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Abstract 8 

Nutrient supplementation could improve the biomethane production of different biomass 9 

feedstocks during anaerobic digestion. In this study, the impact of nutrient supplementation on 10 

the anaerobic digestion of the West African Gamba and Guinea Grass for biomethane 11 

production is presented. This was undertaken in 6 separate continuous stirred tank reactors for 12 

a hydraulic residence time of 25 days under supplementation regime with trace elements (TE), 13 

cocoa pod (CP) ash-extract, and commercial cellulase from Aspergillus niger (CCA) or 14 

Trichoderma reesei ATCC 26921 (CCT). The results showed that TE inhibits the specific 15 

methane production (SMP) with about 5% lower SMP than the control. In contrast, the other 16 

supplements namely CP, CP+CCA, CCA and CCT+TE showed about 13, 28, 18 and 12% 17 

higher SMP than the control respectively. This study is the first demonstration of the impacts 18 

of different supplements on SMP during the anaerobic digestion of the West African Gamba 19 

and Guinea grass.  20 
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List of abbreviations  40 

Abbreviations Meaning 

CSTR Continuously stirred tank reactor 

TE  Trace elements 

CP Cocoa pod ash-extract 

CCA Commercial cellulase from Aspergillus niger  

CCT Trichoderma reesei ATCC 26921  

SMP Specific methane production 

R1  Feedstock only 

R2  Feedstock + TE 

R3  Feedstock + CP ash-extract 

R4  Feedstock + CP ash-extract + CCA 

R5  Feedstock + CCA 

R6  Feedstock + CCT +TE 

VFA Volatile fatty acid 

HRT Hydraulic residence time 

P:A ratio Propionate: acetate ratio 

P, N and S Phosphorus, Nitrogen and Sulphur 

Ni, Fe, Mo, W, Co, Se Nickel, Iron, Molybdenum, tungsten, cobalt and selenium 

 41 

1 Introduction 42 

1.1 Background and motivation 43 

Global warming has been attributed mostly to anthropogenic CO2 emission from fossil-fuel 44 

energy sources. There is now a growing global commitment such as the 2015 Paris Agreement 45 
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(UNFCCC, 2015) to address this problem by diversifying energy sources to carbon neutral 46 

sources such as bioenergy. Bioenergy currently accounts for about a tenth of the primary global 47 

energy supply with biofuel production expected to rise by around 25% by 2024 (IEA, 2019). 48 

This inspired the need to understand and optimise bioenergy production from different sources. 49 

Typical sources include energy crops such as the Gamba grass (Andropogon gayanus) and 50 

Guinea grass (Panicum maximum) which have high lignocellulose content. The Gamba and 51 

Guinea grass are commonly available especially in the Sub-Saharan region of Africa. They are 52 

known to mature rapidly and are tolerant of low fertility and harsh weather conditions (Adedeji 53 

and Faluyi, 2006; Bello et al., 2016). This makes them a good choice as a feedstock for 54 

biomethane production. Like other Lignocellulosic biomass, they are made up of cellulose and 55 

hemicellulose tightly bound to lignin and as a result resists degradation (Horan et al., 2018). 56 

Through anaerobic digestion (AD), which involves the degradation of organic materials by 57 

microorganisms in the absences of oxygen to produce biogas containing methane (CH4) and 58 

carbon dioxide (CO2), and digestate (Cabbai et al., 2016; Karthikeyan et al., 2016), these 59 

substrates could be utilized as a biomass feedstock. However, the use of energy crops alone as 60 

AD feedstock has been reported to be prone to instability and process failure due to lack of 61 

adequate minerals and nutrients required to enhance the activities of the microorganisms 62 

responsible for the degradation process (Wall et al., 2013).  Thus, most research on AD tends 63 

to focus on co-digestion, which provides the microbes with a spectrum of nutrients, vitamins 64 

and trace metals (Cabbai et al., 2016; Nges & Björnsson, 2012; Shah, 2014). Co-digestion also 65 

appears to possess a greater potential for improving the settling of floating biomass and 66 

production of a high-quality digestate that can serve as a fertilizer. Thus, when using energy 67 

crops such as grass silage as a monosubstrate for anaerobic digestion, it is imperative to 68 

supplement the digestion process with any limiting nutrient to ensure a stable degradation 69 

process which will result in enhanced methane recovery from the biomass feedstock.  70 



5 

 

1.2 State-of-the-art 71 

Many additives have been used as nutrient supplements during AD processes (Romero-Güiza 72 

et al. (2016), which include: (i) macronutrients (e.g. P, N and S) and trace elements (e.g. Ni, 73 

Fe, Mo, W, Co, Se), (ii) incineration ashes, (iii) compounds that can reduce ammonia inhibition 74 

through struvite formation. (iv) bioaugmentation using microbial inoculum with high 75 

hydrolytic or methanogenic activity, (v) addition of enzymes as a supplement to enhance the 76 

solubilisation of the biomass feedstock. Romero-Güiza et al. (2016) showed that the conversion 77 

of free ammonia, which is toxic to methanogens, to struvite (MgNH4PO4.6H2O) could be 78 

achieved by supplementing the reactor with chemicals that have high ion exchange capacity 79 

such as bentonite, glauconite, phosphorite and zeolites, clay, and manganese oxides. The 80 

formed struvite is valuable as a slow-release fertilizer when applied to soil to steadily provide 81 

nutrients and enhance crop yield (Bationo et al., 2011; Federation, 2017; Romero-Güiza et al., 82 

2016). In addition, trace element supplementation such as cobalt, nickel and molybdenum, 83 

during AD processes has been reported to enhance biogas and methane production from food 84 

waste by 42% at reduced residence time due to the formation of a thicker methanogenic fixed-85 

film (Stronach et al., 2012). Similarly, Cai et al. (2017) found that supplementing the AD of 86 

rice straw with Fe, Mn, Mo, and Se enhanced the degradation of VFA and methane generation. 87 

