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Simple Summary: To better understand whether acute myeloid leukaemia differs between children
and adults, we have analysed the expression of genes in samples from both patient groups.
Using previously published data, we compared gene expression between patient risk subgroups.
We examined patients who had a poor chance of survival, based on clinical assessments, and those
with a good chance of survival, to see whether there was any difference in the genes expressed in
their leukaemic cells. Then we compared the genes on these lists between adults and children with
acute myeloid leukaemia. We believe that patients with good or poor survival chances express genes
that provide insights into how leukaemic cells behave. We hope that this work will provide new
information about the mechanisms that underlie acute myeloid leukaemia and answer questions on
the ways this form of leukaemia is similar in adults and children, which will then tell us whether the
same treatments could be used for both age groups of patients.

Abstract: Few studies have compared gene expression in paediatric and adult acute myeloid
leukaemia (AML). In this study, we have analysed mRNA-sequencing data from two publicly
accessible databases: (1) National Cancer Institute’s Therapeutically Applicable Research to Generate
Effective Treatments (NCI-TARGET), examining paediatric patients, and (2) The Cancer Genome Atlas
(TCGA), examining adult patients with AML. With a particular focus on 144 known tumour antigens,
we identified STEAP1, SAGE1, MORC4, SLC34A2 and CEACAM3 as significantly different in their
expression between standard and low risk paediatric AML patient subgroups, as well as between
poor and good, and intermediate and good risk adult AML patient subgroups. We found significant
differences in event-free survival (EFS) in paediatric AML patients, when comparing standard and
low risk subgroups, and quartile expression levels of BIRC5, MAGEF1, MELTF, STEAP1 and VGLL4.
We found significant differences in EFS in adult AML patients when comparing intermediate and
good, and poor and good risk adult AML patient subgroups and quartile expression levels of MORC4
and SAGE1, respectively. When examining Kyoto Encyclopedia of Genes and Genomes (KEGG)
(2016) pathway data, we found that genes altered in AML were involved in key processes such as
the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP, AML1-ETO).
For the first time we have compared gene expression in paediatric AML patients with that of adult
AML patients. This study provides unique insights into the differences and similarities in the gene
expression that underlies AML, the genes that are significantly differently expressed between risk
subgroups, and provides new insights into the molecular pathways involved in AML pathogenesis.
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1. Introduction

Acute myeloid leukaemia (AML) is the second most frequent haematological malignancy in
the paediatric population and remains a leading cause of childhood cancer mortality. With little
improvement in the last few decades, survival remains around 70% [1] despite treatments that include
maximally intensive chemotherapies and myeloablative haematopoietic stem cell transplantation.
The anti-leukaemia effect mediated by the lymphocytes and natural killer (NK) cells of the donor
immune system has been established in haematopoietic stem cell transplantation, and also as adoptive
immunotherapy after consolidation chemotherapy schemes, but the most common cause of death
remains relapse.

Part of the difficulty in treating AML is caused by its clinical and molecular heterogeneity [2] with
a range of cytogenetic rearrangements having been described (reviewed recently by [3]). There is a
clear association between age, genetic mutations, cytogenetic rearrangements and survival [1], but few
genetic abnormalities appear in more than 20% of patients [3]. Diagnostic and prognostic markers of
AML such as KIT [4,5], FLT3 [6], CEBPA [7,8] and NPM1 [9] have been identified in both adult and
paediatric AML, although few of the tumour antigens known in adult AML (recently reviewed in [10])
have been investigated in paediatric AML (reviewed in [11]). The development of strategies that target
AML cells has been hindered by the lack of an antigen with high specificity for blasts that is not present
on normal haematopoietic stem cells, and thus would not result in myelotoxicity. In the absence of this,
targeting antigens that are expressed on or by AML cells, but not essential tissues would be a tolerable,
if less favourable, alternative.

Since 2017, there has been a rapid expansion in new therapies available to paediatric AML patients
for whom chemotherapy has been ineffective or intolerable (reviewed recently in [3,12]). Most have
focused on antibody–drug conjugates, bi-specific T cell engagers and chimeric antigen receptor (CAR)-T
cells (reviewed in [13]). Antibody-based targeting of leukaemia-associated antigens (LAAs) offers
the opportunity to deplete target malignant blasts due to their exquisite specificity for the target
surface antigen, creating an ‘on-target/on-tumour effect’. The disadvantage arises due to depletion of
antigen-expressing healthy cells that also express the antigen: the so-called ‘on-target/off-tumour effect’.
More recent developments of CAR-T cells and CAR-NK cells have been transformative, providing cures
to children with poor survival prospects, but patients can suffer life-threatening toxicities, including
neurologic dysfunction, cytokine release syndrome and macrophage activation syndrome. These side
effects are due to off-target/off-tumour effects related to the rapid activation of CAR-T cells soon after
infusion, leading to a release of inflammatory cytokines, which a change in antigen target would not
necessarily circumvent. Perna et al. [14] demonstrated the use of transcriptomics and proteomics to
identify pairs of antigens uniquely expressed on AML blasts [14], these CAR-T cell co-targets were
proposed as one way to circumvent the toxicity to non-haematopoietic tissues in the future.

Despite the improvements to patient outcomes and associated overall survival (OS) rates they offer,
current therapies still have limitations including the augmented immune response enabled by immune
facilitators and checkpoint inhibitors such as those targeting cytotoxic T-lymphocyte associated protein
4 (CTLA-4) and programmed cell death protein-1 (PD-1), respectively, leading to a unique group of
side effects called immune-related adverse events (reviewed in [15]). It is essential, therefore, that we
identify new targets for therapy so that we can widen the scope of future treatments and determine their
relevance to paediatric and adult leukaemia. In this study, we have analysed two publicly available
databases and the mRNA sequencing data therein. The National Cancer Institute’s Therapeutically
Applicable Research to Generate Effective Treatments (NCI-TARGET) initiative recruited children and
young adults with AML taking part in the Children’s Oncology Group studies to better characterise
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the molecular genetic markers of the disease. The second database was The Cancer Genome Atlas
(TCGA), a collaboration between the National Cancer Institute and the National Human Genome
Research Institute, aimed at improving the characterisation of multiple cancers, including 200 adult
patients with AML in the TCGA-LAML project. Comprehensive clinical data were collected as part
of the development of both databases and included information on gender, age at diagnosis, race,
haematological indices, treatments received, and prognostic events, as well as selected cytogenetic
abnormalities and other molecular features.

2. Results

2.1. Differential Gene Expression (DGE) Analysis

Good versus poor prognostic subgroup pairs were formed from the TARGET AML data and
then from the TCGA AML data (Figure 1A) so that they could be compared by differential gene
expression (DGE) analysis (Figure 1B). Event-free survival (EFS) probability distributions were found
to be significantly different (log-rank; p < 0.05) between the TARGET (Figure 2A) standard and low
risk subgroups (p = 0.02), and also significantly different between the TCGA (Figure 2B) intermediate
and good risk subgroups, and poor and good risk subgroups (p = 0.01 and p = 0.007, respectively).
The EFS of TCGA patients < 60 years of age and ≥60 years of age within total TCGA patients,
within intermediate and good risk subgroups, and within poor and good risk subgroups, were also
compared in pairwise fashion (Figure S1). EFS probability distributions were found to be significantly
different between TCGA patients < 60 years of age and ≥60 years of age within total TCGA patients;
however, no significant results were observed between risk subgroups for patients <60 years of age
and ≥60 years of age.

This analysis resulted in the identification of significant differentially expressed genes (DEGs)
(Benjamini–Hochberg (BH)-adjusted p value < 0.01) for each comparison and allowed for the
identification of significant DEGs that also appeared on a list of genes of interest (GOI) which
was formed prior to analysis (Figures 1B and 2C,D).

