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Abstract 

The flexible operation capability of solvent-based post-combustion capture (PCC) process is 

vital to efficiently meet the load variation requirement in the integrated upstream power plant. 

This can be achieved through the deployment of an appropriate control strategy. In this paper, 

a nonlinear model predictive control (NMPC) system was developed and analysed for the 

solvent-based PCC process. The PCC process was represented as a nonlinear 

autoregressive with exogenous (NARX) inputs model, which was identified through the 

forward regression with orthogonal least squares (FROLS) algorithm. The FROLS algorithm 

allows the selection of an accurate model structure that best describes the dynamics of the 

process. The simulation results showed that the NMPC gave better performance compared 

with linear MPC (LMPC) with an improvement of 55.3% and 17.86% for CO2 capture level 

control under the scenarios considered. NMPC also gave a superior performance for reboiler 

temperature control with the lowest ISE values. The results from this work will support the 

development and implementation of NMPC strategy on the PCC process with reduced 

computational time and burden. 

Keywords: Post-combustion carbon capture; chemical absorption; nonlinear system 
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Highlights 

• Nonlinear system identification carried out using NARX model 

• FROLS-ERR algorithm implemented to select significant model terms 

• NMPC developed for solvent-based CO2 capture process  

• Performance evaluation of NMPC under flexible operation scenario 
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Nomenclature 

𝑒(𝑡)   Noise sequence 

𝑓(∙)    Nonlinear function 

N    Number of samples in a training data set 

𝑛𝐶𝑂2    Mass fraction of CO2 in the flue gas 

𝑛𝑒   Maximum lag for the system noise 

𝑛𝑢   Maximum lag for the system input 

𝑛𝑦   Maximum lag for the system output 

𝑟   Number of input variables 

𝑢(𝑡)   System input 

𝑥𝑟𝑗(𝑡)   Regressor vector 

𝑦𝑟(𝑡)   Response signal (output) 

 

Greek letter 

𝜑𝑟𝑗   Model parameter 

 

Superscript  

𝐴𝐵𝑆𝑖𝑛    Absorber inlet   

𝐴𝐵𝑆𝑜𝑢𝑡   Absorber outlet  

 

 

Abbreviations 

BIC   Bayesian information criterion 

CL   capture level 

CV   Controlled variable 

ERR   Error reduction ratio 

FROLS  Forward regression orthogonal least square 

LMPC   Linear model predictive control 

MEA   Monoethanolamine 
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MIMO   Multiple-input-multiple-output 

MPC   Model predictive control 

MPO   Model prediction output 

NARX   Non-linear auto-regressive with exogenous input 

NMPC   Nonlinear model predictive control 

PCC   Post-combustion carbon capture 

PI   Proportional Integral 

PID   Proportional Integral Derivative 

SI   System identification 

 

1. Introduction 

1.1 Background 

Fossil fuel combustion for electricity and heat generation is the biggest culprit for 

anthropogenic CO2 emissions, which is regarded as a major contributor to global warming [1]. 

Atmospheric CO2 could reach catastrophic levels in the future if CO2 emission continues 

unabated[2]. Carbon capture, CO2 utilisation and storage (CCUS) is considered the most 

strategic technology for sustainably and economically meeting carbon emission reduction 

targets [3]. Among various CCUS technologies, solvent-based post-combustion CO2 capture 

(PCC) has gained much attention as the suitable technology to treat flue gas from fossil fuel-

fired power plant. This is attributed to its maturity and its suitability to be retrofitted to existing 

fossil fuel power plants. Monoethanolamine (MEA) has generally been considered as a 

benchmark solvent for solvent-based PCC technology. However, the energy required for 

solvent regeneration is a major challenge as it contributes to a significant drop in power plant 

efficiency [4]. This can be addressed through the implementation of an appropriate control 

strategy in the solvent-based PCC process. The solvent-based PCC process is inherently 

nonlinear and thus requires the implementation of a nonlinear model predictive control 

(NMPC).  

1.2 Literature review 

Existing studies on solvent-based PCC process control have focused mostly on the PI/PID 

control implementation in the process [5–11]. This is due to the simplicity of PI/PID controllers 

and the vast experience with their implementation in the process industry. However, PI/PID 

control are implemented via isolated control loops and does not adequately account for loop 
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interactions[12]. This limits the operating capability of these controller designs in achieving 

stable conditions within short intervals of load change. The PI/PID control parameters are 

generally set based on a given load condition and its control performance also degrades 

quickly due to the frequent changes in load or other operating parameters. To deal with these 

issues, model-based predictive (MPC) is considered a better approach for solvent-based PCC 

process.  

MPC scheme mainly makes use of the explicit process model to determine process output, 

based on the calculation of control sequence, by minimizing an objective function [13]. This 

indicates that the accuracy of the process model is key to achieving a suitable MPC controller 

performance. The MPC can be categorized into Linear MPC (LMPC) and nonlinear MPC 

(NMPC) [14]. The LMPC scheme utilizes a linear model to predict the PCC process dynamics, 

while NMPC utilizes a nonlinear model [15]. Performance evaluation comparison of LMPC 

with decentralised PI/PID control showed that the LMPC scheme gave a better and faster 

performance [9,10,14,16–20]. This has given rise to extensive implementation of LMPC on 

the solvent-based PCC process[12,16,18–22]. However, the linear model is unable to predict 

the nonlinear behaviour of the nonlinear PCC plant, especially during flexible operation, where 

the operating point deviates from the design-operating region by a large magnitude. This 

results in a modelling mismatch and eventually causes deterioration of the solvent-based PCC 

control performance, which has motivated the need for NMPC.  