However, according to the NIIR  (2005), only a small amount of trace elements supplement 88 

within the range of 10-9 mol/L to 10-6 mol/L is required during the AD process, because many 89 

trace elements are extremely toxic at higher concentrations (usually > 10-4 mol/L). The authors 90 

(NIIR, 2005) reported that the trace elements are added as soluble inorganic salts since they 91 

are taken up by cells as ions or ion chelates, and that chloride and nitrate salts are a more 92 

suitable sources of trace nutrients due to their high solubility in water. In addition, NIIR (2005) 93 

suggested that the sulphates of zinc (Zn), copper (Cu), and nickel (Ni) may be used, and that 94 

iron (III) may precipitate out of acidic media which makes iron (III) citrate preferable. 95 
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Molybdenum (Mo) supplements can be prepared from salts such as ammonium molybdate 96 

(NH4)6Mo7O24 or sodium molybdate (Na2MoO4) and selenium (Se) can be sourced from 97 

sodium selenite (Na2O4.Se) (NIIR, 2005). 98 

Recent studies have also shown that biomass ash can not only be used as a supplement for 99 

enhancing AD process but also can be used to remove hydrogen sulphide from biogas in small 100 

and medium scale AD plants (Fernandez-Delgado Juarez et al., 2018). Biomass ash is an 101 

abundant waste material generated in large quantities in developing countries from the 102 

traditional burning of wood as fuel for cooking. The impact of biomass ash due to its  alkalis 103 

and trace metal contents which are able to leach out from the ash when the digestion process is 104 

operating at pH values (6.5 – 8), although it may also increase metal concentrations which may 105 

be detrimental to the stability of the AD process (Romero-Güiza et al., 2016).  106 

Bioaugmentation involving the supplementation of AD process using specific biological 107 

cultures and by-products by adding microbial inoculum with high hydrolytic or methanogenic 108 

activity to enhance the digestion process have also been reported (Korres, 2013; Romero-Güiza 109 

et al., 2016). Other compounds and processes which have also been used as an additive to 110 

improve the methane production from biomass include activated carbon, lactobacillus culture, 111 

urea and cobalt-60 radiation (Korres, 2013; Nijaguna, 2006), as well as recycling of digested 112 

slurry and filtrate back into the reactor (Korres, 2013). 113 

Finally, research has also shown that the addition of enzymes during the anaerobic digestion 114 

of lignocellulosic biomass could facilitate lignin degradation, which improves the hydrolysis 115 

rate of cellulose and hemicellulose by allowing microbes to gain access to these polymers 116 

(Horan et al., 2018). According to Karthikeyan et al. (2016), the enzymes that degrade biomass 117 

are produced by microorganisms present in the AD digestate. Research by Romano et al. 118 

(2009) also showed that the treatment of wheat grass with enzymes increased its solubilisation 119 
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and enhanced the anaerobic digestion process. Specifically, the degradation process can be 120 

enhanced by the addition of a mixture of enzymes, which may comprise cellulase, and 121 

hemicellulose, pectin and starch-degrading enzymes (Karthikeyan et al., 2016).  122 

1.3 Aim and novel contributions of this study 123 

The aim of this study is to quantify the impact of adding different supplements, namely trace 124 

elements (TE), cocoa pod (CP) ash-extract, and commercial cellulase from Aspergillus niger 125 

(CCA) or Trichoderma reesei ATCC 26921 (CCT), during the anaerobic digestion of the West 126 

African Gamba and Guinea grass in terms of the specific methane production. In achieving this 127 

aim, this study will deliver the following novel contributions:  128 

a. Physicochemical characterisation of West African Gamba and Guinea grass 129 

b. Anaerobic digestion of Gamba and Guinea grass to obtain biomethane in a lab-scale 130 

continuous stirred tank reactor (CSTR). The state-of-the-art review in Section 1.2 131 

showed that there are no studies on the anaerobic digestion of Gamba and Guinea grass.  132 

c. Anaerobic digestion of West and Guinea grass to obtain biomethane in a lab-scale 133 

continuous stirred tank reactor (CSTR) under supplementation regime with trace 134 

elements (TE), cocoa pod (CP) ash-extract, and commercial cellulase from Aspergillus 135 

niger (CCA) or Trichoderma reesei ATCC 26921 (CCT). Similarly, there is no 136 

previous study on the supplementation or co-supplementation of AD of Gamba and 137 

Guinea grass with trace elements, enzymes, or biomass ash-extract supplements.   138 
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2 Materials and methods 139 

2.1 Materials 140 

2.1.1 Preparation of biomass feedstock and inoculum 141 

Gamba grass and Guinea grass were freshly harvested by cutting from an open grassland at 142 

Afikpo Nigeria. Afikpo is located on latitude 5° 53' 33.29" N and longitude 7° 56' 7.22" E 143 

(https://latitude.to/map/ng/nigeria/cities/afikpo accessed on 14/12/2019). The harvested 144 

feedstock was sun-dried for about 2 weeks and thereafter was cut to about 2 cm size and then 145 

ground to a powdered form (< 1 mm) using a food blender. Subsequently, the powdered forms 146 

of these grasses were securely sealed in air-tight cellophane bags in which they were conveyed 147 

to Newcastle University and then stored in a 4 °C freezer prior to their use. The total solid 148 

content (%TS) and volatile solid content (%VS) of each biomass were determined using 149 

methods 2540 B and 2540 G, respectively, as outlined in the standard methods for the 150 

examination of water and wastewater (APHA., 2005). Also, the cellulose, hemicellulose and 151 

lignin contents of each biomass were determined as detailed by Goel (2007) and Sharma 152 

(2008). From the powdered grass samples, the AD reactors feedstock was then prepared by 153 

mixing equal weights of the powdered Gamba (50%) and Guinea grass (50%) in terms of their 154 

TS contents. The inoculum was collected from one of the commercial mesophilic AD plants at 155 

the Cockle Park Farm owned by Newcastle University and which is located at Morpeth, 156 