2.1.1. TARGET AML Data

From the paediatric TARGET dataset, eight prognostic subgroup pairs were formed for DGE
analysis and compared in a pairwise fashion (Table S1A); however, three comparisons did not show
any GOI to be significantly differentially expressed: EFS < 1 year versus EFS > 5 years within the total
patient group, OS < 1 year versus OS > 5 years within the total patient group, and EFS < 6 months
versus EFS > 2 years within the patients possessing mixed-lineage leukaemia (MLL, also known as
KMT2A) rearrangements as their primary cytogenetic abnormality. Four comparisons of the remaining
five had subgroups containing < 10 patients; therefore, analysis was continued but without a focus on
their results. The standard versus low risk comparison did, however, identify significantly differentially
expressed GOI and consisted of sufficient patient numbers.

Antigens on the GOI list that were significantly differentially expressed between the standard and
low risk patient subgroups (n = 31 vs. n = 31) (Table 1) included carcinoembryonic antigen-related
cell adhesion molecule 3 (CEACAM3; also known as CD66d), CEACAM6 (also known as CD66c),
CEACAM8 (also known as CD66b), Folate Hydrolase 1 (FOLH1), MORC Family CW-Type Zinc Finger
4 (MORC4), sarcoma antigen 1 (SAGE1; CT14), Solute Carrier Family 34 Member 2 (SLC34A2) and the
metalloreductase six-transmembrane epithelial antigen of prostate member 1 (STEAP1).
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Figure 1. Overview of the analytical workflow and identification of differentially expressed genes 
(DEGs) that overlap between subgroup comparisons. (A) DESeq2 was used to perform differential 
gene expression (DGE) analysis using mRNA-Seq raw counts for various poor prognostic versus good 
prognostic group comparisons within Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET), and The Cancer Genome Atlas (TCGA) patient datasets. DGE results were 
filtered (Benjamini–Hochberg (BH)-adjusted p value < 0.01) to yield significant DEGs. Where genes of 
interest (GOI) were found to be significantly differentially expressed, raw count data within a 
corresponding subgroup comparison was transformed and expression levels of GOI across all 
patients in the comparison were assigned to a quartile (Q1/Q2/Q3/Q4). Log-rank tests were carried 
out between patients of Q1 and Q4 expression, and of Q2 and Q3, with p value < 0.05 deemed 
significant. Pathway analysis was also carried out using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) 2016 Database on total significantly differentially expressed GOI, on those 
considered as downregulated (log2 fold change < 0), and those considered as upregulated (log2 fold 
change > 0); (B) Venn diagrams provide a visual summary of (i) all genes and (ii) GOI that were 
identified as significantly differentially expressed when comparing TARGET and TCGA subgroups. 

Figure 1. Overview of the analytical workflow and identification of differentially expressed genes
(DEGs) that overlap between subgroup comparisons. (A) DESeq2 was used to perform differential
gene expression (DGE) analysis using mRNA-Seq raw counts for various poor prognostic versus
good prognostic group comparisons within Therapeutically Applicable Research to Generate Effective
Treatments (TARGET), and The Cancer Genome Atlas (TCGA) patient datasets. DGE results were
filtered (Benjamini–Hochberg (BH)-adjusted p value < 0.01) to yield significant DEGs. Where genes
of interest (GOI) were found to be significantly differentially expressed, raw count data within a
corresponding subgroup comparison was transformed and expression levels of GOI across all patients
in the comparison were assigned to a quartile (Q1/Q2/Q3/Q4). Log-rank tests were carried out
between patients of Q1 and Q4 expression, and of Q2 and Q3, with p value < 0.05 deemed significant.
Pathway analysis was also carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
2016 Database on total significantly differentially expressed GOI, on those considered as downregulated
(log2 fold change < 0), and those considered as upregulated (log2 fold change > 0); (B) Venn diagrams
provide a visual summary of (i) all genes and (ii) GOI that were identified as significantly differentially
expressed when comparing TARGET and TCGA subgroups.
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Figure 2. DGE analysis. Pairwise comparisons of event-free survival (EFS) of (A) TARGET patients 
by standard versus low risk (p = 0.02), and (B) TCGA patients by (i) intermediate versus good risk (p 
= 0.01) and (ii) poor versus good risk (p = 0.007) subgroups. All p values derived from log-rank 
analysis. Volcano plots represent the genes that were differentially expressed by p > 0.01 (grey dots) 
or p < 0.01 (green dots) when comparing (C) TARGET patients by standard versus low risk, and (D) 
TCGA patients by (i) intermediate versus good and (ii) poor versus good risk subgroups. Names and 
black dots indicate the position of antigens listed as GOI when studying gene expression. 

 

Figure 2. DGE analysis. Pairwise comparisons of event-free survival (EFS) of (A) TARGET patients
by standard versus low risk (p = 0.02), and (B) TCGA patients by (i) intermediate versus good risk
(p = 0.01) and (ii) poor versus good risk (p = 0.007) subgroups. All p values derived from log-rank
analysis. Volcano plots represent the genes that were differentially expressed by p > 0.01 (grey dots) or
p < 0.01 (green dots) when comparing (C) TARGET patients by standard versus low risk, and (D) TCGA
patients by (i) intermediate versus good and (ii) poor versus good risk subgroups. Names and black
dots indicate the position of antigens listed as GOI when studying gene expression.
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Table 1. Genes of Interest (GOI) and other notable genes identified as significantly differentially expressed (BH-adjusted p < 0.01) between (A) standard and low
risk subgroups within the TARGET dataset, (B) intermediate and good risk subgroups within the TCGA dataset, and (C) poor and good risk subgroups within the
TCGA dataset.