NMPC has enormous potential for application in the solvent-based PCC process, which has 

been identified to exhibit strong nonlinearities and is required to frequently change at several 

operation regimes in accordance with market demands.  This is due to the capacity of NMPC 

to deal with nonlinear dynamics by representing the solvent-based PCC as a nonlinear model. 

A few studies on NMPC for solvent-based PCC utilized a first principle model as the prediction 

model [21–24]. In these publications, the first-principles models were simplified for efficient 

online NMPC optimization. Control performance evaluation carried out displayed the feasibility 

of the NMPC implementation for solvent-based PCC process. However, the high 

computational burden and time necessary for the first principles model development as well 

as the online implementation of the NMPC algorithm is technically challenging.  To address 

this Challenge, a few studies adopted a data-driven model developed via system identification 

as the prediction model for NMPC implementation [4,14].  

Wu et al.[14] presented a multi-model predictive control (MMPC) strategy to deal with the 

nonlinearity within the solvent-PCC process at a wide flexible operational range. The MMPC 

strategy was designed based on the nonlinearity analysis, which gives the nonlinearity 

distribution for a wide range of operation. The MMPC strategy includes 3 local state-space 

models combined and scheduled through a fuzzy membership function calculated by the CO2 
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capture level. Simulation results showed that the MMPC strategy gave a better performance 

than the Linear MPC. However, modelling mismatch was inevitable, although MMPC was able 

to reduce offset better than the linear MPC. 

 Zhang et al.[4] implemented NMPC scheme on a nonlinear additive autoregressive with 

exogenous input (NAARX model). The NMPC strategy gave a superior performance in 

comparison with Linear MPC by a small margin. The limitation in the improvement was due to 

the challenge of obtaining a satisfactory NAARX with suitable cross-terms that accurately 

capture the nonlinear dynamics of the solvent-based PCC process [12].   

To tackle the issues highlighted above, this paper adopted the Forward Regression 

Orthogonal Least Square – Error Reduction Ratio (FROLS-ERR) algorithm approach for 

developing a transparent parsimonious NARX model that captures the relationship between 

the input and output variables in the CO2 capture process. The FROLS-ERR algorithm selects 

the important model terms, in a stepwise manner, based on their significance, measured 

based on ERR [25]. Hence, insignificant model terms are eliminated thus reducing the 

complexity of the model.    

1.3 Aim and Novel Contribution 

In this study, NMPC was implemented on the solvent-based PCC process to evaluate its 

performance in comparison with LMPC. The NMPC utilized a nonlinear model developed 

using FROLS-ERR algorithm. The novel contributions of the paper are listed as follows: 

1. Parsimonious model development for solvent-based PCC process using FROLS-ERR 

algorithms, which selects the significant model terms that best describe the system 

dynamics. 

2. Couplings between the controlled (output) variables were accounted for in the model. 

This is to improve the prediction accuracy of the model. 

3. NMPC is designed for a wide range of operation based on the parsimonious model 

developed via FROLS-ERR 

4. The control performance of the NMPC is demonstrated to be better than LMPC through 

the case study. 

2. Data-driven model development of the solvent-based PCC process 

2.1 Solvent-based PCC model Description 

The first principle model of the solvent-based PCC process using MEA developed by Lawal et 

al.[1] was used for the control system design and implementation. The model was dynamically 

validated by Biliyok et al.[26]. Fig 1 shows a schematic diagram of the solvent-based PCC 
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process. Insights gained from previous studies on the CO2 capture process was vital in 

identifying key process variables that are sensitive to the dynamic performance of the capture 

plant for flexible operation mode [1]. 

For the MPC control system design, the control objective functions of the solvent-based PCC 

process are usually centred on environmental and economic targets. The key output variables 

sensitive to the control objectives are the CO2 capture level and reboiler temperature. The 

CO2 capture level (CO2-CL) measures the amount of CO2 captured from the capture plant and 

can be expressed mathematically as follows: 

CO2-CL= (1 −
𝑛𝐶𝑂2

𝐴𝐵𝑆𝑜𝑢𝑡  ×𝐹𝐶𝑂2

𝐴𝐵𝑆𝑜𝑢𝑡

𝑛𝐶𝑂2

𝐴𝐵𝑆𝑖𝑛  ×𝐹𝐶𝑂2

𝐴𝐵𝑆𝑖𝑛
) × 100% 

                     
(1) 

The reboiler temperature is closely related to the lean solvent loading, which determines the 

CO2 absorption capacity in the absorber [14]. Also, controlling the reboiler temperature is 

relevant to limiting solvent degradation in the reboiler [27]. Lean solvent flowrate and steam 

flowrate were selected as the manipulated variables based on their strong influence on the 

CO2 capture level and reboiler temperature respectively[1,28]. 

 

 

Fig 1 Solvent-based PCC process[1] 
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2.2 Data-driven model development of the solvent-based PCC process using FROLS-

ERR 

The multivariable NARX input model, which is a special form of Nonlinear auto-regressive 

moving with exogenous input (NARMAX) model, is adopted to represent the solvent-based 

PCC process. This is due to its suitability to represent a large range of nonlinear systems [29]. 