Northumberland, North-East England. The physiochemical characteristics of the mixed 157 

biomass feedstock and inoculum are presented in Table 1. 158 
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Table 1  Physiochemical characteristics of biomass feedstocks and inoculum 159 

Parameter 

 Biomass feedstock 

Inoculu

m Mixture Gamba Guinea 

Total solids content (as %TS in wet 

weight) 2% 94%  91% 94% 

Volatile solids content (as % VS in TS) 66% 94% 81% 89% 

Moisture contents (%) 98% 6% 9% 6% 

C/N ratio n.d n.d 36:1 36.4:2 

ODM (%) n.d n.d 93% 96% 

Ash (%) n.d n.d 10% 9% 

NDF (%) n.d n.d 73% 70% 

ADF (%) n.d n.d 54% 53% 

ADL (%) n.d n.d 10% 10% 

Hemicellulose (%) n.d n.d 19% 17% 

Cellulose (%) n.d n.d 44% 43% 

C/N ratio =   carbon-to-nitrogen ratio 160 

ODM  =   Organic dry mass 161 

NDF  =   Neutral detergent fibre  162 

ADF  =   Acid detergent fibre 163 

ADL  =   Acid detergent lignin 164 

n.d means not determined 165 

 166 



10 

 

2.1.2 Sources and preparation of supplements 167 

The three (3) trace elements (TE), namely: molybdenum (Mb), nickel (Ni) and cobalt (Co), and 168 

anhydrous sodium carbonate (Na2CO3) used to adjust the pH in the reactors, were purchased 169 

from VWR and BDH, United Kingdom and were prepared to achieve the standard 170 

concentrations shown in Table 2.  The cellulose from Aspergillus niger (0.8 U/mg) (CCA) was 171 

purchased from Sigma-Aldrich, UK and prepared by dissolving 100 g of the cellulase in 1 L of 172 

D.I water. Similarly, Cellulase from Trichoderma reesei ATCC 26921 (CCT) (aqueous 173 

solution ≥ 700 units/g), also from Sigma-Aldrich, UK was prepared by dissolving 50% of the 174 

cellulase solution in 50% of D.I water. 175 

Table 2 Composition of the solution of the trace elements supplement (Co,Ni,Mb) 176 

Reagent Chemical 

formula 

M 

(g/mol) 

TE  MTE 

(g/mol) 

M:MTE 

ratio 

WTE 

(g) 

TE conc.  

(M/ml) 

Cobalt (III) Nitrate 

hexahydrate (VWR) 𝐶𝑜𝑁2𝑂6. 6𝐻2O 291.03 Co 58.93 4.94:1 0.05 1.70 x 10-7 

Nickel (II) chloride 

hexahydrate (BDH) 𝑁𝑖𝐶𝑙2.6𝐻2𝑂 237.69 Ni 58.69 4.05:1 0.1 1.70 x 10-6 

Sodium molybdate 

dihydrate (VWR) 𝑁𝑎2𝑀𝑜𝑂4.2𝐻2𝑂 241.96 Mo 95.94 2.52:1 0.1 1.04 x 10-6 

M     = Molecular mass 177 

TE      = Trace element 178 

MTE  = Molar mass of trace nutrient 179 

M: MTE = Weight of salt that contains 1 g weight of trace nutrient 180 

WTE  = Weight of trace element (g) dissolved in 1 dm3 D.I water 181 
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TE  = Amount of trace element (mol) in 1 mL of solution 182 

2.2 Methods 183 

2.2.1 Continuous stirred-tank reactors (CSTR) 184 

The continuous stirred-tank reactors (CSTR) consisted of six Quickfit® borosilicate culture 185 

vessels each of 5 litres capacity purchased from Sigma-Aldrich, United Kingdom. These 186 

vessels were covered with Quickfit® flat headplate which had parallel centre joints, ST/NS: 187 

19/26, and a 10° side socket joint vacuum adapter with screw-thread (ST) connector for flexible 188 

tubing. The headplate seal was made air-tight using a white silicone sealant and a high vacuum 189 

grease purchased from VWR UK.  Each reactor was also fitted with a 60 cm stainless steel 190 

stirring rob with 20 cm stirring bar passing through the center joint of the head plate with a 191 

water seal and clamped to a variable speed overhead stirrer engine. Each reactor was fully 192 

mixed by setting its own overhead stirrer at the speed of 120 rpm. All the reactors had a working 193 

volume of 4.5 L and were feed at an organic loading rate (OLR) of 1.15 gVS/L.d at a hydraulic 194 

retention time (HRT) of 25 days for a duration of 74 days. The complete setup for the CSTR is 195 

as shown in Figure 1.  196 
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 197 

Figure 1  CSTR setup with tubing connected to gas sampling bag, a variable speed overhead 198 

stirrer motor with stirring rod passing through Quickfit® flat head plate and a parallel centre 199 

joint (water seal)  200 

Also fitted on each reactor was a 10° side socket joint vacuum adapter, black insulating mat 201 

over heater pad, k-type thermocouple inserted into the reactor using a red coloured rubber bung, 202 

and a control box fitted with Sestos temperature controllers. Heating for each reactor was 203 

provided using non-adhesive wire wound Silicon heating pad (190 x 415 mm, 230V), with 1M 204 

lead purchased from Holroyd Components Ltd United Kingdom. The heating pad was wrapped 205 

around the reactors by means of hooks and springs attached to them. A black insulating mat 206 

was also used to cover the heating pad to minimize heat loss. Each CSTR was identified based 207 

on the type of supplement added to it as detailed in Table 3. 208 
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Table 3  CSTR names, supplement type, volume and frequency of supplementation 209 

