degraded in a concentration-dependent manner
and retained 96% fluorescence at 120 min (Figure 8A); adduct from GSSG has greater stability
(Figure 8B).
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Figure 7. Degradation of blood and serum reduced glutathione (GSH) through different extraction
procedures. T extract: Freshly harvested whole blood of serum was snap frozen in liquid nitrogen and
stored at −80 ◦C for 6 weeks. On the day of the experiment, PCA was added to the frozen sample and
allowed to thaw, thus extraction and thawing occurred simultaneously; F-extract: freshly harvested
whole blood of serum was subjected to PCA extraction and the supernatant stored at −80 ◦C for 6 weeks.
On the day of the experiment, the supernatant was thawed and used for the assay. (A) was subjected
through GSH protocol; (B) was subjected through GSSG protocol. Data are presented as mean ± SEM
(n = 4, * p < 0.05). Data are presented as mean ± SEM (n = 4).
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Figure 8. (A,B): Stability of glutathione-OPA adduct. The time-dependent (over 120 min) degradation
at 40 ◦C of reduced glutathione (GSH) (A) and oxidised glutathione (GSSG) (B) after derivatisation at
three concentrations: 2 µm, 200 µm and 2 mM (A). Data are presented as means (n = 2).
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The regression analysis (Table 1) of standard curve over the range 0.1 to 4000 µM GSH indicated
that the method gave a linear signal for GSH with r2 value close to 1 (p < 0.001).

Table 1. Linearity and prediction power of the glutathione method. X and Y are the glutathione
concentration and detector signal, respectively (GSSG: p < 0.001).

Regression Analysis for the Range of GSH and GSSG Standard Curves

Linearity range 1.2 µM–4 mM GSH
1.0 µM–0.4 mM GSSG

Slope 0.413 GSH
1.27 GSSG

Intercept 20.16 GSH
−8.78 GSSG

Regression equation Y = 0.413x + 21.16 GSH
Y = 1.27x − 8.78 GSSG

Coefficient of Determination
(r2)

99.6% GSH
99.6% GSSG

Coefficient of correlation (R) 1.00 GSH
1.00 GSSG

Limit of detection (LOD) 0.34 µM GSH
0.26 µM GSSG

Limit of quantification (LOQ) 1.14 µM GSH
0.88 µM GSSG

The limit of detection (LOD: lowest amount detectable but not necessarily quantifiable) and the
limit of quantification (LOQ: lowest amount quantitatively detectable with precision and accuracy)
were calculated to be 0.34 µM and 1.14 µM respectively from the regression equation. Both LOD
and LOQ were tested and verified experimentally. The LOD and LOQ of GSSG method was found
to be 0.26 µM and 0.88 µM respectively. Overlapping chromatograms (Figure 9) of GSH standards
further supports that the optimised method has satisfactory specificity with asymmetry factors of 0.821
(20 µM). Five liver samples (≈200 mg each) were spiked with either 50, 100, 200, 300, or 400 µM GSH
prior to extraction. The total GSH of the extract increased linearly (Figure 10; r2 = 0.99, R = 1) with
spiked GSH concentration showing consistent recovery of the extraction procedure.
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3. Discussion

Oxidative stress is prevalent in many diseases including cancer [41], heart failure [42] and chronic
kidney disease [43] and worsens with stage of the diseases. Indeed, there is a growing body of evidence
that suggests that in addition to being a consequence of these chronic diseases, oxidative stress could
also be a key mediator in their progression [44–46]. Therefore, modulation of oxidative status could be
a potential therapeutic target and thus its measurement is a prognostic indicator of disease activity and
response to treatment. The measurement of glutathione status clinically would be of potential benefit
in terms of oxidative stress assessment, hence the need for an easy, rapid, sensitive and reliable method.
In that regard, the present study developed and optimised various parameters including stability
(time and temperature dependent), and precision of glutathione extraction and recovery. There are
several methods of measuring glutathione, which include fluorometric and enzymatic [47,48] with
greater discrepancies in the data between these methods [49].