The MIMO-NARX model is described as[29]: 

𝑦𝑖(𝑡) = 𝑓𝑖 (𝑦𝑖(𝑡 − 1), … , 𝑦1(𝑡 − 𝑛𝑦), … , 𝑦𝑠(𝑡 − 1), … , 𝑦𝑠(𝑡 − 𝑛𝑦), 𝑢1(𝑡), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡

− 𝑛𝑢), … , 𝑢𝑟(𝑡), 𝑢𝑟(𝑡 − 1), … , 𝑢𝑟(𝑡 − 𝑛𝑢) )   + 𝑒𝑖(𝑡) 

(2) 

where 𝑟 is the number of external input signals and 𝑠 is the number of output signals; 

𝑦𝑖(𝑡),𝑢𝑗(𝑡) and 𝑒(𝑡), with 𝑖 = 1,2, . . 𝑠, 𝑗 = 1,2, … , 𝑟 and 𝑡 = 1,2, … , 𝑁 are measured system 

outputs, inputs and unmeasurable noise sequences, respectively; 𝑛𝑦 and 𝑛𝑢 are the maximum 

lags in the output and input; 𝑓(∙) represents a nonlinear function, which is generally unknown 

but can be approximated using various types of nonlinear forms. Polynomial expansion of 𝑓(∙) 

is most commonly used due to its good properties including transparency and easy 

interpretation of the model [30]. The solvent-based PCC process considered in the present 

study is a typical MIMO system, involving three inputs (flue gas flowrate, lean solvent flowrate 

and steam flowrate) and two outputs (CO2-CL and Treb) as shown in Fig 2. The MIMO-NARX 

model is described in Eq (2) such that the loop interaction between the output variables are 

accounted for.  For each output variable, the NARX model can be re-arranged into a linear-in-

the-parameters form as: 

𝑦𝑠(𝑡) =  ∑ 𝜑𝑟𝑗𝑥𝑟𝑗(𝑡) +  𝑒𝑟(𝑡)

𝑀𝑟

𝑗=1

 (3) 

where 𝑦𝑠(𝑡), 𝑥𝑟𝑗(𝑡), 𝜑𝑟𝑗 and 𝑀𝑟, with (𝑠 = 1,2;  𝑟 = 1,2,3; 𝑗 = 1,2, … , 𝑀𝑟),  are the response 

signals (outputs), regressors, model parameters and number of model terms. Each 𝜑𝑟𝑗 is built 

using lagged input and lagged output variables, such as 𝑦2(𝑡 − 1), 𝑦1(𝑡 − 1)2, 𝑦1(𝑡 − 1)𝑦2(𝑡 −

3), 𝑢1(𝑡 − 1)𝑢2(𝑡 − 1), 𝑦2(𝑡 − 1)𝑢3(𝑡 − 1), etc.  FROLS was adopted to select significant model 

terms for the MIMO system based on ERR. Details on FROLS algorithm procedure for model 

structure selection can be seen in [25,30,31].  
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Fig 2 MEA-based PCC model represented as a Multiple-Input Multiple-output (MIMO) system; U1-Flue 
gas flowrate (kg/s); U2- Lean solvent flowrate (kg/s); U3- Stream flowrate (kg/s); Y1- CO2-CL (%); Y2-
Treb (K).  

Uniformly distributed random noise signals were designed for the input variables and 

implemented on the gPROMS® model developed by Lawal et al.[1]. These signals span the 

amplitude range of the input variables uniformly, which is important for the identification of a 

nonlinear system. Data generated at a sampling interval of 60s were collected for nonlinear 

system identification. The sampling interval was selected such that the sample rate is greater 

than twice the maximum frequency of interest within the system (which is equivalent to the low 

dominant time constant).  

For each NARX model term development, the maximum time lags for the input and output 

variables for both subsystem 1 and 2 were selected to be 𝑛𝑦 = 𝑛𝑢 = 3 and  𝑛𝑦 = 𝑛𝑢 = 2 

respectively. The degree of nonlinearity was selected to be 2. The values of  𝑛𝑦 𝑎𝑛𝑑 𝑛𝑢 for 

both sub-systems are large enough to cover the range of potential time lags needed to 

represent the CO2 capture process dynamics. Model terms were ranked based on their level 

of significance (using ERR index) to the output variables. BIC is used to determine the number 

of model terms[25,32]. BIC implements a more rigorous penalty on each model term to avoid 

over-fitting compared to other model selection criteria. The FROLS-ERR stops at minimum 

BIC.  
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Fig 3 Input-output data obtained from an MEA-based PCC model developed in gPROMs; CO2-CL, %: 
CO2 Capture level; Treb: reboiler temperature, K; FGF: flue gas flowrate, kg/s; LSF: lean solvent flowrate, 
kg/s; RSF: reboiler steam flowrate, kg/s. 

Details of each NARX model structure for both output variables using FROLS algorithms are 

shown in Appendix A. The NARX model was compared with a linear model and nonlinear 

model developed via the system identification toolbox in Matlab®, against the validation data 

from the first principle model, based on MPO as shown in Fig 4, which was assessed based 

on prediction efficiency [25] (see Table 1). This is to establish the advantage of implementing 

the FROLS-ERR algorithm. Although the idea approach would have been to compare the 

identified models against experimental data from a real PCC plant, the approach adopted 

provides more flexibility with the data sampling rate and it is cost-effective. From the 

assessment, identified NARX model developed using FROLS algorithm contains model terms 

that capture the system dynamics and gave a better prediction compare to the other models 

developed.  
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Fig 4 Comparison between MPO data generated by identified models (NLM-FROLS, LM-SI, NLM-SI) 
and measurements generated by first principle gPROMs model,(a) CO2 capture level (CO2-CL); (b) 
Reboiler temperature (Treb). NLM-FROLS: NARX model developed using FROLS-ERR; LM-SI: ARX 
model developed using System identification toolbox; NLM-SI NARX model developed using System 
identification toolbox  
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Table 1 Prediction efficiency of the Identified NARX model (MPO) 

Identified Models CO2 capture level (CO2-CL) Reboiler temperature (Treb) 

NLM-FROLS 99.0187 99.8371 

LM-SI 96.932 90.4695 

NLM-SI 98.7124 95.1024 

 

2.3 Process dynamics analysis 

The step response plot for identified NARX model was assessed in comparison with the first 

principle gPROMS model. This is to ensure that the identified model captures the basic 

dynamics of the CO2 capture system. Fig 5 – Fig 7 shows the output response to a 10% step 

change implemented on each input variable.  