CSTR Feedstock (Gamba + Guinea grass) Frequency of 

supplementation 

R1  Inoculum + feedstock Nil 

R2  Inoculum + feedstock + 5 mL Trace Element solution (TE) Daily 

R3 Inoculum + feedstock + 5mL 20% Cocoa pod (CP) ash-extract Daily 

R4 Inoculum + feedstock + 5mL 20% CP ash-extract + 5 mL 

cellulase from Aspergillus niger (CCA) Daily 

R5 Inoculum + feedstock + 5 mL CCA Daily 

R6 Inoculum + feedstock + 3 mL cellulase from Trichoderma reesei 

ATCC 26921 (CCT) + 5 ml TE Daily 

The temperature inside each reactor vessel was monitored using a K-thermocouple probe on a 210 

Sestos temperature controller inserted into the reactor mixture, which controlled output to the 211 

heater pads. The pH in the reactors was also measured daily using a Thermo Scientific™ Orion 212 

Star™ A326 pH/Dissolved Oxygen Portable Multiparameter Meter. Physico-chemical 213 

parameters, such as: total solids (TS), volatile solids (VS), chemical oxygen demand, 214 

ammonium nitrogen (NH4
+-N), total Kjeldahl nitrogen (TKN), alkalinity and volatile acid 215 

concentrations were measured weekly according to methods APHA 2540 B, APHA 5220B 216 

open reflux, APHA 4500-NH4 -N B&C, APHA 4500-NorgB, 23204 and 5560C respectively, in 217 

accordance with the standard methods for the examination of water and wastewater (APHA., 218 

2005). Stability of the process was determined using the propionate-to-acetate ratio as reported 219 

by Hill et al. (1987). Daily biogas production from each reactor was collected using a 10 L 220 

Supel™-Inert Multi-Layer Foil Gas Sampling Bag fitted with a Thermogreen® LB-2 Septa 221 

and a Push/Pull Lock Valve (PLV), which was connected to one of the outlets on the Quickfit® 222 

reactor’s head plate. The methane content (%) in the biogas was measured using a Carlo Erba 223 

HRGC 5160 gas chromatograph equipped a flame ionization detector, an electron capture 224 

(ECD) detector, and an on-column MFC injector with a split/splitless controller as described 225 

by (Edward et al., 2015). 226 
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2.2.2 Feeding conditions 227 

Daily feeding of all the reactors were maintained at an organic loading rate (OLR) of 1.15 228 

gVS/L.d from day 1 – 25, 26 – 50 and 51 – 74 which correspond to the 1st, 2nd and 3rd HRT 229 

cycles, respectively. However, daily feeding was suspended from day 60 – 74 when the CSTR 230 

were opened which exposed the reactors’ contents to room air for about 5 hours to fix one of 231 

the CSTR that broke down. However, supplementation with CP ash extract continued from day 232 

63 – 74. 233 

2.3 Data analysis 234 

The data obtained from the current study were analyzed using the statistical packages SPSS 235 

version 17.0, Microsoft Excel 2016. All the analyses were based on a 5% statistical significance 236 

level for all parameters tested and results are presented within ± 2 S.D. The correlation and 237 

regression analysis, analysis of variance and paired samples T-tests (2- tailed) were also used 238 

to determine the statistical significance of the differences between the mean values of the 239 

results obtained from different experiments carried out. 240 

3 Results and Discussion 241 

3.1 Volatile solids (VS) destruction 242 

The mean volatile solids (VS) destruction achieved in reactors, R1, 2, 3, 4, 5 and 6 from day 1 243 

– 74 were 64, 55, 59, 65, 65 and 67%, respectively (Figure 2). However, during the 2nd HRT 244 

cycle (day 26 – 50), the mean VS destruction achieved in reactors, R1, 2, 3, 4, 5 and 6 were 245 

65, 65, 61, 59, 61 and 67%, respectively. A paired sample t-test showed that the differences 246 

between the VS destruction in the control CSTR (R1) and each of the supplemented CSTR 247 
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(R2, 3, 4, 5 and 6) at 95% confidence interval of the differences, showed that the differences 248 

in the VS destruction were not statistically significant (p > 0.05). 249 

 250 

Figure 2 Volatile solids destruction in the CSTR. R1 (control), R2 (supplemented with trace 251 

elements (TE), R3 (supplemented with CP ash-extract), R4 (co-supplemented with cocoa pod 252 

(CP) ash extract and Cellulase from Aspergillus Enzyme (CCA), R5 (supplemented with 253 

Cellulase from Aspergillus niger) and R6 (co-supplemented with trace elements (TE) and 254 

Cellulase from Trichoderma reesei ATCC 26921) (CCT) 255 

The results in Figure 2 suggest that neither the cocoa extract, enzymes, trace elements nor a 256 

combination of any two types of supplement increased VS destruction. These results are 257 

consistent with previous studies. For example, Lue-Hing (1998) reported that the addition of 258 

enzymes to AD digesters did not give improvement in the VS destruction,  and Horan et al. 259 

(2018) reported that even though enzymatic pretreatment was found to promote hydrolysis of 260 

lignocellulosic biomass, it did not result in any significant increase in VS destruction compared 261 

to the untreated reactors. Unfortunately, the determination of VS does not account for volatile 262 

substances such as VFA, alcohols, esters, etc which could represent a considerable portion of 263 

the VS destruction or energy potential of the feedstock. 264 
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3.2 Effect of bicarbonate addition on pH of reactors 265 

From day 1-74, the pH inside the CSTR varied as follows: R1 (6.32 - 7.70), R2 (6.54 - 7.70), 266 

R3 (6.54 - 7.70), R4 (6.55 - 7.70), R5 (6.31 - 7.70) and R6 (6.10 - 7.70), which correspond to 267 

mean pH value of 6.93, 6.94, 7.01, 7.00, 6.94 and 6.96, respectively (Figure 3). However, 268 

during the 2nd HRT cycle (day 26 – 50), during which the reactors attained a pseudo-steady-269 

state condition of operation, CSTR R1, R2, R3, R4, R5 and R6 had mean pH values of 6.80, 270 