McGill and Jaeschke [50] have studied this problem in detail but as yet no definitive solution
has been found. Most of the fluorometric methods reported involved extended sample preparation
predisposing them to GSH autoxidation [32,49]. The fluorometric method used by Floreani et al. [49]
adapted incubation and centrifugation times of 30 and 15 min respectively during sample preparation
as opposed to very rapid times used in the enzymatic method. As a result, their data showed a GSSG
level five times higher in the fluorometric method relative to enzymatic method. Sample preparation
in the present method was rapid, optimised at 5 min PCA precipitation; 5 min high speed (12,000× g)
centrifugation; and 5–10 min incubation to overcome the limitation of auto-oxidation similar to the
report of Paroni et al. [51]. Also, the addition of NEM earlier during sample preparation for GSSG
measurement further prevents GSH auto-oxidation. Total of 40 mM NEM was sufficient to achieve
this goal. However, it must be recognised that our method employed the hydrolysis of GSSG to GSH
which reacts to OPA, thus GSSG may vary from 0.1–1.0% of the level of GSH. While oxidation of a
small proportion of the GSH during sample acquisition and work up might cause the reported total
to be a few percent less than the actual one, this same conversion may obliterate any vestige of the
original GSSG value.

The auto-oxidation of GSH during sample preparation represented the biggest challenge in the
assessment of GSH/GSSG. The concentration of GSH in cardiac tissue fell sharply, reaching a nadir
of 35% by 1 h and plateaued. That compared well with authentic GSH standard that underwent
auto-oxidation to give a 7.5-fold increase in GSSG concentration in the first 1 h. This is in contrast to the
report of Kander et al. [29] where GSH was reportedly stable at 4 ◦C for 24 h. Also, the authors reported
a stable metaphosphoric acid extract at −80 ◦C for at least 3 months. By contrast, we found a rather
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stable GSH in whole blood or serum at −80 ◦C for 6 weeks compared to PCA extracts. PCA aided
deprotonation and extraction of whole blood and serum was optimal when done simultaneously with
thawing, possibly because it accelerated thawing thus limiting sample idling. Aside from auto-oxidation,
glutathione was also temperature sensitive, demonstrated by 15% and 67% loss at 25 ◦C and 50 ◦C
respectively compared to at 4 ◦C. The low LOD and LOQ confirmed the high sensitivity of the method.

The recovery of the spiked liver samples was consistent at 96.1 ± 3.4–98.6 ± 2.9% and duplicate
variation was not statistically significant. With extraction procedure limited to 10–12 min, 10 min
incubation during derivatisation and HPLC set to 4 ◦C, the method overcame the problems of
auto-oxidation of GSH and degradation of glutathione-OPA adduct. The gradient mobile phase and
flow rate were also optimised to give a suitable system with consistent peaks elution time and acceptable
tailing. The method was subsequently used for oxidative stress studies in cardiac and kidney diseases.

4. Materials and Methods

4.1. Materials

GSH, GSSG, O-pthaldialdehyde (OPA), N-ethylmaleimide (NEM), ethylenediaminetetraacetic
acid (EDTA) and sodium hydrogen phosphate (NaH2PHO4) were purchased from (Sigma-Aldrich,
Poole, UK). HLPC-grade acetonitrile and methanol were obtained from Fisher Scientific (Leicester, UK)
and used without further purification. Perchloric acid (PCA) was obtained from VWR International
(Loughborough, England). Chromacol autosampler vials (300µL) were obtained from Thermo Scientific
(Langerwehe, Germany). Chromatographic-grade water was generated from Milli-Q Advantage
SystemTM (Millipore, Watford, UK) and filtered through Whatman Filter Paper (Fisher Scientific,
Loughborough, UK). The NaH2PHO4 mobile phase solvent was degassed and filtered through a
0.45-µm Whatman filter paper. GSH and GSSG standard solutions were prepared fresh each day.
O-pthaldialdehyde (OPA) solution in methanol was prepared every 4 hrs and NEM was prepared just
before use. A summary of the whole procedure is detailed in Figure 11.