 

Fig 5 Output response to flue gas flowrate (FGF) (kg/s) increase to the absorber 

As highlighted in Fig 5, the flue gas flowrate has an immediate and significant effect on the 

CO2 capture level. This is because the CO2 capture level defined in (1) involves the amount 

of CO2 in flue gas. As a result, an increase in flue gas flowrate brings about a drop in CO2 
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capture level and vice versa given that the lean solvent flowrate and steam supplied to the 

reboiler is constant. The effect on the reboiler temperature is minimal and slow.  

 

Fig 6 Output responses to a 10% step increase of  lean solvent (MEA) flowrate (LSF) (kg/s) to the 
absorber 

Fig 6 revealed that a sharp increase in CO2 capture level was observed immediately after the 

step increase was introduced to the lean solvent flowrate. This is accompanied by a slow 

reduction in the CO2 capture level until a new steady-state point is attained. This is because, 

at a constant reboiler steam flowrate, the reboiler temperature is reduced. Thus less CO2 is 

stripped of the stripper top[14]. This increases the CO2 loading in the solvent resulting in a 

drop in the capture level. 

A slow but significant decrease in the reboiler temperature was observed as steam flowrate 

supplied to the reboiler increases as shown in Fig7.  Its influence on the CO2 capture level 

and reboiler temperature have large time constants[14]. The dynamic trends of the identified 

model align with the first principle (gPROMS®) model responses. 
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Fig 7 Output responses to a 10% step increase in reboiler steam flowrate (RSF) (kg/s) 

3. Multivariable Controller Design 

This section discusses the multivariable control design and implementation of the solvent-

based PCC process. This study intends to showcase the capability of NMPC strategy to 

handle the wide variation of CO2 capture level and disturbances as a result of wide power 

plant load changes in response to electricity demand in comparison with LMPC control 

strategy. The schematic diagram of the control design for the solvent-based PCC process is 

shown in Fig 8 Each control strategy was implemented on the identified model developed in 

the previous section. Following Sadegh [33] and Kotta & Sadegh [34], the identified model 

was represented as a classical nonlinear state-space model shown in Eq (4), where 𝑦1(𝑡) and 

𝑦2(𝑡) represent CO2 capture level and reboiler temperature respectively, 𝑢1(𝑡) , 𝑢2(𝑡)  and 

𝑢3(𝑡) represents flue gas flowrate (kg/s), lean solvent flowrate (kg/s) and steam flowrate (kg/s). 

Details of the nonlinear state-space model in Eq (4) are presented in Appendix B.   
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Fig 8 Schematic diagram of MPC control design for the solvent-based PCC process. FGF-fluegas 
flowrate; LSF: lean solvent flowrate, kg/s; RSF: reboiler steam flowrate, kg/s. 

𝑥1(𝑡 + 1) =  𝑥2(𝑡) + 𝑎1𝑥1(𝑡) + 𝑎2𝑥4(𝑡) + ⋯ +  𝑎17𝑢1(𝑡)𝑢2(𝑡) + 𝑎20  

(4) 

𝑥2(𝑡 + 1) =  𝑥3(𝑡)  +  𝑎3 𝑥1(𝑡) + ⋯ + 𝑎10 𝑢1(𝑡) + 𝑎18 𝑢1(𝑡)𝑢2(𝑡) 

𝑥3(𝑡 + 1) =  𝑎8𝑢2(𝑡)  +  𝑎11 𝑢3(𝑡) + ⋯ + 𝑎16 𝑥1(𝑡 + 1)𝑢3(𝑡) + 𝑎19𝑥4(𝑡)𝑢1(𝑡) 

𝑥4(𝑡 + 1) =  𝑥5(𝑡) + 𝑏1 𝑥4(𝑡) + 𝑏3 𝑢3(𝑡) + ⋯ + 𝑏35𝑥4(𝑡)𝑢3(𝑡) + 𝑏36   

𝑥5(𝑡 + 1) =  𝑏2 𝑥4(𝑡) + 𝑏4 𝑢3(𝑡) + 𝑏6 𝑢3(𝑡) 𝑢3(𝑡) + ⋯ + 𝑏34𝑥1(𝑡 + 1)𝑥1(𝑡) 

𝑦1(𝑡) =  𝑥1(𝑡) 

𝑦2(𝑡) =  𝑥4(𝑡) 

3.1 LMPC formulation  

A general formulation for a constrained multivariable LMPC algorithm is expressed below: 

min
△�̂�,..,△�̂�𝑡+𝑁𝑢−1

∑ (�̂�𝑡+𝑖 − �̂�𝑡+𝑖)𝑇𝑄(�̂�𝑡+𝑖

𝑁𝑝

𝑖=1
−  �̂�𝑡+𝑖) +  ∑ △ �̂�𝑡+𝑖

𝑇
𝑁𝑢

𝑖=0
𝑅∆�̂�𝑡+𝑖 

(5) 