(A) Gene
Symbol

Log2 Fold
Change

BH-Adjusted
p Value (B) Gene

Symbol
Log2 Fold

Change
BH-Adjusted

p Value (C) Gene
Symbol

Log2 Fold
Change

BH-Adjusted
p Value

G
O

I

BCL2L2 −0.63 2.61 × 10−3

G
O

I

BMX 2.57 5.74 × 10−4

G
O

I

CCDC186 0.51 7.05 × 10−3

BIRC5 1.35 7.48 × 10−6 CALML4 −0.53 1.25 × 10−3 CEACAM1 1.67 3.10 × 10−7

BMX 0.01 6.36 × 10−3 CCDC186 0.46 2.96 × 10−3 CEACAM3 1.59 2.36 × 10−3

BRCA2 1.02 5.12 × 10−2 CEACAM3 1.71 4.33 × 10−3 CEACAM6 1.96 1.57 × 10−3

CASP1 0.84 4.31 × 10−3 DDX43 −0.95 7.69 × 10−3 CEACAM8 2.33 5.66 × 10−5

CEACAM1 1.76 3.89 × 10−3 FOLH1 −1.94 7.52 × 10−3 MAGEE1 1.33 3.34 × 10−3

CEACAM3 1.70 2.57 × 10−3 HHAT 0.87 6.75 × 10−5 MAGEH1 0.62 8.86 × 10−4

CEACAM6 2.91 4.80 × 10−3 MORC4 1.45 4.40 × 10−4 MORC4 1.98 7.20 × 10−6

CEACAM8 1.99 3.13 × 10−3 MYH11 −1.15 1.74 × 10−15 MYH11 −1.05 6.70 × 10−6

DAPK1 −1.45 2.12 × 10−5 SAGE1 0.89 9.64 × 10−9 SAGE1 0.11 2.85 × 10−3

EPCAM −2.00 9.72 × 10−3 SLC34A2 2.12 3.72 × 10−3 SH3RF2 1.42 4.72 × 10−3

FANCC 0.81 7.45 × 10−4 SSX2IP 0.77 1.55 × 10−4 SLC34A2 2.89 4.65 × 10−4

FHIT −0.76 7.58 × 10−3 STEAP1 2.51 1.19 × 10−4 STEAP1 2.38 1.29 × 10−3

FOLH1 −2.95 3.97 × 10−4

O
th

er
N

ot
ab

le
G

en
es

CD52 −1.60 1.31 × 10−4

O
th

er
N

ot
ab

le
G

en
es

CD19 −1.92 2.52 × 10−6

MAGED4 −2.24 2.65 × 10−3 DNMT3B 1.95 2.17 × 10−11 CD276 2.19 1.67 × 10−4

MELTF −0.30 6.72 × 10−4 HMNT 2.99 5.48 × 10−10 CD7 1.97 7.27 × 10−6

MORC4 1.86 1.54 × 10−4 HOXA10 3.55 1.59 × 10−13 CD70 2.32 1.80 × 10−4

RBL1 0.80 3.51 × 10−6 HOXA10-AS 3.54 8.13 × 10−13 CD81 1.33 1.67 × 10−5

RHOB −1.22 9.32 × 10−3 HOXA11 2.70 1.10 × 10−12 CD82 1.82 6.60 × 10−11

SAGE1 4.80 1.78 × 10−5 HOXA11-AS 2.25 1.96 × 10−11 DNMT3B 2.62 3.94 × 10−14

SLC34A2 3.75 2.20 × 10−3 HOXA13 2.70 4.16 × 10−8 HOXA1 1.33 8.85 × 10−4

SSX2IP 1.11 8.69 × 10−4 HOXA2 3.34 6.09 × 10−15 HOXA10 3.42 1.18 × 10−9

STEAP1 4.95 1.37 × 10−6 HOXA3 5.30 6.50 × 10−33 HOXA10-AS 3.58 7.04 × 10−11

SYCP1 4.91 3.92 × 10−7 HOXA4 4.48 1.50 × 10−21 HOXA11 3.09 3.10 × 10−8

TLR4 1.16 3.56 × 10−3 HOXA5 4.58 7.43 × 10−22 HOXA11-AS 2.30 1.52 × 10−5

TPT1 −0.65 6.73 × 10−3 HOXA6 5.83 1.04 × 10−34 HOXA2 2.91 7.86 × 10−11

VGLL4 −0.86 3.43 × 10−6 HOXA7 4.92 1.19 × 10−24 HOXA3 5.08 3.57 × 10−26

XAGE1B 3.37 7.41 × 10−3 HOXA9 4.19 6.04 × 10−18 HOXA4 3.94 3.99 × 10−14

ZNF275 −0.64 9.11 × 10−3 HOXA-AS2 5.39 6.77 × 10−35 HOXA5 4.19 1.69 × 10−14

O
th

er
N

ot
ab

le
G

en
es

CD34 −2.91 1.53 × 10−7 HOXA-AS3 6.25 1.30 × 10−39 HOXA6 6.17 7.87 × 10−32

CD52 −2.68 2.79 × 10−12 HOXB1 1.86 5.60 × 10−3 HOXA7 4.59 5.05 × 10−16

CD99 −1.51 2.48 × 10−8 HOXB3 2.39 1.22 × 10−6 HOXA9 4.21 1.67 × 10−14

DNMT3B 1.13 4.92 × 10−3 HOXB4 1.83 3.63 × 10−4 HOXA-AS2 5.07 9.73 × 10−26

HOXA10 3.29 4.57 × 10−9 HOXB5 4.66 5.13 × 10−22 HOXA-AS3 6.31 3.19 × 10−33

HOXA10-AS 2.69 3.65 × 10−4 HOXB6 4.60 1.48 × 10−21 HOXB5 3.43 3.50 × 10−7

HOXA7 3.90 2.05 × 10−7 HOXB7 3.69 2.53 × 10−13 HOXB6 3.50 6.34 × 10−4

HOXA-AS3 6.41 3.79 × 10−19 HOXB8 4.49 2.09 × 10−12 HOXB-AS3 4.06 1.02 × 10−5

HOXB7 3.35 1.13 × 10−10 HOXB9 4.73 1.48 × 10−13 HOXC4 1.74 2.15 × 10−3

HOXB-AS3 1.22 2.20 × 10−12 HOXB-AS3 5.12 3.85 × 10−27 IL10 1.61 6.55 × 10−7

IL11 −2.55 6.73 × 10−4 IL10 0.41 9.84 × 10−3 IL11 1.40 1.30 × 10−4
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Table 1. Cont.