6.84, 6.91, 6.90, 6.84 and 6.87, respectively. These mean pH values recorded in all the CSTR 271 

during the pseudo-steady-state period, were all within the pH range 6.8 – 7.4, which is regarded 272 

as the optimum range for anaerobic digestion (Grady Jr, 2011; Khanal, 2011; Nijaguna, 2006).  273 

 274 

Figure 3  pH profile in R1, R2, R3, R4, R5 and R6.  275 

The pH of all the reactors was regulated by dosing 1g of anhydrous sodium carbonate (Na2CO3) 276 

on day 43, 45, 47, 48, 52, 53, 54, 63, 64, 68 and 69, and that enabled the reactors to maintain 277 

the optimum pH (Figure 3), except for day 63 when 2g of the salt was added due to a decrease 278 

in the pH of all the reactor to pH < 6.8. On day 64, it was observed that the 2g of Na2CO3 added 279 

to the reactors on day 63, produced a negative pressure inside all the reactors which drained 280 
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the water in the shaft water-seal, thereby exposing the reactors’ headspace to ambient air. This 281 

pressure reduction inside the reactors probably occurred due to the rapid reaction of Na2CO3 282 

with biogas CO2, leading to removal of CO2 as shown in 1.  283 

Na2CO3 + H2O + CO2 → 2NaHCO3 1 

Oxygen from the air is toxic to methanogens (Wang et al., 2010), and thus, its entrance into 284 

the AD vessel headspace on day 63 led to a substantial decrease in the volume of biogas and 285 

methane produced in each reactor (Figure ), and also led to a subsequent accumulation of VFA 286 

(Figure ) and reduction in pH (Figure 3), implying that oxygen from air reached concentrations 287 

within the digestate liquor that exerted toxic effects on the methanogens. Gerardi (2003), had 288 

also reported that the development of low partial pressure conditions under the digester dome 289 

due to the addition of Na2CO3 or calcium hydroxide during the AD process may cause the 290 

collapse of the digester cover. This problem associated with the use of Na2CO3 as a source of 291 

alkalinity in AD reactors and explains why sodium bicarbonate (NaHCO3) is mostly preferred 292 

as a buffering reagent for pH control (Grady Jr, 2011).  293 

Although a comparison between the pH in the control reactor (R1) and each of R2, 3, 4, 5 and 294 

6 showed that they were strongly and positively correlated (R2-values > 0.7) in all cases, the 295 

paired sample t-test (2-tailed) comparison between the pH in reactor, R1and R2, R1 and R3, 296 

R1 and R4, R1 and R5 and R1 and R6, showed that the pH of the control reactor was 297 

statistically significantly different from the pH of each of the supplemented reactors (p < 0.05). 298 

This shows that pH inside the reactors was affected by supplementation and because pH is 299 

closely related to the toxicity of many compounds in AD due to its ability to control the 300 

movement of undissociated weak acids and bases which can penetrate the cell membrane of 301 

microbes (de Jong & van Ommen, 2014). Thus, at low pH, VFA diffuses into the cell of AD 302 

microbes  and dissociate in their cytoplasm, causing an imbalance in the cellular homeostasis 303 
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(de Jong & van Ommen, 2014), and this could explain why all the CSTR (R1 – R6) started to 304 

fail around day 65 due to VFA accumulation (Figure ).  305 

3.3 Ammonia-N, Total Kjeldahl Nitrogen, Organic nitrogen and COD 306 

The concentration of organic-N in CSTR R1, R2, R3, R4, R5 and R6 decreased from 577.5 – 307 

175, 577.5 -157, 577.5 – 175, 577.5 – 176.4, 588.0 – 217.0 and 577.5 – 175.0 mg/L, 308 

respectively (Figure ). The results indicate that during the AD process, a substantial part of the 309 

organic-N was converted to ammonium-N, especially during the pseudo-steady-state operation 310 

period (day 26 – 50) and beyond, and that may have been favoured by the prevailing mean pH-311 

values which were effectively below pH 7 (Figure 3) in all the reactors. Similarly, from day 1 312 

– 74, the concentration of ammonium-N decreased in CSTR R1, R2, R3, R4, R5 and R6, from 313 

1400 – 39.2, 1400 – 84, 1400 – 39.2, 1400 – 61.6, 1400 – 63 and 1400 – 50.4 mg/L, 314 

respectively. This large net change in the ammonia-N concentration suggests that the amount 315 

of nitrogen available in the reactors was insufficient to meet the biosynthetic needs of the new 316 

biomass, and this could explain why free ammonia inhibition was not detected in the current 317 

study. 318 
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 319 

Figure 4  Ammonia-N, Total Kjeldahl Nitrogen, and Organic nitrogen. R1, R2, R3, R4, R5 and 320 

R6. 321 

Correspondingly, Figure  shows that the concentration of the TKN in CSTR R1, R2, R3, R4, 322 

R5 and R6 decreased from 1977.5 -175, 1977.5 – 157.5, 1977.5 – 175, 1977 – 245, 1977.5 – 323 

262.5 and 1977.5 – 175 mg/L, respectively, due to the changes in ammonium-N and organic-324 

N in the reactors. According to Wellinger (2013), the determination of the total Kjeldahl 325 

nitrogen (TKN) equates closely to the nitrogen concentration in an AD reactor, since nitrate 326 

and nitrite are very low, and reveals whether the available nitrogen is sufficient to support the 327 

growth of the AD microbes.  328 

3.4 Volatile fatty acids  329 

3.4.1 Total volatile fatty acids (TVFA) from day 1 - 74 330 

The concentration of total volatile fatty acids in all reactors from day 1 – 74 are shown in  331 

Figure .  According to Khanal (2011), the level of VFA indicates the health of an AD process, 332 

and for a healthy reactor, the VFA concentration in the low range of 50 – 250 mg HAc/L. Thus, 333 

in the current study, it can be concluded that the CSTR 1 – 6 were healthy from day 1 – 60 334 

(Figure ), although the VFA concentration during this period may have been influenced by the 335 

Na2CO3 supplement. 336 
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 337 

