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ABSTRACT Recently, many Deep Learning models have been employed to classify different kinds of plant
diseases, but very little work has been done for disease severity detection. However, it is more important to
master the severities of plant diseases accurately and timely, as it helps to make effective decisions to protect
the plants from being further infected and reduce financial loss. In this paper, based on the Huanglongbing
(HLB)-infected leaf images obtained from PlantVillage and crowdAl, we created a dataset with 5,406 citrus
leaf images infected by HLB. Then six different kinds of popular models were trained to perform the severity
detection of citrus HLB with the goal to find which types of models are more suitable to detect HL.B
severity with the same training circumstance. The experimental results show that the Inception_v3 model
with epochs=60 can achieve higher accuracy than that of other models for severity detection with an
accuracy of 74.38% due to its highly computational efficiency and small number of parameters. Additionally,
aiming for evaluating whether GANs-based data augmentation can contribute to improve the model learning
performance, we adopted DCGANSs (Deep Convolutional Generative Adversarial Networks) to augment
the original training dataset up to two times itself. Finally, a new training dataset with 14,056 leaf images
composed by the original training images and the augmented ones were used to train the Inception_v3 model.
As aresult, we achieved an accuracy of 92.60%, about 20% higher than that of the Inception_v3 model trained
by the original training dataset, which suggested that the GANs-based data augmentation is very useful to
improve the model learning performance.

INDEX TERMS Citrus Huanglongbing, data augmentation, deep learning, generative adversarial networks,

plant disease severity.

I. INTRODUCTION
In recent years, Deep Learning models are widely employed
in plant disease classification and identification prob-
lems [1]-[7]. However, very little work has been done for
disease severity detection.

From the practical point of view, reliable, accurate and
timely detection of plant disease severity is more impor-
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tant for farmers comparing to disease classification, as dis-
ease severity detection is helpful to assist them to make
effective decisions to protect the plants from being further
infected, reduce financial loss [8], and it is beneficial to
predict yield loss, monitor and forecast epidemics, assess
crop germplasm for disease resistance, and better understand
basic biological processes such as coevolution [9]. On the
contrary, inaccurate and/or imprecise disease assessments
might lead to faulty decisions or probably result in severer
problems.
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Fortunately, some researchers have noticed the related
work on the detection of plant disease severity [8]-[11], but
most of them encountered the problem of time consuming
hand-crafted feature extraction, which heavily depends on
a series of image-processing technologies. Although some
efforts have been made to address the above-mentioned
problem [11], there are still many research gaps that need
to be filled. For example, the types of Deep Learning mod-
els used to assess the performance are very limited without
considering some new kinds of models presented in recent
years. In addition, in order to train a Deep Learning model,
the variability and scale of the datasets should be considered
in advance.

Citrus Huanglongbing (HLB) is also known as Citrus
Greening disease because the infected fruits tend to turn
green after ripening [12]. HLB is one of the most destructive
diseases of citrus worldwide, which is called citrus “cancer”
by some people due to its incurability. The most characteristic
symptom of HLB-infected citruses is that their leaves have a
blotchy mottled appearance [13] as shown in Fig. 1.

FIGURE 1. Blotchy mottle, the HLB early symptoms [14].

In practical conditions, in order to avoid or decrease the
losses caused by HLB, different levels of HLB severities
have their corresponding measures. Generally speaking, if the
citruses are lightly infected, namely infected in the early
stage, the orchard should be conducted molecular detection
at regular intervals to find and control the disease as early as
possible. Moreover, in the case of being infected by the exter-
nal bacteria, we should take care of the prevention and control
of a psyllid vector known as Diaphorina citri, which will
transmits a phloem-limited bacterium Candidatus Liberibac-
ter asiaticus (Las), the causal agent for HLB. When the cit-
ruses are in the moderately infected stages, we should enforce
the cultivating management to slow down the process of citrus
recession and keep yield from decreasing too fast. At the
same time, it is also necessary to be careful of preventing and
controlling the citrus psyllid to avoid the HLB-infected citrus
further infecting other citruses. If we find that the citruses lie
in severely infected stages, we have no choice but to remove
the trees. In a word, it is very important for the citrus farmers
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and growers to learn the severity level of citrus HLB at their
early convenience to make timely decisions.

Sweet oranges are one type of citruses and very popular all
over the world. In this work, we create a dataset including the
HLB-infected leaves of sweet oranges in three different sever-
ity stages, namely Early Stage, Moderate Stage, and Severely
Infected Stage. One of our goals is to assess the performance
of six different kinds of popular Deep Leaning models to find
which one is the most suitable to detect the HLB severity
level, hoping to provide a constructive advice for agricultural
growers or producers. In addition, in order to increase the size
of the training dataset, we employ Deep Convolutional Gen-
erative Adversarial Networks (DCGANSs) [15] to augment
the original training dataset. It was prepared for another goal
of our work, namely to investigate whether the augmented
data are helpful to improve the learning performance of the
selected suitable model.