IL15 1.98 4.86 × 10−4 IL15 2.28 1.15 × 10−7 IL15 1.85 1.21 × 10−5

IL19 3.18 1.45 × 10−4 IL4 −1.24 1.36 × 10−3 IL7 4.23 3.14 × 10−21

IL24 4.56 3.41 × 10−5 IL7 2.93 5.27 × 10−7 PRICKLE1 1.55 3.78 × 10−4

IL3 −2.92 7.12 × 10−3 PRICKLE1 2.16 5.06 × 10−9 PRICKLE4 1.16 3.71 × 10−3

IL7 2.63 3.73 × 10−5 PRICKLE2 2.32 1.56 × 10−5 RUNX1 −0.48 6.12 × 10−3

RUNX1 −0.98 7.78 × 10−4 RUNX1T1 −5.72 2.92 × 10−17 RUNX1T1 −6.70 1.28 × 10−22

RUNX3 1.24 1.21 × 10−3 RUNX3 1.98 6.50 × 10−12 RUNX3 2.50 1.67 × 10−14

SOX11 6.43 2.45 × 10−8 SOX6 1.17 6.86 × 10−4 SOX15 −0.68 7.94 × 10−3

SOX15 −2.65 7.94 × 10−9 TRIM10 2.47 2.77 × 10−7 SOX18 2.17 2.01 × 10−4

SOX18 −2.21 4.93 × 10−4 TRIM15 2.09 2.87 × 10−4 SOX5 2.50 1.65 × 10−3

SOX30 2.56 3.86 × 10−4 TRIM24 −0.54 3.49 × 10−3 SOX6 1.66 1.61 × 10−5

SOX5 2.26 6.16 × 10−5 TRIM29 2.96 1.20 × 10−7 TOX2 2.11 5.61 × 10−6

SOX8 −1.99 3.69 × 10−3 TRIM47 −2.08 7.03 × 10−10 TRIM10 2.91 4.65 × 10−8

TET1 −1.22 1.08 × 10−3 TRIM6 −1.11 5.88 × 10−4 TRIM24 −0.76 1.34 × 10−6

TRIM10 0.67 4.54 × 10−4 TRIM68 0.42 5.52 × 10−3 TRIM29 3.77 6.26 × 10−6

TRIM24 −1.16 2.33 × 10−5 TRIM71 −2.01 3.94 × 10−5 TRIM36 −1.50 4.51 × 10−3

TRIM29 1.68 3.33 × 10−6 TRIM8 0.88 8.27 × 10−5 TRIM40 2.23 4.01 × 10−3

TRIM31 3.20 3.33 × 10−3 TRIM9 2.72 7.94 × 10−13 TRIM72 −1.25 3.32 × 10−3

TRIM35 0.59 4.38 × 10−3 TRIM8 1.06 1.55 × 10−4

TRIM38 0.60 3.51 × 10−3 TRIM9 2.68 2.00 × 10−9

TRIM47 −2.65 3.25 × 10−9 WNT6 3.14 3.99 × 10−10

TRIM59 0.95 1.64 × 10−3

TRIM61 2.30 5.56 × 10−3

TRIM69 0.67 9.44 × 10−3

TRIM7 2.46 3.84 × 10−6

TRIM71 −3.09 4.81 × 10−7

TRIM8 0.75 2.92 × 10−3

TRIM9 2.49 2.82 × 10−6
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Of the other notable genes not present on the original list of 144 GOI, we found significant
differences in the expression of numerous sex-determining region on the Y chromosome (SRY)-related
high mobility group (HMG)-box (SOX) genes between patient subgroups. Most comparisons had to be
excluded due to low patient numbers (<10) in at least one subgroup. However, within the standard
versus low risk subgroup comparison that was not excluded due to insufficient patient numbers, SOX15
(p = 7.94 × 10−9), SOX11 (p = 2.45 × 10−8), SOX5 (p = 6.16 × 10−5), SOX30 (p = 3.86 × 10−4), SOX18
(p = 4.93 × 10−4) and SOX8 (p = 3.69 × 10−3) expression was significantly different. The homeobox
(HOX) genes’ transcription differed significantly between standard and low risk subgroups (HOXA-AS3
p = 3.79 × 10−19; HOXB-AS3 p = 1.01 × 10−10; HOXA10-AS p = 3.65 × 10−4; HOXB7 p = 1.13 × 10−10;
HOXA10 p = 1.15 × 10−7; HOXA7 p = 2.05 × 10−7), as did the cluster of differentiation antigens, CD34,
CD52 and CD99, with adjusted p values of 1.53 × 10−7, 2.79 × 10−12 and 2.48 × 10−8, respectively.

The transcription of fourteen tripartite motif family (TRIM) genes, including TRIM47 (p = 3.25 × 10−9),
TRIM71 (p = 4.81 × 10−7), TRIM9 (p = 2.82 × 10−6), TRIM29 (p = 3.33 × 10−6), TRIM7 (p = 3.84 × 10−6),
and TRIM24 (p = 2.33 × 10−5), was also significantly different between standard and low risk subgroups.

2.1.2. TCGA AML Data

Five prognostic subgroup pairs were compared by DGE analysis from the TCGA adult AML
data (Table S1B); however, three comparisons did not show any GOI to be significantly differentially
expressed and had subgroups with insufficient patient numbers (<10): EFS < 1 year versus EFS > 5
years within the total patient group, OS < 1 year versus OS > 5 years within the total patient group,
and EFS < 6 months versus EFS > 2 years within the patients with normal primary cytogenetics.
The intermediate versus good risk and poor versus good risk comparisons did, however, identify
significantly differentially expressed GOI and consisted of sufficient patient numbers.

The significant DEGs in the remaining two comparisons included GOI such as the coiled coil
domain, containing 186 (CCDC186), CEACAM3, CEACAM6, CEACAM8, MORC4, Myosin heavy chain
11 (MYH11), SAGE1, SLC34A2 and STEAP1 in the poor versus good risk subgroup comparison (n = 32
vs. n = 17) and CCDC186, CEACAM3, FOLH1, MORC4, MYH11, SAGE1, SLC34A2 and STEAP1 in the
intermediate versus good risk subgroup comparison (n = 75 vs. n = 17) (Table 1).

Of the other notable genes not present on the original list of 144 GOI, we found 19 HOX genes
that were significantly differentially expressed between poor and good, and intermediate and good
risk subgroups, including HOXA6 (p = 7.87 × 10−32; p = 1.04 × 10−34), HOXA3 (p = 3.57 × 10−26;
p = 6.50 × 10−33) and HOXA7 (p = 5.05 × 10−16; p = 1.19 × 10−24), respectively. In addition, there were
five HOX antisense (AS) genes whose expression differed significantly between poor and good, and
intermediate and good risk subgroups. These were HOXA-AS3 (p = 3.19 × 10−33; p = 1.30 × 10−39),
HOXA-AS2 (p = 9.73× 10−26; p = 6.77× 10−35), HOXB-AS3 (p = 1.02× 10−5; p = 3.85× 1−27), HOXA10-AS
(p = 7.04 × 10−11; p = 8.13 × 10−13) and HOXA11-AS (p = 1.52 × 10−5; p = 1.96 × 10−11), respectively.

Runt-related transcription factor-1 (RUNX1), Partner Transcriptional Co-Repressor 1 (RUNX1T1)
(p = 2.92 × 10−17), RUNX3 (p = 6.50 × 10−12) and the Histamine N-Methyltransferase (HNMT)
(p = 5.48 × 10−10) genes were each differentially expressed between intermediate and good risk
subgroup patients. The transcription of ten TRIM genes, including TRIM9 (p = 7.94 × 10−13), TRIM47
(p = 7.03 × 10−10), TRIM29 (p = 1.20 × 10−7), TRIM10 (p = 2.77 × 10−7), TRIM71 (p = 3.94 × 10−5),
TRIM8 (p = 8.27 × 10−5), TRIM15 (p = 2.87 × 10−4), TRIM6 (p = 5.88 × 10−4), TRIM24 (p = 3.49 × 10−3),
and TRIM68 (p = 5.52 × 10−3), were significantly different between intermediate and good risk
subgroups, as were the transcription of PRICKLE1 and PRICKLE2 (p = 5.06 × 10−9 and p = 1.56 × 10−5,
respectively), both of which play roles in the WNT signalling pathway. RUNX3 (p = 1.67 × 10−14),
WNT6 (p = 3.99 × 10−10) and eight members of the TRIM family, including TRIM9 (p = 2.00 × 10−9),
TRIM10 (p = 4.65 × 10−8), TRIM24 (p = 1.34 × 10−6) and TRIM29 (p = 6.26 × 10−6), were significantly
differentially expressed between the poor and good risk subgroups.

Members of the SOX family also appeared as significant DEGs with the TCGA data. In the
poor versus good risk comparison, SOX18 (p = 2.01 × 10−4), SOX5 (p = 1.65 × 10−3) and SOX15
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(p = 7.94 × 10−3) were found to be significant DEGs, while SOX6 was found to be a significant DEG
between both intermediate versus good, and poor versus good risk comparisons (p = 6.86 × 10−4 and
p = 1.61 × 10−5, respectively). Of the cluster of differentiation antigens, CD59 and CD82 were found
to be significantly differentially expressed when comparing poor and good risk subgroups in adult
AML (p = 2.09 × 10−12 and p = 6.60 × 10−11, respectively). In addition, CD19 (p = 2.52 × 10−6), CD7
(p = 7.27 × 10−6), CD81 (p = 1.67 × 10−5), CD276 (p = 1.67 × 10−4), and CD70 (p = 1.80 × 10−4), were each
significantly differentially expressed between poor and good risk subgroups in adult AML.

High mobility group (HMG) box family member 2 (TOX2) (p = 5.61 × 10−6), and other members
of the TOX subfamily of transcription factors, are almost identical to HMG-box DNA-binding
domains which function to modify the chromatin structure; interleukin-7 (IL7) (p = 3.14 × 10−21),
a pro-inflammatory cytokine, IL10 (p = 6.55 × 10−7), levels of which have previously been shown to
directly correlate with survival in adult AML [16], and IL15 (p = 1.21 × 10−5), shown to enhance NK
cytotoxicity in patients with AML by upregulating activating NK cell receptors [17], each showed
significantly different transcription when comparing the poor and good risk subgroups.

2.2. Survival Analysis

Where a subgroup comparison identified a significantly differentially expressed GOI, total raw
counts were transformed across all patients in the comparison and quartile thresholds for each GOI
were calculated. This allowed for the transformed expression value of each gene in a patient sample
to be assigned to a quartile (Q1/Q2/Q3/Q4). Log-rank tests were used to assess whether there were
differences in EFS between patients with expression levels in Q1 and patients with expression levels
in Q4 for each significantly differentially expressed GOI. Log-rank tests were also used to assess
differences in EFS between patients with expression levels in Q2 and expression levels in Q3 (Figure 3).