Figure 5 Concentration of total volatile fatty acids in all reactors from day 1 – 74. Details of 338 

the reactors classification and supplementation are shown in Table 3. 339 

However, from day 60 – 75, unstable conditions caused by opening of all the reactors, caused 340 

both overloading and the exposure of the reactors to toxic compounds (oxygen), and the 341 

accumulation of VFA (Figure 5), which caused the pH to gradually decrease from the desired 342 

pH 7 to pH <6 within this period (Figure 3), resulting to failure of all the reactors and substantial 343 

decrease in the methane production (Figure ). The VFA accumulation during this period 344 

suggests that opening the reactors may have caused a severe imbalance between the activities 345 

of the acidogenic and methanogenic microbes. It also depicts that the activities of the 346 

acetoclastic methanogens may have been hindered, resulting to further decrease in pH. 347 

According to de Jong and van Ommen (2014), increase in VFA concentration and lower pH 348 

increases the concentration of undissociated acetic acid, amplifies the toxic effects of the VFA 349 

on the AD system. 350 
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3.4.2 Checks for instability of the AD process using propionate-to-acetate ratio  351 

The results from the stability checks using the P/A ratios measured from the total VFA 352 

concentrations from the individual reactors, R1-6 from day 1 - 74 are presented in Table . 353 

  354 

Table 4 Checks for instability using the propionate to acetate (P/A) ratio 355 

Hydraulic retention  

time (HRT) 

 

R1 R2 R3 R4 R5 R6 

Day P/A P/A P/A P/A P/A P/A 

1st HRT 0 n.d n.d n.d n.d n.d n.d 

 14 n.d n.d n.d 1/2.1 1/1.6 0/0 

 21 1/4.3 1/3.7 1/3.4 n.d n.d 1/2.8 

2nd HRT 28 n.d n.d n.d 1/6.6 0/0 1/4.9 

 35 n.d n.d n.d n.d 1/2.4 n.d 

 42 n.d n.d n.d n.d 1/1.2 n.d 

 46 1/0.4 1/0.1 1/1.5 1/0.2 1/0.6 n.d 

 49 1/1.4 1/0.1 1/2.0 1/5.5 n.d n.d 

3rd HRT 56 1/4.0 1/0.3 1/0.8 1/2.9 1/3.9 1/2.9 

 65 1/4.2 1/4.5 1/0.7 1/1.5 1/4.4 1/0.2 

 70 1/5.9 1/4.7 1/1.8 1/1.6 1/6.8 1/1.7 

 74 1/1.8 1/1.6 1/3.6 1/1.6 1/1.8 1/3.8 

n.d stands for not detected 356 

According to Hill et al. (1987), P: A ratio of 1:1.4 or propionate concentration above 800 mg/ 357 

L indicate impending digester failure. During the 2nd HRT (day 26 – 50), when all CSTR 358 

attained pseudo-steady-state condition,  the ratio P/A < 1:1.4 was prevalent in all the CSTR, 359 

R1 – R6, showing a good balance between propionate production and acetate utilization, except 360 
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for the periods where supplementation of Na2CO3 introduced partial pressures leading entrance 361 

of air and sudden VFA building up as shown in Table  and Figure . Thus, the results in Table  362 

confirms that all the reactors were relatively stable within this 2nd HRT period, compared to 1st 363 

HRT (especially on day 21) and 3rd HRT (day 51 – 74) periods where the ratios P/A>1:1.4 364 

were prevalent in all the CSTR (Table ). 365 

 366 

 367 

Figure 6 Concentration of individual volatile fatty acids in all the reactors from day 28 – 49 368 

(within 2nd HRT cycle).  369 

The concentration of the individual VFA in all the reactors during the 2nd HRT cycle (Figure 370 

), also indicates that during the pseudo-state condition of operation, their concentrations were 371 

effectively lower than 50 mg/L, except for day 49 where the concentration of propionate in 372 

reactor, R2 was 80 mg/L.  These results could explain why all the CSTR were able to achieve 373 

stable operational conditions, and equally agree with previous studies which reported that 374 

concentration of total TVFA in AD reactors operating normally should be below 200 mg/L 375 

(Andreoli, 2007).  However, from day 50 – 75, a P/A ratio greater than 1:1.4 dominated the 376 
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reactors, which lead to a decrease in pH (Figure 3) due to the presence of high concentration 377 

of VFA. The situation led to a daily decrease in biogas and methane production in all the 378 

reactors (Figure 7) and total failure of all reactors, possibly due to the entrance of air (oxygen) 379 

into the reactors as previously discussed in Section 3.2.  380 

3.5 Methane production 381 

3.5.1 Methane content (%) in biogas  382 

The methane contents in the biogas from each of the CSTR, including the mean, minimum, 383 

and maximum values measured from day 1 – 74 and day 26 – 50 are shown in Table 1. 384 

Table 5  Methane content (%) in biogas  385 

Reactors HRT (1 – 3) (Day 1 – 74) HRT 2 (Day 25 - 50) 

Mean Min. Max. Mean Min Max 

R1  59.2% 22.4% 67.8% 60.0% 56.0% 64.0% 

R2  59.9% 21.4% 67.5% 61.0% 57.0% 66.0% 

R3  59.9% 22.4% 65.9% 61.0% 56.0% 65.0% 

R4  59.0% 20.4% 65.3% 60.0% 56.0% 64.0% 

R5  58.5% 22.4% 65.6% 60.0% 55.0% 66.0% 

R6  60.8% 19.1% 69.0% 62.0% 57.0% 66.0% 

From the data presented in Table 5, the methane contents recorded from day 1 – 74 during the 386 

current study from CSTR (R1 – 6) were all within the ranges of methane contents typical of 387 

CSTR published from various studies (Cabbai et al., 2016; Chan et al., 2018; Wang et al., 388 

2010; Gerardi, 2003). The paired sample tests between the methane content in control reactor, 389 