The rest of the paper is arranged as follows: Section II
mainly describes how to create our datasets for training and
testing as well as how to label the citrus leaf images. Then
some training techniques, the main methods and steps on
how to train and test Deep Learning models are presented in
Section III. Section IV presents our experimental results and
further discussions. Finally, Section V concludes our paper
with conclusions and future work. Fig. 2 gives an outline of
our research work.

[ Download the original HLB images from PlantVillage and crowdAl |

|

‘ Re-label all of the original HLB images according their severities ‘

| l

Use the labelled original HLB Use the labelled original HLB images to
images to train six popular deep augment the original dataset

learning models and find the best ‘l(

one that is suitable for severity
detection of citrus diseases

Combined the original dataset with the
augmented images to create a bigger dataset

| |

Employ the bigger dataset to train the best deep learning model selected above to
check whether it is helpful for the augmented data to improve the performance of
deep learning model in citrus disease severity detection

|

Use the metrics of performance evaluation such as accuracy and confusion matrix to
discuss the results

FIGURE 2. The outline of our research work.

Il. MATERIALS

A. DATASET FOR TRAINING AND TESTING

For training a Deep Learning model to be an accurate clas-
sifier, an image dataset with proper and balancing sizes of
variable types of samples is always needed [16]. Generally
speaking, when we have relatively balancing sizes of different
classes, the larger the dataset size is the more accurate deep
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learning model we can obtain. Hence, at least a few hundreds
of images for each class are required for training a Deep
Learning model [3].

Fortunately, there are more and more image resources
publicly available on the internet, which makes it conve-
nient for researchers to make use of them to facilitate the
training. In this research, our data are mainly collected from
PlantVillage [2], [17] and crowdAl [18], which include
5,507 citrus leaf images. However, 101 images were dropped
by us because they are not typical HLB symptoms or probably
caused by other diseases. The rest are 5,406 images that are all
typically HLB-infected citrus leaf images, which were split
into a train dataset with 4,325 images and a test dataset with
1,081 images.

Furthermore, in order to test whether the technique of
GANs-based data augmentation is helpful to improve the
model performance, we adopted DCGANS to augment the
size of the training dataset to three times that of the original
training dataset. Finally, we create a new training dataset
with4,325x3 = 12, 975 citrus leaf images in total, including
the original training data (4,325 images) and its augmented
data (8,650 images).

B. IMAGE LABELLING

Almost all of the images downloaded from the websites are
infected by HLB without distinguishing their infected sever-
ities. Hence, we should relabel all of the HLB-infected leaf
images into different severity stages before using them to train
and test a Deep Learning model.

Above all, a labeling standard is created according to our
domain specific knowledge and classification experience.
Considering that a blotchy mottled appearance is the most
characteristic symptom of HLB, we measure the severity of
HLB from three aspects, including

« the ratio of yellowing area to leaf area
« the leaf vein occupied by the yellowing part
« the leaf’s yellowing level

The detailed measuring method is shown in Table 1.

TABLE 1. The method to measure the severity of HLB.

Ratio of yellowing area to leaf area / Leaf vein occupied by the
yellowing part / Leaf yellowing level
Ratios <25% 25% —50% >50%
Scores 1 2 3

After giving the scores from the above three aspects,
we sum them to get the severity of HLB. The following is
our labeling standard:

« If the total score is from 1 to 3 points, we classify the
HLB into Mildly Infected Stage (Early Stage).

« If the total score is from 4 to 6 points, we classify the
HLB into Moderately Infected Stage.

o If the total score is more than 7 points, we classify the
HLB into Severely Infected Stage
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Fig. 3 shows the samples in three different stages for the
original citrus leaf dataset.

(3) A Leaf in Early Infected Stage

(b) A Leaf in Moderately Infected Stage

() ALeaf in Severely Infected Stage

FIGURE 3. Citrus leaves in different stages.

According to the methods to measure the severity of
HLB, three experts were invited to manually classify the
HLB-infected leaf images. Each leaf image will get three
scores from three experts. Then the average scores will be
calculated. It is based on the average scores that we classified
the HLB-infected leaf images into different severity levels.

Finally, we create a dataset with 5,406 original images
including 1,458 in Early Infected Stage, 2,557 in Moder-
ately Infected Stage, and 1,391 in Severely Infected Stage,
as shown in Table 2.

TABLE 2. The basic information for the Citrus leaf image dataset.