4.2. Method Optimisation

Varying amounts of O-pthaldialdehyde (OPA) reagent (1–10%, v/v) (Sigma-Aldrich, Poole, UK)
were titrated with 2 mM GSH to determine the optimal reactivity (product yield). The incubation time
for the OPA-glutathione reaction was optimised over 40 min to avoid unnecessary degradation at
25 ◦C. Total of 40, 80 and 120 mM N-ethylmaleimide (NEM) were used to measure GSSG in (a) 20 µM
GSSG containing 200 µM GSH (b) 200 µM GSSG containing 2000 µM GSH. The time at which NEM
was added (0–60 min) and temperature (at 4 ◦C, 25 ◦C and 50 ◦C) dependent stability of GSH were
evaluated by assessing the autoxidation of 200 µM and 2000 µM GSH to GSSG. The stability of pure
GSH was compared to that of GSH extracted from 200 mg cardiac tissue to determine the appropriate
time for NEM addition during sample preparation.

Thawed perchloric acid (PCA) extracted samples (frozen whole blood or serum (from −80 ◦C))
and freshly collected whole blood or serum samples were studied to determine the impact of thawing
on the determine degradation loss of glutathione.

To examine the stability of total glutathione after derivatisation, GSH (2 µM, 0.2 mM and 2 mM)
and GSSG (0.2, 2 and 20 µM) adducts with O-pthaldialdehyde were analysed over 120 min.

4.3. Sample Collection and Preparation

All procedures relevant to animals used in this study were carried out in accordance with the UK
Animals (Scientific Procedure) Act 1986 and were approved by the University of Hull Ethical Review
Process (No. PPL 70/7966). Cardiac, skeletal, liver and kidney tissues from male Sprague-Dawley rats
were washed for excess blood, freeze clamped with Wollenberger tong cooled in liquid nitrogen and
stored at −80 ◦C. Tissues were subsequently weighed and powdered in liquid nitrogen according to
Seymour et al. [40]. At time of tissue harvesting, blood samples were taken, and a portion centrifuged
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at 4 ◦C. The serum was obtained and whole blood was snap frozen in liquid nitrogen and stored at
−80 ◦C for future glutathione analysis.

Powdered tissues, whole blood and serum were subjected to 6% PCA extraction [51] and
neutralised with 6 M potassium hydroxide (KOH). The resultant supernatant was filtered through
0.45 µm Millex syringe-driven Filter unit (Merck KGaA, Darmstadt, Germany) for glutathione analysis.

4.4. Sample Derivatisation

Sample derivatisation was carried out according to a modification of method of Kander et al. [31].
In addition, protein crash with 200 µL 10% metaphosphoric acid (MPA) added to the filtered sample
supernatant at 4 ◦C was performed to minimise HPLC fouling.

For GSH assay, extracted samples were initially diluted seven-fold with 0.1%
ethylenediaminetetraacetic acid (EDTA) in 0.1 M sodium hydrogen phosphate (Na2HPO4) (pH at 8.0)
and 20 µL diluted solution mixed in a glass vial with 300 µL 0.1% EDTA in 0.1 M Na2HPO4 (pH at 8.0))
to give GSH assay mixture. For GSSG assay, 100 µL extracted sample was added to 100 µL of 40 mM
N-ethylmaleimide (NEM) (1:1 ratio), incubated at 25 ◦C for 25 min and mixed with 250 µL 0.1 M sodium
hydroxide (NaOH). Of the resultant solution, 20 µL was added to a glass vial containing 300 µL of 0.1 M
NaOH. Total of 20 µL 10% O-pthaldialdehyde (OPA) in methanol was added to each assay mixture,
vials were capped, the resulting reaction mixture incubated at 25 ◦C for 5 min in the dark and analysed
using high performance liquid chromatography (HPLC) (Merck KGaA, Darmstadt, Germany).