Subject to: 
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𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵�̂�𝑡 

�̂�𝑡 = 𝐶𝑥𝑡 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 

△ �̂�𝑚𝑖𝑛 ≤△ �̂�𝑡 ≤△ �̂�𝑚𝑎𝑥 

where �̂�𝑡+𝑖 represents the predicted outputs (CO2 capture level and reboiler temperature) at 

(𝑡 + 𝑖)th time instant and ∆�̂�(𝑡+1)
𝑇  represents manipulated variable rates (lean solvent flowrate  

and steam flowrate) to achieve the target-controlled variables close to the set-point condition 

�̂�(𝑡+1). The upper and lower bounds for both manipulated and controlled variables are 

represented as �̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 , �̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 respectively. The weights assigned to the controlled and 

manipulated variables rate were represented as 𝑄 and 𝑅 respectively. For LMPC, the 

nonlinear state-space model was linearized at the nominal operating point shown in Table 2. 

𝑥𝑡 is the state vector of the linear state-space model of the CO2 capture process at time instant 

t and A, B, C are the model matrices of the linear state space prediction model. 

3.2 NMPC formulation 

For NMPC, similar optimization objective function as LMPC was adopted as shown in Eq (6). 

𝑥𝑡 represents the current state vector of the nonlinear state-space model of the solvent-based 

PCC process in Eq (4). Tables 3 and 4 detail the process constraints and formulation 

parameters for both LMPC and NMPC implemented in Simulink®. 

 

min
△�̂�,..,△�̂�𝑡+𝑁𝑢−1

∑ (�̂�𝑡+𝑖 − �̂�𝑡+𝑖)𝑇𝑄(�̂�𝑡+𝑖

𝑁𝑝

𝑖=1
−  �̂�𝑡+𝑖) +  ∑ △ �̂�𝑡+𝑖

𝑇
𝑁𝑢

𝑖=0
𝑅∆�̂�𝑡+𝑖 

(6) 

Subject to: 

𝑥𝑡+1 = 𝑓(𝑥𝑡 , �̂�𝑡) 

�̂�𝑡+1 = 𝑔(𝑥𝑡+1) 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 
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△ �̂�𝑚𝑖𝑛 ≤△ �̂�𝑡 ≤△ �̂�𝑚𝑎𝑥 

Table 2 Nominal operating condition  

Operating conditions Nominal value 

Initial state condition (x0) [66.82;41.85; -16.10;382.4;- 9297.8] 

Manipulated variables 

Lean solvent flowrate  0.76 kg/s 

Steam flowrate  0.047 kg/s 

Disturbance variable 

Flue gas flowrate  0.16 kg/s 

Output variables 

CO2 capture level (CO2-CL) 66.82 (%) 

Reboiler Temperature (Treb) 382.4K 
 
 
 
Table 3 Process constraints 

Manipulated variables �̂�𝑚𝑖𝑛 ∆�̂�𝑚𝑖𝑛 �̂�𝑚𝑎𝑥 ∆�̂�𝑚𝑎𝑥 

Lean solvent flowrate (MV1) 0.1 kg/s -0.007 kg/s 1.0 kg/s 0.007 kg/s 

Steam flowrate (MV2) 0.01 kg/s -0.001 kg/s 0.1 kg/s 0.001 kg/s 

Controlled variables �̂�𝑚𝑖𝑛 �̂�𝑚𝑎𝑥 

CO2 -CL  (CV1) 30 (%) 100 (%) 

Treb  (CV2) 370 (K) 400 (K) 
 
 
Table 4 LMPC and NMPC formulation parameters 

𝑁𝑃 10 

𝑁𝑢 2 

Weights (Q) Weights (R) 

MV1 0.1 CV1 1 

MV2 0.1 CV2 1 

4. Control Performance Evaluation  

This section exhibits the control performance of NMPC design for the solvent-based PCC 

process. The control performance of NMPC was evaluated in comparison with MPC and 

conventional PID controller under two scenarios, which are: 

a) variation in flue gas flowrate 

b) Variation in flue gas flowrate and both controlled variable set-points 

simultaneously. 

For each scenario, the control performance was evaluated based on integral squared error 

(ISE) of the controlled variables against its respective set-points [7] as it is commonly adopted 

as a performance evaluation measure for solvent-based PCC control[4,7,10]. This is 

calculated as: 
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𝐼𝑆𝐸(𝐶𝑉) =  ∫ (𝐶𝑉𝑆𝑃 − 𝐶𝑉(𝑡))2𝑑𝑡

𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0

 
(7) 

4.1 Case A: variation of flue gas flowrate  

This section evaluates the performance of each control strategy on CO2 capture plant in a 

scenario where there is fluctuation in the flue gas flowrate, which is a reflection of the power 

load variation. For this case, it was assumed that at t = 18000s and 36000s, the flue gas 

flowrate increased/decreased from 0.16kg/s to 0.20kg/s and to 0.12kg/s respectively. This was 

at ramping rates of 0.42%/min and 0.67%/min respectively. The control objective for this case 

is to maintain the CO2 capture level and reboiler temperature at nominal operating condition 

while the flue gas flowrate is varied.  

The closed-loop performance for both LMPC and NMPC is shown in Fig 8. Both LMPC and 

NMPC were able to reject the flue gas flowrate disturbance which keeping the CVs at nominal 

conditions. However, NMPC showed an improvement in terms of minimizing the output 

deviation for both CO2-CL and Treb by 55.3% and 92.74% respectively in comparison with 

LMPC. This is reflected in the ISE values shown in Table 5, making NMPC a superior controller 

compared LMPC in terms of disturbance rejection from flue gas flowrate.  