R1 and R2, R1 and R3, R1 and R5, and R1 and R6 gave a p-value <0.05 which shows that 390 

supplementation significantly affected the percentage of methane contained in the biogas 391 

produced in each of the supplemented reactors.  In contrast, a p-value > 0.05 was obtained in 392 
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the case of the comparison between control, R1 and R4, which means that that the percentage 393 

of methane produced in R4 was comparable to the methane produced in the control reactor, 394 

R1. Similarly, when the reactors attained a pseudo-steady-state condition during their operation 395 

which corresponds to Day 26 – 50 (HRT 2), the mean concentration of methane, as well as the 396 

minimum and the maximum methane contents (Table 1). Also, a paired samples t-test between 397 

the control (R1) and each of the supplemented reactors, showed that for Pair 1 (R1 and R2), 398 

Pair 2 (R1 and R3), Pair 3 (R1 and R6), gave a value of p < 0.05 (2 -tailed) which shows that 399 

the addition of TE to R2, CP ash-extract to R3, CP ash extract + CCA to R4 and CCA to R5, 400 

affected the SMP of each reactor significantly.  401 

3.5.2 Specific methane production and volumetric methane production (day 1 – 74). 402 

The SMP from the CSTR R1, R2, R3, R4, R5 and R6 from day 1 – 74 were 169.3, 157.4, 179.9, 403 

204.3, 189.8 and 175.0 N mLCH4/kgVS fed. Similarly, the VMP obtained from R1, R2, R3, 404 

R4, R5 and R6 were 211.7, 196.8, 224.9, 255.4, 237.2 and 218.8 N mLCH4/L.d fed. Thus, 405 

except for reactor R2 which produced SMP that was 7% less than the SMP from the control 406 

reactor, R1, the SMP from R3, R4, R5 and R6 were 13, 28, 18 and 12% higher than that of the 407 

control reactor (R1). Similarly, the paired samples t-test between the control (R1) and each of 408 

the supplemented reactors, showed that for Pair 1 (R1 and R2), Pair 2 (R1 and R3), Pair 3 (R1 409 

and R4), and Pair 4 (R1 and R5), the value of p < 0.05 (2 -tailed) which indicates that the 410 

supplementation of  R2 with TE, R3 with CP ash-extract, co-supplementation of R4 with CP 411 

Ash-extract + CCA, supplementation of R5 with CCA and co-supplementation of R6 with CCT 412 

and TE increased the SMP and VMP of each reactor significantly.  413 

3.5.3 Specific methane production and volumetric methane production (day 26 – 50) 414 

The mean SMP in CSTR, R1, R2, R3, R4, R5 and R6 were 171.7, 162.7, 193.4, 220.6, 202.5 415 

and 192.9 N mLCH4/gVS.d, respectively.  These results show that the SMP in the reactor, R2 416 
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was 5% less than the volume of SMP from the control reactor, R1.  In contrast, the SMP in 417 

CSTR, R3, R4, R5 and R6 were 11, 22, 15 and 11%, respectively, higher than that of the control 418 

reactor, R1. Similarly, the VMP obtained from CSTR, R1, R2, R3, R4, R5 and R6 were 214.6, 419 

203.4, 241.7, 275.7, 253.1, and 241.1 N mLCH4/L.d. Similarly, the VMP in CSTR, R3, R4, R5 420 

and R6 were 11, 22, 15 and 11%, respectively, higher than that of the control reactor, R1. These 421 

results demonstrate the supplementation of reactor R2 with trace elements solution, led to 422 

inhibition of the AD process, which supports the study by Cai et al. (2017) which reported that 423 

the addition of Co and Ni did not improve reactor performance during an AD process involving 424 

the mono-digestion of rice straw. However, their study revealed that a combination of Fe, Mn, 425 

Mo and Se enhanced methane production. Similarly, in an extensive review on the impacts of 426 

trace element supplementation on the performance of anaerobic digestion process, Choong et 427 

al. (2016), highlighted that trace element (Fe, Ni, Co) supplementation improves AD 428 

performance, especially when added at sub-optimal dosages. Similarly, Pobeheim et al. (2010) 429 

reported that supplementation using 0.6 mg/L Ni and 0.1 mg/L Co to the anaerobic digestion 430 

of maize silage improved the methane yield by 25% and 10%, respectively. Cai et al. (2018) 431 

also reported that when 0.01 mg/L Mo, 0.1 mg/L Se and 0.1 mg/L Mn were added to their AD 432 

of rice straw in the first 10 days, that the methane yield increased by 59.3%, 47.1% and 48.9%, 433 

respectively. The inhibition experienced in reactor R2, which was supplemented with trace 434 

elements solutions (Table 3) may have resulted due to the accumulation of some of trace 435 

elements in higher concentration, especially Ni was previously found be Jiang et al. (2017) to 436 

exhibit inhibitory effects on VFA degradation due to its toxic nature to methanogens at high 437 

concentration. When Nges and Björnsson (2012) encountered a similar inhibitory situation 438 

during their study on the anaerobic digestion of crop mixtures, they suggested that the trace 439 

elements Fe, Co, Mo and Ni, which they used in their study may have been chelated by phytic 440 

acid thereby preventing their absorption due to poor bioavailability. Their inference agrees with 441 
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the results obtained in the current study and Ortner et al. (2014) has also confirmed that 442 

between 30 – 70% of the trace elements added to an AD process is not directly bioavailable. 443 

 444 

Figure 7 Specific methane production (SMP), volumetric methane production (VMP) and 445 

cumulative methane production in R1 (control), R2 (TE), R3 (CP ash-extract, R4 (5mL 20% 446 

CP ash-extract + CCP), R5 (CCA) and R6 (CCT + TE) from day 1 – 74. 447 

During the pseudo-steady-state operation (HRT 2), the correlation between the SMP produced 448 

in R1 and R2, R1 and R3, R1 and R4, R1 and R5, and R1 and R6 had a coefficient of 449 

determination, R2 = 0.23, 0.24, 0.22, 0.41 and 0.19 respectively, which indicates that the 450 

correlation between two different reactors conditions was positive but weak. A paired sample 451 

t-test (2-tailed) statistical comparison of either the SMP between R1 and R3, R1 and R4, R1 452 

and R5, and R1 and R6 gave a p-value < 0.05. In contrast, the same t-test comparison between 453 

the SMP of R1 and R2, gave a p-value > 0.05. These results show that apart from the  CSTR, 454 