2.2.1. TARGET AML Data

Log-rank test results were significant (p value < 0.05) for five significantly differentially expressed
GOI (Table 2). Significant differences in the EFS of patients were found when comparing standard and
low risk subgroups, and Q1 and Q4 expression levels of the protein coding gene Baculoviral Inhibitor
Apoptosis Proteins (IAP) Repeat Containing 5 (BIRC5) (p = 0.03; Figure 3A(i)), melanoma antigen
family F1 (MAGEF1) (p = 0.04; Figure 3A(ii)), Melanotransferrin (MELTF) (p = 0.01; Figure 3A(iii)) and
STEAP1 (p = 0.03; Figure 3A(iv)) and when comparing Q2 and Q3 expression levels of Vestigial-like 4
(VGLL4) across standard and low risk subgroups (p = 0.04; Figure 3A(v)). Higher EFS probabilities
were observed over time in patients who had Q1 expression levels of BIRC5, MAGEF1, and STEAP1
than with patients who had Q4 expression levels, whereas, with MELTF, higher EFS probabilities
were observed over time with patients who had Q4 expression levels than with patients who had Q1
expression levels. With VGLL4, higher EFS probabilities were observed over time with patients who
had Q2 expression levels than with patients who had Q3 expression levels.

2.2.2. TCGA AML Data

Significant differences in the EFS of patients were found with two significantly differentially
expressed GOI: MORC4 across patients in intermediate and good risk subgroups (p = 0.02; Figure 3B(i))
and SAGE1 across patients in poor and good subgroups (p = 0.04; Figure 3B(ii)), when comparing
Q1 and Q4 expression levels (log-rank test; p value < 0.05) (Table 2). Higher EFS probabilities were
observed over time with patients across the intermediate and good risk subgroups who had Q4
expression levels of MORC4 than with patients who had Q1 expression levels. Higher EFS probabilities
were observed over time with patients across the poor and good risk subgroups who had Q1 expression
levels of SAGE1 than with patients who had Q4 expression levels.
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Figure 3. Significant impacts of gene expression levels (divided into quartiles) on patient EFS.
(A) TARGET study patients across the standard and low risk subgroups were found to have significant
differences in EFS when comparing quartile expression levels of (i) BIRC5; (ii) MAGEF1; (iii) MELTF;
(iv) STEAP1 and (v) VGLL4; (B) TCGA study patients across the intermediate and good risk subgroups
showed significant differences in EFS when comparing quartile expression levels of (i) MORC4,
and patients across poor and good risk subgroups showed significant differences in EFS when
comparing quartile expression levels of (ii) SAGE1.

2.3. Pathway Analysis

The most common KEGG (2016) terms overall in both the TARGET and TCGA data, using the
total (Table 3A), downregulated only (log2 FC < 0) (Table 3B), and upregulated only (log2 FC > 0),
significantly differentially expressed GOI (Table 3C) were identified. Table S2 shows all overlapping
genes for each term along with the number of prognostic subgroup comparisons where the term
appeared within the top ten. The results were ordered by Enrichr’s combined score and the top ten
KEGG terms were noted (where there were more than ten). In the TARGET comparison (standard
versus low risk) for all significantly differentially expressed GOI, Fanconi’s anaemia pathway (FANCC,
BRCA2) and pathways in cancer (DAPK1, BIRC5 and BRCA2) highlighted genes already known to play
key roles in cancer. In the TCGA subgroup comparisons for all significantly differentially expressed
GOI, the vascular smooth muscle contraction and tight junction pathways highlighted MYH11 for
poor versus good risk, and intermediate versus good risk comparisons. The mineral absorption
pathway highlighted SLC34A2 and STEAP1 for all three subgroup comparisons while examining
all significantly differentially expressed GOI, while the vitamin digestion and absorption pathway
highlighted FOLH1 for the TARGET standard versus low risk and TCGA intermediate versus good
risk subgroup comparisons.
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Table 2. Significant log-rank test results for significantly differentially expressed GOI.

Patient Subgroup Comparison
Significant

DEGs of
Interest

n of Q1, Q4
Q1–Q4

Log-Rank
p Value

Q1 Median EFS
Survival in

Days (95% CL)

Q4 Median EFS
Survival in

Days (95% CL)
n of Q2, Q3

Q2-Q3
Log-Rank

p Value

Q2 Median EFS
Survival in

Days (95% CL)

Q3 Median EFS
Survival in

Days (95% CL)

TARGET
Standard Risk vs. Low Risk

(n = 31 vs. n = 31)

BIRC5 16, 16 0.0293 NR (637–NA) 362 (237–NA) 15, 15 0.2169 419 (291–NA) 321 (269–655)
MAGEF1 16, 16 0.0376 1093 (404–NA) 292 (102–NA) 15, 15 0.2338 488 (294–NA) 419 (269–NA)
MELTF 16, 16 0.0127 225 (71–NA) 646 (488 – NA) 15, 15 0.0849 419 (321–1093) 809 (366–NA)
STEAP1 16, 16 0.0305 1093 (497–NA) 344 (77–NA) 15, 15 0.5139 383 (321–NA) 299 (269–NA)
VGLL4 16, 16 0.2087 497 (395–NA) 296 (109–NA) 15, 15 0.0368 496 (383–NA) 461 (269–NA)

TCGA
Intermediate Risk vs. Good Risk

(n = 75 vs. n = 17) MORC4 23, 23 0.0235 253 (219–517) 554 (362–NA) 23, 23 0.8741 310 (259–834) 298 (234–2121)

Poor Risk vs. Good Risk
(n = 32 vs. n = 17) SAGE1 13, 12 0.0394 2910 (158–NA) 216 (113–NA) 12, 12 0.2502 314 (119–NA) 438 (128–NA)

NR = not reached; NA = not available.

Table 3. Pathway analysis using the most common KEGG terms overall between both TARGET and TCGA data when examining the (A) total, (B) downregulated
(log2 FC < 0), and (C) upregulated (log2 FC > 0) significantly differentially expressed GOI identified from subgroup comparisons (with > 10 patients per subgroup)
during DGE analysis.

KEGG (2016) Term Overlapping KEGG (2016) Genes No. of Subgroup Comparisons

(A) Mineral absorption Homo sapiens_hsa04978 SLC34A2, STEAP1 3
Vitamin digestion and absorption_Homo sapiens_hsa04977 FOLH1 2

(B) Alanine, aspartate and glutamate metabolism_Homo
sapiens_hsa00250 FOLH1 2

Vitamin digestion and absorption_Homo sapiences_hsa04977 FOLH1 2

(C) Mineral absorption_Homo sapiens_hsa04978 SLC34A2, STEAP1 3
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3. Discussion

We identified 144 GOI as the focus for mRNA-sequence analysis based on literature searches and
our own experience of antigen identification. We wanted to examine the expression of these antigens
in adult AML in comparison to paediatric patients, an area of research that has had few studies to date.
Five tumour associated antigens were found to be differentially expressed between the two subgroups
from the TARGET database (standard versus low risk subgroup comparison) and between the three
subgroups from the TCGA database (poor versus good, and intermediate versus good risk subgroup
comparisons): SAGE1, MORC4, CEACAM3, SLC34A2 and STEAP1. This suggested an overlap in key
processes that lead to AML and an impact on the clinical features that lead to the classification of
patients into high/poor, standard/intermediate, or low/good risk subgroups. We also examined the
survival of patients based on their quartile expression of significantly differentially expressed GOI and
determined the pathways involved in each. There were some key differences in the number and type
of antigens (between individuals, subgroups and pathways) between the TARGET and TCGA datasets,
suggesting that different routes of leukaemia development also exist within these groups.