 

Fig 9 Closed-loop performance to  a variation in flue gas flowrate for 15hr (54000s). LMPC – linear 
model predictive control; NMPC – nonlinear MPC; SP – set point; DV – disturbance variable 



18 
 

 
Table 5 Summary of the closed-loop control performance evaluation for control schemes (NMPC vs 
LMPC) 

Scenario 

ISE 

NMPC LMPC 

CVs CO2-CL Treb CO2-CL Treb 

Case A 0.0051 5.1514E-04 0.0114 0.0071 

Case B 7.5966E+03 680.2141 9.2484E+03 836.4045 

 

4.2 Case B: Variation in both flue gas flowrate and controlled variable set-points 

simultaneously 

The case evaluates the control system performance under a strong variation in the operation 

of the CO2 capture process while the power plant operates at a flexible mode. For this case, 

the CO2 capture level (CO2-CL) set-point was varied in the load following manner in response 

to grid demand along with the same variation of flue gas flowrate in case A.  

 

Fig 10 Closed-loop performance to a variation in controlled variable set-points 15hr (54000s). LMPC – 
linear model predictive control; NMPC – nonlinear MPC 

In this case, the CO2 capture level set point was varied at time t = 10800s from 66.82% to 

55%, t = 24000s from 55% to 95%, t = 39000s from 95% to 80% at ramping rates of 0.94%/min, 
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2.4%/min and 0.79% respectively. In addition, the reboiler temperature set point was 

increased from 382.2K to 389K at time t= 24000s at a ramping rate of 0.092%/min.  

The closed-loop performance of each control strategy is shown in Fig 9. For both controlled 

variables, NMPC gave better performance compared with LMPC. NMPC was also able to 

track the set-point quickly in response to the changes in the controlled variables. LMPC was 

not able to adequately track the controlled variable set-points in quick response time compared 

to NMPC. The performance evaluation measure ISE shown in Table 7 revealed that NMPC 

was able to track a wide variation in the controlled variables (CO2-CL and Treb) by 17.8% and 

18.6% respectively compared with LMPC.  

5.  Conclusion and recommendation for future study 

Solvent-based PCC process imposes a limitation on the fossil-fuel power plant’s load-following 

capability when they are integrated due to its large inertia. This challenge could be addressed 

using a robust control system, which will allow flexible operation of the PCC process in 

response to power plant load changes without sacrificing the statutory CO2 capture 

requirement. In this study, NMPC was developed for this purpose. This was achieved by 

optimizing the quadratic objective function derived from the prediction model for the PCC 

process, which was developed as a 3X2 MIMO NARX model using FROLS-ERR algorithm. 

The developed NMPC was implemented in the PCC process and was evaluated under two 

cases in comparison with LMPC. The simulation results for Case A showed that NMPC gave 

a better performance in terms of disturbance rejection by 55.3% and 92.74% for CO2-CL and 

Treb respectively. The superior performance of NMPC was also observed in Case B with an 

improvement of 17.86% and 18.67% for CO2-CL and Treb. From the simulation results, it was 

concluded that NMPC is better because the NMPC utilizes the nonlinear model developed 

using FROLS-ERR algorithm, which can adequately predict the PCC process dynamics at a 

wide range of flexible operation. Further work will be carried out on uncertainty quantification 

of the NARX model for NMPC implementation and an assessment of the NMPC performance 

under a wider range of operation and quicker ramp rate. 
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Appendix A : Identified Model structure using FROLS algorithm   

Table A.1 Identified model structure using FROLS algorithm for CO2 capture level (CO2-CL) 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 y1(t-1) -1.36E-01 9.97E+01 2.86E-03 

2 y2(t-1) 8.78E-02 6.12E-02 2.25E-03 

3 y1(t-2) 7.66E-01 2.03E-02 2.06E-03 

4 y2(t-1)*u1(t-1) -8.11E+00 9.06E-03 1.98E-03 

5 y2(t-1)*u1(t-2) 7.58E+00 4.21E-02 1.55E-03 

6 u2(t-1) 2.40E+01 2.69E-03 1.53E-03 

7 u2(t-2) -7.77E+00 5.55E-02 9.57E-04 

8 u2(t-3) -1.58E+01 5.40E-03 9.06E-04 

9 u1(t-1) 2.84E+03 2.77E-03 8.82E-04 

10 u1(t-2) -2.70E+03 5.44E-02 3.01E-04 

11 u3(t-3) -6.85E+02 1.53E-03 2.87E-04 

12 u2(t-1)*u3(t-3) 6.41E+02 3.38E-04 2.85E-04 

13 u2(t-2)*u3(t-3) -5.33E+02 3.03E-03 2.54E-04 

14 y1(t-1)*y2(t-3) 9.15E-04 3.15E-04 2.52E-04 

15 y1(t-3)*y1(t-3) 1.76E-03 6.26E-04 2.46E-04 

16 y1(t-1)*y1(t-1) 2.38E-03 3.52E-04 2.44E-04 

17 y1(t-2)*y1(t-3) -7.82E-03 3.75E-04 2.41E-04 

18 constant -2.99E+01 4.38E-04 2.38E-04 

19 y2(t-1)*u3(t-3) 1.76E+00 3.37E-04 2.36E-04 

20 u1(t-3) 7.45E+01 3.18E-04 2.33E-04 

21 y1(t-2)*u3(t-3) -7.54E-01 3.21E-04 2.31E-04 

22 u1(t-2)*u2(t-1) -1.22E+03 1.35E-04 2.31E-04 

23 u1(t-1)*u2(t-1) 1.26E+03 1.08E-03 2.20E-04 

24 u1(t-1)*u2(t-2) -1.23E+03 2.62E-04 2.18E-04 

25 u1(t-2)*u2(t-2) 1.17E+03 2.15E-03 1.94E-04 

26 y1(t-1)*y1(t-3) 3.76E-03 1.54E-04 1.93E-04 

27 y2(t-3)*u1(t-3) -8.48E-02 1.20E-04 1.93E-04 

28 u1(t-1)*u1(t-3) 6.70E+01 6.09E-05 1.94E-04 
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Table A.2 Identified model structure using FROLS algorithm for Reboiler temperature (Treb)   