R2 which encountered inhibition as a result of TE supplement, that the addition of other 455 

supplements or a mixture of supplements (Table 3), significantly enhanced the SMP from the 456 

biomass feedstock used in the current study. Considering the R2-values from the statistical 457 

correlation tests, the results clearly showed that neither a comparison between reactors R1 and 458 
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R3, nor R2 and R3 were correlated in terms of SMP. In contrast, a comparison between the 459 

SMP in R3 and R4 or R4 and R6 showed a positive but weak correlation. Comparison of the 460 

paired reactors conditions indicates that supplementation affected the SMP from each CSTR 461 

significantly (p-value < 0.05). Thus, supplementation of the reactors, R2, R3, R4, R5 and R6 462 

increased SMP by -5%, 13%, 28%, 18% and 12%, respectively, compared to the control 463 

reactor, R1. The effects of supplementation on SMP of paired reactors conditions (Table 3) are 464 

presented in Figure 8. 465 

 466 

Figure 8 Effects of supplementation on SMP of paired supplemented reactors conditions. The 467 

reactors conditions are defined in Figure 2. 468 

The comparison between the supplemented reactors only (Figure 8) also showed that the SMP 469 

from R3 was higher than that of R2 by 16%.  Equally, the SMP from R4 was 12% higher that 470 

the SMP from R3, while the SMP from R4 was also 9% higher than that of R5. Similarly, the 471 

SMP from R6 was 16% higher than the SMP of R2. These results indicate that the cellulase 472 

from Aspergillus niger (CCA), cellulase from Trichoderma reesei (CCT) and cocoa pod ash-473 

extracts enhanced the SMP in all reactors containing these supplements, however, they produce 474 
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greater enhancement of SMP when added as combined supplements. As the enhancement 475 

appeared to be greater than the sum of the individual supplements, it appeared that CP ash-476 

extracts increased the effect of cellulase from Aspergillus niger, and this may explain why 477 

reactor R4 achieved the highest SMP during pseudo-steady-state operation. In a study of the 478 

effects of 25 types of commercial enzymes on AD process it was found that enzymatic pre-479 

treatment produced only minimal effects on the biogas yield from sludge and manure, and only 480 

about 10% for grass silage and concluded that the enzyme were probably degraded by microbes 481 

native in the AD reactor (Karthikeyan et al., 2016). Thus, the results from the current study 482 

strongly suggest that CP ash-extracts may have increased the activity of CCT and could explain 483 

why reactor R4 achieved the highest SMP during the pseudo-steady-state condition between 484 

day 26 – 50 (Figure  and Section 3.5.3), compared to other reactors. 485 

On day 63, the biogas and methane production (SMP) in all the CSTR (R1-6) decreased from 486 

the mean values presented in Section 3.5.3 to mean SMP of 81.5, 48.8, 71.1, 94.8, 75.4 and 487 

134.3 N mLCH4/gVS.d, as a result of opening the reactors on day 60 (see Section 2.2.2 and 488 

Figure ). Due to the failing situation of the reactors, feeding was suspended, and immediately 489 

followed up with daily supplementation of CP-ash extract to all the reactors from day 64 – 74 490 

(Section 2.2.2). Interestingly, except for reactor R6, all other reactors, R1-5, started to recover 491 

progressively (Figure ), and on day 74, the mean SMP had increased for these reactors to 91.5, 492 

113.7, 113.4, 96.9 and 106.6 N mLCH4/gVS.d, respectively. In contrast, reactor R6 (which had 493 

trace nutrient + cellulase from Aspergillus niger) did not recover (Figure ). Also, due to CP 494 

ash-extract supplementation from day 70 – 74, the P/A ratio in reactors, R1, R2 and R5 495 

decreased substantially (Table ), which suggests an increase in the acetate utilization by the 496 

methanogens, as the decrease corresponded with increase in methane production in the reactors 497 

(Figure ).  In contrast, the P/A ratios increased in reactors, R3 and R6, but remained at the same 498 
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value in the reactor, R4 (Table ). These results suggest that supplementation of ash-extracts 499 

from cocoa pod can also help enhance the recovery of failed CSTR over time. 500 

4 Conclusions  501 

A comprehensive experimental investigation of the supplementation of the AD of mixed West 502 

African Gamba and Guinea grass with different materials, namely TE solution, CP ash-extract, 503 

CP ash-extract + CCA, CCA, CCT, CCT + TE was conducted. In this study, the results showed 504 

that supplementation with TE solution (Ni, Co, Mo) leads to an inhibition of the AD process 505 

resulting in a decrease in the specific methane production (SMP) from the supplemented reactor 506 

by -5% compared to the control, indicating that the trace element solution used in this study 507 

does not improve SMP. However, the co-supplementation with TE and CCT led to a 508 

statistically significant increase in SMP (12%) compared to the control. The addition of CP 509 

ash-extract supplement alone gave a statistically significant increase in methane production 510 

(13%) compared to the control reactor, indicating that the natural trace nutrients and alkalinity 511 

of the CP ash-extract had a positive effect on the AD process.  This was considered to have 512 

been due to pH stability provided by the alkaline characteristics of the CP-ash extract, and the 513 

wide range of bioavailable trace elements present in the ash-extract that were less toxic than 514 

the TE solution. Finally, co-supplementation with CP ash-extract solution and CCA resulted in 515 

a statistically significant increase in SMP (28%) compared to supplementation with CP ash-516 

extract alone and CCA alone. This strongly suggests that CP ash-extracts increased the activity 517 

of CCA especially during the pseudo-steady-state conditions.  518 
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