In adult AML patients, we found significant differences in EFS when comparing intermediate
and good (p = 0.01), and poor and good risk adult AML patient subgroups (p = 0.007). In contrast to
paediatric AML patients, differences in EFS were observed when comparing patients with Q1 and
Q4 expression levels of MORC4 (p = 0.02) across patients in intermediate and good risk subgroups,
and SAGE1 across patients in poor and good risk subgroups. MORC4 has been previously identified
through the immunoscreening of a testes cDNA library with diffuse large B-cell lymphoma (DLBCL)
sera [18]. MORC4 was subsequently shown to have low level expression in healthy tissues but was
shown to be highly expressed in 66% of DLBCL patients [19]. High levels of MORC4 were demonstrated
in healthy placenta and lymph nodes but with little or no expression in myeloid leukaemia cell lines
such as K562, HL60 and MOLT-4. The only evidence of a role of MORC4 in AML to date has been
the association between single nucleotide polymorphisms in regions of MORC4 and the outcomes of
patients undergoing autologous stem cell transplantation [20]. SAGE1 has previously been found to be
expressed in 35% of prostate cancers, 33% of oesophageal cancers and 26% of ovarian cancers by qPCR
analysis [21], with some limited expression in head and neck cancers. To date, no-one has found an
association between MORC4 and SAGE1 expression and survival, with this being the first report of
this nature.

It was unexpected to find significant differences in VGLL4 when comparing Q2 and Q3 expression
levels across standard and low risk subgroups in the paediatric AML patients, especially because
significant differences in VGLL4 transcription were not found between Q1 and Q4 levels. We had
previously described a ‘Goldilocks’ effect of Q1 and Q4 levels of Preferentially Expressed Antigen in
Melanoma (PRAME) being associated with poor survival in myelodysplastic syndrome patients [22] that
we had suggested was caused by high levels of PRAME being associated with more aggressive/difficult
to treat blast cells and, conversely, low levels of PRAME providing insufficient antigen to ignite an
immune response, thus both Q1 and Q4 levels of PRAME expression were associated with poor survival.
However, the reason why Q2 and Q3 levels of VGLL4 expression is significantly associated with
survival in paediatric AML patients may lie in the biological function of VGLL4. VGLL4 was found to be
a novel regulator of survival in human embryonic stem cells [23] and acts as a tumour suppressor gene
through its interaction with transcriptional enhanced associated domains (TEAD) (reviewed in [24]).
It interacts with members of the IAP family, inhibiting their activation and preventing apoptosis,
and negatively regulates the Wnt/β-catenin signalling pathway. Lower expression of VGLL4 is usually
associated with poor survival in several cancers, including those affecting the lung, breast, colon,
bladder, pancreas and oesophagus; however, none of these findings provide an obvious reason why
there was not a significant prognostic difference between patients with Q1 and Q4 levels of VGLL4,
while there was when levels of VGLL4 were in the middle quartiles.

One member of the IAP family, BIRC5 (often called survivin), was repeatedly identified throughout
this study. As a member of the IAP family of proteins, BIRC5 plays a key role in cellular proliferation
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and survival. BIRC5 has been shown to be an important antigen in a number of haematological
malignancies including adult AML [25], and other investigators have also shown that in adults with
AML, BIRC5 levels are higher in bone marrow than paired peripheral blood samples and higher in
CD34+CD38− AML blasts than in bulk blasts or total CD34+ cells. Higher levels of BIRC5 are also
predictive of a shorter OS and EFS. In this study, we show, for the first time, that there were significant
differences in EFS when comparing standard and low risk subgroups of paediatric AML patients
(p = 0.02) and when comparing patients across both subgroups with the lowest and highest quartile
expression levels of BIRC5 (p = 0.03).

We have previously found the dead box polypeptide 43 (DDX43; helicase antigen (HAGE)) to
be one of the most frequently expressed cancer-testis antigens in adult AML [26] and in this study
we found significant differences in HAGE expression between intermediate and good risk subgroups
of adults with AML (p = 7.69 × 10−3). This complements previous findings that HAGE promoter
hypomethylation may be associated with improved OS in AML patients [27] and the finding of an
association between high levels of HAGE protein expression and aggressive clinical–pathological
features, poor prognosis and worse progression-free survival in breast cancer [28].

The cytoplasmic tyrosine kinase BMX was significantly different in its expression in paediatric
AML between standard and low risk subgroups (p = 6.36 × 10−3), and in adults when comparing
intermediate and good risk subgroups (p = 5.74 × 10−4). BMX has previously been found to be antigenic
through sero-profiling of adult B-ALL [29] and is already used as a target for the small molecule therapy
of mature B-cell malignancies [30–32] by virtue of its role in the B-cell receptor pathway. The current
study suggests that the expression of BMX acts as a prognostic indicator in its own right, in adult AML
patients (the perceived target of ibrutinib, for whom more than 80% express elevated levels of Bruton’s
tyrosinase kinase (BTK) [33]), as well as in paediatric AML patients.

MYH11 was one of the most significant differentially expressed GOI, differing significantly
when comparing intermediate and good risk (p = 1.74 × 10−15) and poor and good risk adults with
AML (p = 6.70 × 10−6). Indeed, vascular smooth muscle and tight junction pathways were terms that
identified MYH11 as an overlapping KEGG gene in the comparison of these subgroups. MYH11 is
involved in the translocation with core binding factor β (CBFβ) that is typical of 10% of adults with
AML [34] and has been shown to target RUNX/ETS-factor binding sites and drive leukaemogenesis
through the modulation of H3ac levels [35]. MYH11 (GKT-ATA18) was also identified as one of the
most abundant LAAs when we immunoscreened a testis cDNA library with sera from five adult AML
patients with M5 disease [36], but was not preferentially recognised by AML versus healthy donor sera.

Perhaps most notable were not the antigens we had identified prior to this study for further
analysis as GOI, but the genes that were significantly differentially expressed and reflected previous
findings of the molecular mechanisms underlying AML by other researchers. Significant differences in
the expression between risk subgroups of the genes regulated by RUNX3 (formerly known as AML2)
were observed through multiple pathways. RUNX3 was a significant DEG in standard versus low
(p = 1.21 × 10−3), poor versus good (p = 1.67 × 10−14) and intermediate versus good (p = 6.50 × 10−12)
risk subgroup comparisons, and regulates RUNX1 (formerly known as AML1), a transcription factor
that is stabilised through complexing with CBFβ. A loss of function of RUNX1 has been shown to
impair the differentiation of both lymphoid and myeloid lineages, often resulting in the development
of leukaemia. RUNX1 is one of the most frequently mutated genes in a variety of haematological
malignancies (reviewed most recently by [37]). We found that RUNX1 was also a significant DEG in
standard versus low risk (p = 7.78 × 10−4) and poor versus good (p = 6.12 × 10−3) comparisons, as was
RUNX1T1 (standard versus low, p = 8.71 × 10−3; poor versus good, p = 1.28 × 10−22; and intermediate
versus good risk comparisons, p = 2.92 × 10−17). RUNX1:RUNX1T1 chimeric protein is a product
of the t(8;21) translocation, more commonly known as AML-eight twenty-one (ETO) [38], found in
10% of all de novo AMLs. The translocation has been shown to arrest cell maturation and enable
the expansion of stem cells with increased genomic instability [39]. The AML-ETO translocation is a
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favourable prognostic marker associated with higher complete remission rates, OS and progression-free
survival [40].