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 y2(t-1) -7.48E+00 9.96E+01 3.68E-03 

2 y2(t-2) 6.65E+00 2.40E-01 1.35E-03 

3 u3(t-1) -5.53E+02 2.65E-02 1.09E-03 

4 u3(t-2) 1.77E+03 8.42E-02 2.61E-04 

5 u2(t-1) 7.08E+00 9.02E-04 2.54E-04 

6 u3(t-1)*u3(t-2) -3.50E+03 8.89E-04 2.47E-04 

7 u3(t-2)*u3(t-2) 2.55E+03 1.00E-02 1.47E-04 

8 y1(t-2) 1.25E-01 7.87E-04 1.39E-04 

9 y1(t-1) 1.23E-01 2.51E-03 1.15E-04 

10 constant 3.32E+02 9.88E-04 1.05E-04 

11 u2(t-2)*u3(t-1) 3.89E+02 1.09E-03 9.44E-05 

12 y1(t-2)*u3(t-1) 3.99E+00 2.48E-03 6.89E-05 

13 u2(t-2)*u3(t-2) -8.24E+01 1.06E-03 5.82E-05 

14 u2(t-2) 3.52E+01 4.94E-04 5.33E-05 

15 y1(t-2)*u2(t-1) 5.04E-02 7.55E-04 4.56E-05 

16 u3(t-1)*u3(t-1) -1.07E+03 3.86E-04 4.17E-05 

17 y2(t-2)*u3(t-2) -3.71E+01 2.75E-04 3.90E-05 

18 y2(t-1)*u3(t-2) 3.24E+01 1.14E-03 2.68E-05 

19 u1(t-2)*u2(t-1) 3.38E+00 2.13E-04 2.46E-05 

20 u2(t-1)*u2(t-2) -1.52E+01 1.11E-04 2.35E-05 

21 y2(t-1)*u2(t-2) -5.05E-01 2.54E-04 2.09E-05 

22 y2(t-2)*u2(t-2) 3.92E-01 1.02E-04 1.98E-05 

23 y2(t-2)*y2(t-2) 3.31E-02 7.13E-05 1.92E-05 

24 u1(t-2)*u1(t-2) 5.59E+01 7.30E-05 1.85E-05 

25 u1(t-1)*u3(t-2) 1.65E+01 1.16E-04 1.72E-05 

26 y1(t-2)*u1(t-2) 1.54E-01 9.40E-05 1.63E-05 

27 y1(t-1)*u3(t-1) -5.42E+00 7.82E-05 1.55E-05 

28 y2(t-1)*y2(t-1) 5.40E-02 4.40E-05 1.51E-05 

29 y2(t-1)*y2(t-2) -8.46E-02 3.49E-05 1.47E-05 

30 y1(t-2)*y2(t-2) -5.56E-04 2.41E-05 1.45E-05 

31 y1(t-1)*y1(t-1) -2.76E-04 1.80E-04 1.25E-05 

32 y1(t-2)*y1(t-2) -7.98E-04 1.15E-04 1.12E-05 

33 y1(t-1)*u3(t-2) 4.38E+00 1.80E-05 1.11E-05 

34 y2(t-2)*u3(t-1) 3.95E+01 4.15E-05 1.06E-05 

35 y2(t-2)*u1(t-2) -1.35E+00 1.87E-05 1.05E-05 

36 y1(t-2)*u3(t-2) -3.55E+00 1.56E-05 1.03E-05 

37 u1(t-1) 2.30E+00 1.10E-05 1.03E-05 

38 y1(t-1)*y2(t-2) -1.68E-04 1.28E-05 1.02E-05 

39 y2(t-1)*u1(t-2) 1.31E+00 1.04E-05 1.01E-05 

40 u1(t-2)*u3(t-2) -2.77E+02 1.46E-05 9.97E-06 

41 u2(t-1)*u3(t-1) -2.87E+01 1.12E-05 9.88E-06 
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s/n Model Terms Parameter Estimates ERR (%) BIC 

42 y1(t-1)*u1(t-1) -3.58E-01 1.02E-05 9.81E-06 

43 y1(t-1)*y1(t-2) 1.21E-03 5.02E-06 9.81E-06 

44 y1(t-2)*u1(t-1) 3.15E-01 1.71E-05 9.64E-06 

45 y2(t-1)*u3(t-1) -3.75E+01 4.02E-06 9.65E-06 

 

 

 

Appendix B : Nonlinear state-space model represented in Eq (4) 

𝑥1(𝑡 + 1) =  𝑥2(𝑡) + 𝑎1𝑥1(𝑡) + 𝑎2𝑥4(𝑡) + 𝑎4𝑥4(𝑡)𝑢1(𝑡) +  𝑎6𝑢2(𝑡) + 𝑎9𝑢1(𝑡)
+  𝑎13𝑥1(𝑡)𝑥1(𝑡) + 𝑎17𝑢1(𝑡)𝑢2(𝑡) + 𝑎20  