4.5. Standard Curves

Glutathione calibration curves were prepared using GSH and GSSG standards (Sigma-Aldrich,
Poole, UK). Stocks of 20 mM GSH and GSSG were prepared individually in 0.1 mM hydrochloric acid
(HCl). Working stocks of GSH (5-fold and 50-fold dilutions) were prepared and standard curves of
GSH, covering the range of 0–20 µM (for analysis of serum), 0–2000 µM (for analysis of whole blood)
and 0–500 µM (for analysis of tissue) were generated. For GSSG, 0–400 µM (for analysis of whole blood)
and 0–20 µM (for analysis of tissue and serum) standard curves were used. Standards were analysed
by HPLC. Repeat injections for each standard curve (5 separate injections) were used to evaluate
the linearity and range of the method. Accuracy and recovery of GSH and GSSG were determined
by adding increasing amount (0–400 µM) of each standard to cardiac tissue—GSSG standard was
pre-treated with NEM prior to spiking. Authentic GSSG standard from Sigma was subjected to NEM
treatment followed by hydrolysis under basic condition followed by reaction with OPA. Only one
fluorescent product of GSH-OPA adduct was detected whose peak area changes linearly with changes
in concentration. Spiking of known amount of tissue (hepatic or cardiac) with serial concentration of
authentic GSSG prior to extraction and derivatisation produced a linear curve. These confirmed that
the intensity of the peak of GSH-OPA adduct (from the GSSG protocol) was directly proportional to
the amount GSSG. In addition, no interfering peak was detected.

4.6. Glutathione Assay

A mixture of OPA and GSH at basic pH and optimal temperature (25 ◦C) generate a fluorescent
thiol adduct via heterobifunctional OPA reaction with an excitation wavelength of 350 nm and emission
at 450 nm. GSSG is initially hydrolysed to GSH which reacts with OPA as shown in Figure 12.

Chromatographic analysis of the GSH-OPA abduct was performed using reverse-phase
chromatography on Agilent 1200 HPLC (Agilent Technologies, Stockport, UK) with G1311a Quaternary
pump, G1367a Autosampler (5 µL injection), G1316a Column Compartment (37 ◦C) G1321B Fluorescent
light detector, fitted with Phenomenex Gemini C18 100X2 mm and an additional guard column
(Phenomenex, Macclesfield, UK) and a stepwise solvent gradient of 25 mM NaH2PO4 (pH 6.0) and
acetonitrile as the mobile phase. The column was initially hydrated with 0.5% acetonitrile and 99.5%
of the phosphate buffer (NaH2PO4) at a linear rate (Table 2) from 0.4 mL/min to 0.6 mL/min over 4 min,
increased to 2% acetonitrile for 0.5 min at 1.25 mL/min and then to at 1.5 mL/min over 1.5 min, then
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changed linearly to 65% acetonitrile over 0.9 min and finally returned to 0.5% acetonitrile and 99.5% of
the phosphate buffer at 1.5 mL/min for 2 min equilibration. Data analysis was performed on Agilent
Chemstation software and peaks quantified using GSH and GSSG standard curves.
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Figure 12. with O-pthaldialdehyde (OPA) glutathione reaction. (A) Oxidised glutathione (GSSG) is
hydrolysed under condition of 0.1 M Sodium hydroxide (NaOH) to give reduced glutathione (GSH) (B)
hetero-bifunctional OPA reaction with GSH.

Table 2. Chromatography conditions.

Time (min) 0 4.0 4.5 6.0 6.5 6.51 8.5

%A (phosphate buffer) 99.5 98 98 65 65 99.5 99.5
%B (ACN) 0.5 2 2 35 35 0.5 0.5

Flow Rate mL/min 0.4 0.6 1.25 1.5 1.5 1.5 1.5

4.7. Statistical Analysis

Difference between samples analysed were calculated using student T test and linearity and
correlation of standard curves by regression analysis using SPSS (IBM, New York, NY, USA). Data are
presented as mean ± standard error of the mean (SEM).

5. Conclusions

The developed and optimised method has been tested repeatedly, validated and found to be
suitable for the determination of both GSH and GSSG and hence their ratio as an index of oxidant status
of a biological system. The validation assessed the linearity, range, specificity, LOD, LOQ, accuracy,
precision and analyte recovery of the HPLC method. All these parameters were found to be consistent
and within the acceptable range. The current method showed great potentials and applications in
future clinical studies [5].
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