Majeti et al. [41] have previously shown that genes implicated in several pathways, including
Wnt signalling, MAP Kinase signalling and adherens junction, were differentially expressed when
comparing AML and highly enriched normal stem cells. Our study identified SSX2IP in the adherens
pathway, with its expression significantly differentiating between intermediate and good risk subgroups
of adult AML patients. We had previously identified SSX2IP through the immunoscreening of a testis
cDNA library with sera from adult AML patients [36] and it was one of the first tumour antigens
shown to act as a biomarker for improved OS when its levels were above median at disease diagnosis
in adults with AML who lacked detectable cytogenetic rearrangements [42]. HOX and MLL-driven
transformation of haematopoietic stem cells requires Wnt signalling, as AML was shown not to form in
the absence of β-catenin otherwise [43] and, in addition to Wnt, a number of HOX and HOX antisense
genes were significantly altered in their expression between patient subgroups, including adult poor
and good, adult intermediate and good, and paediatric standard and low risk. Caudal-type homeobox
transcription factor 2 (CDX2) is capable of upregulating HOX gene expression during embryogenesis
and has been found to be upregulated in 90% of AMLs [44]. In addition, SOX genes were found to have
significantly different gene expression between risk subgroups. SOX genes share a common HMG
domain and all 20 family members are transcription factors that show greater than 60% similarity to
the sex-determining region on the Y chromosome (SRY) gene. SOX genes have been shown to be able
to act as both oncogenes and tumour suppressor genes in solid tumours (reviewed recently in [45]) and
may also be involved in key pathogenetic pathways in AML involving CEBPA mutations, activation of
β-catenin/Wnt and Hedgehog pathways and aberrant TP53 signals. We found SOX6 in both TCGA
poor versus good and intermediate versus good risk subgroup comparisons and SOX5, SOX15 and
SOX18 in both the TARGET standard versus low risk and TCGA poor versus good risk subgroup
comparisons; however, only SOX18 has previously been implicated in reduced disease-free and OS in
AML patients [46].

DNA methyltransferase 3B (DNMT3B) has been shown to play an essential role in the
demethylation of transcription factor targets necessary to enable cell differentiation. Lamba et al. [47]
recently described the association between increased DNMT3B expression and poor clinical outcomes
including increased rate of relapse and/or disease resistance in paediatric AML patients. Tumour
suppressor genes regulated by DNMT3B have been shown to influence the progression and severity of
AML (except MML-AF9 and inversion of chromosome 16 (inv(16)(p13;q22)). We also found DNMT3B
to be significantly different in its expression between intermediate and good (p = 2.17 × 10−11) and
poor and good risk (p = 2.17 × 10−11) subgroups in the TCGA analysis, and standard and low risk
(p = 4.92 × 10−3) subgroups in the TARGET analysis.

Finally, in terms of the pathways underlying AML, we found both SLC34A2 and STEAP1 to be
identified within significant KEGG (2016) terms in the standard versus low risk subgroup comparison in
the TARGET database, as well as poor versus good risk and intermediate versus good risk comparisons
in the TCGA database. In each risk subgroup comparison within both databases, SLC34A2 and STEAP1
played a role in mineral absorption. SLC34A2 was recently identified by sera-screening as being an
antigen recognised by sera from patients with immunologically ‘hot’ colorectal cancer [48] and has
been shown to play a role in the chemoresistance observed in breast cancer patients [49]. STEAP1 has
been shown to be overexpressed in a number of tumour types, while elevated levels of STEAP1 were
associated with poor survival in colorectal cancer, DLBCL, multiple myeloma and AML [50]. We had
also identified STEAP1 as an LAA through gene expression analysis of presentation AML patients [51].
Overall, and most significantly, we found that genes altered in AML were involved in key processes
such as the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP, AML1-ETO),
which adds credence to our findings and those of other investigators.
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4. Materials and Methods

4.1. Identification of Antigens and Databases for Investigation

We identified a short-list of 144 tumour antigens based on a comprehensive literature search of
currently known tumour antigens in haematological and solid tumours (recently reviewed in [10]).
For this study, we obtained paediatric AML data from the TARGET initiative and adult AML data
from TCGA. In the TARGET database, EFS was defined as the time from diagnosis until the patient
experienced induction failure, relapse or death. In the TCGA database, EFS was defined as the time
from diagnosis until relapse or death. OS was defined in both databases as the time from diagnosis
until death, or the last date of contact if the patient was still alive. In both databases, a censored status
was allocated to patients who did not experience a defined event or were lost to follow-up [52,53].

4.1.1. TARGET Dataset

The results published here are in part based upon data generated by the TARGET initiative (https:
//ocg.cancer.gov/programs/target) and the AML mRNA-sequencing data we used were specifically
derived from phs000465. The full experimental methods used to obtain paired-end mRNA-sequencing
data are detailed in [53]. Raw mRNA-sequencing count data and matching clinical data were obtained
from the open-access section of the online TARGET Data Matrix for 92 patients from the original
TARGET AML cohort. As the majority of the patient samples were sequenced on the HiSeq 2000
(Illumina) with the remaining sequenced on a different model (HiSeq 2500), the decision was made
to only include the 65 patients whose samples had been run on the HiSeq 2000 to avoid possible
instrument bias. For the purposes of this study, patients were classified as ‘paediatric’ where their age
at diagnosis was < 10 years. The age at diagnosis within the TARGET dataset ranged from 137 days
(0.4 years) to 3543 days (9.7 years). The highest age reached at final date of patient follow-up was 6357
(17.4 years). Defined by TARGET, patients were assigned a risk group (‘low’, ‘standard’, or ‘high’)
based on their level of potential clinical risk arising from cytogenetic or molecular characteristics
in relation to AML. Low-risk cytogenetic indicators were the translocation t(8;21)(q22;q22) or the
presence of inv(16)(p13q22). Standard risk cytogenetic indicators were MLL rearrangements, such as the
translocations t(9;11)(q23;p13), t(6;11)(q27;q23), t(11;19)(q23;p13), or t(10;11)(p12;q23), or the presence of
a normal karyotype. A molecular characteristic which conferred high clinical risk in normal karyotype
patients was the presence of a FLT3 Internal Tandem Duplication (ITD) [53]. TARGET patient clinical
characteristics for standard and low risk subgroups, which were the focus of our analysis, can be
viewed in Table S3.

4.1.2. TCGA Dataset

mRNA-sequencing data from the TCGA-LAML project was used in this analysis. The full
experimental methods used to obtain paired-end mRNA-sequencing data on the HiSeq 2000 (Illumina)
are detailed in the paper by TCGA Research Network [52]. Raw mRNA-sequencing count data and
matching clinical data were available from the Genomic Data Commons (GDC) Data Portal [54] for 151
patients. Patients of FAB classification M3 (APL) and patients possessing the BCR-ABL1 gene fusion
were, however, removed due to their absence in the TARGET AML dataset, thus bringing the total
number of patients to 133. For the purposes of this study, patients were classified as ‘adult’ where
their age at diagnosis was > 18 years and, within the TCGA dataset, the age at diagnosis ranged from
21 to 88 years. The highest age reached at final date of patient follow-up was 88 years. Defined by
TCGA, patients were assigned a risk group (‘good’, ‘intermediate’, or ‘poor’) based on their level of
potential clinical risk arising from cytogenetic characteristics and a risk group based on their clinical
risk arising from molecular characteristics in relation to AML. Good risk cytogenetic indicators were
the translocation t(8;21)(q22;q22) or inv(16)(p13q22); intermediate indicators were the presence of a
normal karyotype, the MLL translocation t(9;11)(q23;p13), or an intermediate cytogenetic abnormality;
poor risk indicators were the presence of complex cytogenetics, a poor risk MLL translocation such as

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
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t(6;11)(q27;q23) or t(11;19)(q23;p13), or a poor risk cytogenetic abnormality [52]. For the purposes of
this study, patients were included in the good, intermediate, or poor risk subgroups only when both
cytogenetic and molecular risk classifications matched. TCGA patient clinical characteristics for poor,
intermediate and good risk subgroups, which were the focus of our analysis, can be viewed in Table S3.

4.2. DGE Analysis

4.2.1. Prognostic Subgroup Formation

Subgroups were formed on the basis of the genetic risk groups provided within clinical data, and
also formed arbitrarily on the basis of the differences in EFS and OS probabilities displayed within
Kaplan–Meier curves (where patient numbers allowed). DGE analysis and subsequent survival and
pathway analysis were completed using prognostic subgroup pairs, as detailed in Table S1A,B.