 

𝑥2(𝑡 + 1) =  𝑥3(𝑡)  +  𝑎3 𝑥1(𝑡) + 𝑎5 𝑥4(𝑡 + 1)𝑢1(𝑡) + 𝑎7 𝑢2(𝑡) + 𝑎10 𝑢1(𝑡)
+ 𝑎18 𝑢1(𝑡)𝑢2(𝑡) 

𝑥3(𝑡 + 1) =  𝑎8𝑢2(𝑡)  +  𝑎11 𝑢3(𝑡) + 𝑎12 𝑥1(𝑡)𝑥1(𝑡) + 𝑎14 𝑥1(𝑡 + 1)𝑥1(𝑡) + 𝑎15 𝑢1(𝑡)
+ 𝑎16 𝑥1(𝑡 + 1)𝑢3(𝑡) + 𝑎19𝑥4(𝑡)𝑢1(𝑡) 

𝑥4(𝑡 + 1) =  𝑥5(𝑡) + 𝑏1 𝑥4(𝑡) + 𝑏3 𝑢3(𝑡) + 𝑏5 𝑢2(𝑡) + 𝑏8 𝑥1(𝑡) + 𝑏11𝑢3(𝑡)𝑢3(𝑡)
+ 𝑏19𝑥1(𝑡)𝑢3(𝑡) + 𝑏20𝑥4(𝑡)𝑥4(𝑡) + 𝑏23𝑥1(𝑡)𝑥1(𝑡) + 𝑏28 𝑢1(𝑡)
+ 𝑏32𝑢2(𝑡)𝑢3(𝑡) +  𝑏33𝑥1(𝑡)𝑢1(𝑡) + 𝑏35𝑥4(𝑡)𝑢3(𝑡) + 𝑏36   

𝑥5(𝑡 + 1) =  𝑏2 𝑥4(𝑡) + 𝑏4 𝑢3(𝑡) + 𝑏6 𝑢3(𝑡) 𝑢3(𝑡) + 𝑏7 𝑥1(𝑡) + 𝑏9𝑢2(𝑡)𝑢3(𝑡)
+ 𝑏10 𝑢2(𝑡) + 𝑏12𝑥4(𝑡)𝑢3(𝑡) + 𝑏13𝑥4(𝑡 + 1) 𝑢3(𝑡) + 𝑏14𝑥4(𝑡 + 1) 𝑢2(𝑡)
+ 𝑏15𝑥4(𝑡) 𝑢2(𝑡) + 𝑏16𝑥4(𝑡)𝑥4(𝑡) + 𝑏17 𝑢1(𝑡) 𝑢1(𝑡) + 𝑏18𝑥1(𝑡) 𝑢1(𝑡)
+ 𝑏21𝑥4(𝑡 + 1)𝑥4(𝑡) + 𝑏22𝑥1(𝑡)𝑥4(𝑡) + 𝑏24𝑥1(𝑡)𝑥1(𝑡)
+ 𝑏25𝑥1(𝑡 + 1) 𝑢3(𝑡) + 𝑏26𝑥4(𝑡) 𝑢1(𝑡) + 𝑏27𝑥1(𝑡) 𝑢3(𝑡)
+ 𝑏29𝑥1(𝑡 + 1)𝑥4(𝑡) + 𝑏30𝑥4(𝑡 + 1) 𝑢1(𝑡) + 𝑏31 𝑢1(𝑡) 𝑢3(𝑡)
+ 𝑏34𝑥1(𝑡 + 1)𝑥1(𝑡) 

𝑦1(𝑡) =  𝑥1(𝑡) 

𝑦2(𝑡) =  𝑥4(𝑡) 

 

CO2 –CL (𝑥1(𝑡 + 1), 𝑥2(𝑡 + 1), 𝑥3(𝑡 + 1)): 

a1 = 0.401038365; a2= 0.120907502; a3 = 0.536059372; a4= -3.607965387; a5= 3.153647677; 
a6= 18.36331491; a7= -6.65601744; a8= -8.423016956; a9= 978.3521546; a10= -835.4354897;  
a11= 32.17773739; a12= 0.00304912; a13= 0.0037891; a14= -0.006629235; a15= -50.20476452; 
a16= -0.024865731; a17= 249.5072023; a18= -263.887705; a19= 0.210554405; a20= -45.0649. 

 

Treb (𝑥4(𝑡 + 1), 𝑥5(𝑡 + 1)): 

b1= -12.3280395; b2= 10.28165535; b3= 2247.864567; b4= -386.1475283; b5= -5.604615654;  
b6= -302.3773266; b7= -0.563541525; b8= 1.034525008; b9= -19.12868452; b10= -86.90804244;  
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b11= -1092.942945; b12= 10.67286708; b13= -9.467930137; b14= 0.732315965; b15= -0.514175774; 
b16= 0.063027613; b17= 40.93231842; b18= 0.20211674; b19= -0.036329361; b20 = 0.093905112;  
b21= -0.152994737; b22= 0.001759541; b23 = 0.00039346; b24 = -0.001039967; b25 = 0.487551676; 
b26= -1.92244848; b27= -0.80252386; b28= 5.557376538; b29 = -0.003044387; b30 = 1.880415179; 
b31= -213.219774; b32= 81.03985604; b33= -0.069305502; b34= 0.000883007; b35= -5.43867;  
b36 = 587.6837107. 
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