Kaplan–Meier curves of EFS and OS probabilities over time from diagnosis were plotted using
the ‘survival’ package [55] within R (version 3.5.2, ‘Eggshell Igloo’) [56]. The same package was
used to carry out a log-rank test and assess differences in genetic risk group curves, with a p value
below 0.05 considered significant. Kaplan–Meier curves also allowed for the selection of arbitrary
thresholds which could separate patients within each dataset or cytogenetic group into poor and good
prognosis using either EFS or OS. Due to the known risk associated with different primary cytogenetic
aberrations, patients with EFS less than 1 year (365 days) and patients with EFS greater than 5 years
(1825 days) were selected for those within the inv(16) and t(8;21) cytogenetic groups. Patients with EFS
less than 6 months (183 days) and patients with EFS greater than 2 years (730 days) were selected for
those possessing MLL rearrangements and normal cytogenetics. Patients who were censored within
the poor EFS subgroups and patients who were recorded as alive within the poor OS subgroups
were removed as they were lost to follow-up within this time period and, therefore, provided no true
prognostic information.

4.2.2. DGE Analysis with DESeq2

Various tools, offering different statistical approaches, exist for DGE analysis and it has previously
been demonstrated that no single tool outperforms others in all experimental conditions [57,58].
DESeq2, however, has remained popular due to its stringency and its good balance between specificity
and sensitivity. ‘DESeq2’ [59] is a Bioconductor package for R that tests for DGE while considering
issues such as large dynamic ranges, discreteness, low numbers of replicates, and the presence of
outliers. During DGE analysis with DESeq2, size factors and gene-wise dispersions are estimated
automatically, a curve is fitted to the dispersion estimates for each gene, estimates are shrunken towards
the expected dispersion values generated by the curve, and the negative binomial model is fitted for
each gene.

4.2.3. DESeq2 Workflow

By default, DESeq2 filtered genes with zero counts across all samples, genes with low mean
normalised counts (via its independent filtering function), and genes with extreme count outliers (assessed
using Cook’s distance) when more than three replicates were present [59]. Although unnecessary for
analysis, genes with less than a total of ten counts across all samples were pre-filtered to reduce run time.

DESeq2’s default settings were used while performing DGE analysis with the ‘DESeq’ function,
which involves the estimation of size factors and dispersions, the fitting of the negative binomial model,
and the calculation of Wald statistics. While generating results using DESeq2’s ‘results’ function,
the contrast argument was used to specify the comparison and reference factors, the alpha argument
was specified as the intended adjusted p value threshold (0.01), the BH adjustment method was
specified, and independent filtering was implemented to optimise the number of significant genes by
using the mean of normalised counts as a filter statistic. The DESeq2 function ‘lfcshrink’ was used to
shrink log2 fold change estimates toward zero for genes with low counts or high dispersion values
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following the generation of results [59]. Gene annotation was carried out using the ‘AnnotationDbi’ [60]
and ‘org.Hs.eg.db’ [61] Bioconductor R packages. The results of this analysis for significant genes
(adjusted p value < 0.01) were ordered by increasing adjusted p value before being combined with
normalised (by size factor) counts.

Significantly DEGs discovered by DGE analysis were compared to the list of GOI provided and
the results for any overlapping genes were selected and exported. Volcano plots were generated (using
R’s generic ‘plot’ function along with the aid of the ‘calibrate’ package [62]) to illustrate all significantly
DEGs (adjusted p value < 0.01) along with their log2 fold changes, and to highlight any significantly
differentially expressed GOI. No further downstream analysis was undertaken where no significantly
differentially expressed GOI were discovered.

4.3. Survival Analysis

A regularised log transformation (using DESeq2’s ‘rlogTransformation’ function, not blind to
the specified DESeqDataSet object design formula) was implemented on the raw count data for
significantly differentially expressed GOI [59]. These transformed expression counts were assigned to
a quartile (Q1/Q2/Q3/Q4) depending on the thresholds for each gene. Both the transformed values
and quartile values were exported. The ‘survdiff’ function within the ‘survival’ package was used
to perform log-rank tests for each gene to compare EFS of patients with expression levels in Q1 to
those with expression in Q4. Further log-rank tests were performed to compare EFS of patients with
expression levels within Q2 to Q3. The results with a p value less than 0.05 were deemed significant.
The ‘survutils’ R package [63] was used to isolate the p values from these tests. If either log-rank test
result (Q1–Q4 or Q2–Q3) was significant, a Kaplan–Meier plot was generated for that gene to illustrate
the EFS probability of patients with expression levels in each quartile over time.

4.4. Pathway Analysis

Pathway analysis was performed on total, downregulated (log2 fold change < 0), and upregulated
(log2 fold change > 0) significantly differentially expressed GOI. The ‘enrichR’ package [64] was used
to provide an interface to the Enrichr KEGG (2016) database within R [65,66]. The results were ordered
according to Enrichr’s combined score (log of the p value outcome of Fisher’s exact test multiplied by
the Z-score of the deviation from the expected rank [65]).

5. Conclusions

Our study shows that paediatric and adult AML patients express, perhaps not surprisingly,
some similar and some very different antigens with regards to gene expression and biomarkers for
EFS. AML blasts from paediatric patients appear to have a larger range of dysregulated antigens
suggesting a mechanism by which their hosts may achieve improved outcome following chemotherapy.
We propose that the aberrant expression of a wider range of antigens by AML blasts in paediatric
patients may facilitate an effective immune response that more easily recognises these blasts as different
from healthy haematopoietic stem cells. For the first time, we have provided unique insights into the
differences and similarities in the gene expression that underlies AML, providing new insights into the
significantly different gene expression between risk subgroups and the molecular pathways involved
in each.
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from paediatric and adult acute myeloid leukaemia patient risk subgroups using (A) TARGET and (B) TCGA
databases (DOI:10.5281/zenodo.3857773), Table S2: Pathway analysis of all significantly differentially expressed
genes identified on the genes of interest list (DOI:10.5281/zenodo.3856686), Table S3: Clinical data for patients
from the TARGET standard and low risk subgroups, and TCGA poor, intermediate and low risk subgroups
(DOI:10.5281/zenodo.4050189).
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BH Benjamini–Hochberg KEGG
Kyoto Encyclopaedia of Genes and
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Baculoviral Inhibitor Apoptosis Proteins
(IAP) Repeat Containing 5

MAGEF1 Melanoma antigen family F1

CAR Chimeric antigen receptor MELTF Melanotransferrin
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CCDC186 Coiled coil domain containing 186 MORC4 MORC Family CW-Type Zinc Finger 4
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adhesion molecule

MYH11 Myosin heavy chain 11

DEG Differentially expressed gene NK Natural killer
DGE Differential gene expression OS Overall survival

DMNT3B DNA methyltransferase 3B PRAME
Preferentially Expressed Antigen in
Melanoma

EFS Event-free survival RUNX1T1
Runt-related transcription factor-1
Partner Transcriptional Co-Repressor
1

ETO Eight twenty-one SAGE1 Sarcoma antigen 1
FOLH-1 Folate Hydrolase 1 SLC34A2 Solute Carrier Family 34 Member 2
GOI Genes of interest SOX SRY-related HMG-box

HAGE Helicase antigen STEAP1
Six-transmembrane epithelial antigen
of prostate member 1

HMG High mobility group TARGET
Therapeutically Applicable Research
to Generate Effective Treatments

HNMT Histamine N-Methyltransferase TCGA The Cancer Genome Atlas
HOX Homeobox TET Ten-eleven translocation
IAP Inhibitors of apoptosis TRIM Tripartite motif family
IL Interleukin VGLL4 Vestigial-like 4
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