HLB Severity Number of Images Percentage of the Whole Dataset

Early 1,458 20.68%
Moderate 2,557 36.267%
Severe 1,391 19.73%

lll. METHODS

A. DEEP LEARNING MODELS AND TRAINING STRATEGY
In [2], Brahimi et al. trained six Deep Learning models,
namely AlexNet, DenseNet-169, Inception v3, ResNet-34,
SqueezeNet-1.1, and VGG13, for plant disease classification
experiments, where three different training strategies were
applied to each model. The first training strategy is called
Shallow Strategy, which is a transfer learning approach. The
Shallow Strategy fine-tunes only at the fully connected layers
and the rest layers act as feature extractors. The second
training strategy is called Deep Strategy, which is also a trans-
fer learning strategy but fine-tunes parameters of all layers.
Both of the strategies aim to make Deep Learning models
learn more specific features for plant disease classification
from the pre-trained models. The third training strategy is
called From-Scratch Strategy because it starts from random
configured weights. Their experimental results show that all
six models with the training strategy of Deep Strategy are
better than the other training strategies, from the point of
classification accuracies of plant diseases.

In our work, our main task is to study how to detect the
severities of citrus HLB, that is to say, distinguish three
subclasses from the class of HLB, which needs the models
to extract finer features from the citrus leaf images than those
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in [2]. In order to find which Deep Learning model and how
many epochs are more suitable to detect citrus disease sever-
ity, all the six Deep Learning models are chosen to train and
test with the same learning strategy (Deep Strategy) because,
comparatively speaking, Deep Strategy is better than Shallow
Strategy and From-scratch Strategy based on the study of [2].

1) AlexNet

One of the main breakthroughs in deep convolutional
networks was the development of AlexNet [19], which
won the ImageNet Large Scale Visual Recognition Chal-
lenge ILSVRC) in 2012, one of the most difficult challenges
for image detection and classification. The basic layout of
AlexNet architecture is as follows [20]:

o The first convolution layer fulfils convolution and max
pooling with Local Response Normalization (LRN).

o The second layer performs the same operations as the
first one.

o The third, fourth and fifth convolutional layers employ
3 x 3 filters with 384, 384 and 256 feature maps
respectively

o The sixth and seventh layers are both fully connected
layers with dropout.

o The last layer is a Soft-max layer.

2) VGG

In order to investigate the effect of the convolutional network
depth on its accuracy in the large-scale image recognition
setting, Karen Simonyan and Andrew Zisserman from Visual
Geometry Group, University of Oxford, proposed VGG mod-
els, which have won the ImageNet Challenge 2014 in the
localisation and classification tracks [21]. The basic architec-
ture of a VGG model is as follows [20]:

« The first and second layers are convolutional layers with
ReLU as activation functions.

o The third layer is a single max pooling layer

o From the fourth layer on, the structure from first to third
layers are repeated. The repeating times depend on the
network’s depth.

« After several repeating convolutional and max pooling
layers, there are followed three fully connected layers
with ReLU as activation functions.

« A Soft-max layer for classification is in the model’s last
layer.

Four VGG models, VGG-11, VGG-13, VGG-16 and
VGG-19 were proposed in [21]. These models had 11, 13,
16 and 19 layers, respectively.

3) ResNet

Deep Residual Networks, ResNet won the Ist place in the
ILSVRC & COCO 2015 competition. In order to ease the
training of deeper networks, He et al. proposed ResNet [22].
ResNet has been developed with some different numbers of
layers. For example, ResNet34 is made up of 33 convolution
layers with 1 fully connected layer at the network’s last
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layer. Mathematical formulation of ResNet is expressed in the
following equations [22], [23]:

g(x;) = f(x) + x; (D
fi) = glxi) — x; 2

In (1), f(x;) is a transformed signal, whereas x; is the
original input. The original input x; is added to f(x;)
through bypass pathways. In (2), g(x;) — x; performs residual
learning [23]. ResNet introduced shortcut connections within
layers to enable cross-layer connectivity but these gates are
data independent and parameter free, so it makes ResNet
have lower computational complexity than VGG even with
increased depth.

4) INCEPTION V3

Aiming to explore ways to scale up networks but utilize
the added computation as efficiently as possible, Christian
Szegedy et al. presented Inception v3, which factorizes con-
volutions with large filter size into smaller convolutions and
spatially factorizes into asymmetric convolutions as well as
makes use of auxiliary classifiers. The Inception v3 is an
updated version of GoogleNet [24]. Inception v3 was named
after the inception module, which uses parallel 1 x 1,3 x 3,
and 5 x 5 convolutions along with a max-pooling layer in
parallel, hence enabling it to capture a variety of features
in parallel [5]. There are 42 layers in Inception v3, but the
computation cost is only 2.5 times higher than that of 22-layer
GooglLeNet.

Actually, the advantages of Inception v3 mainly owe to its
four design principles. The first principle is to avoid represen-
tational bottlenecks in the feed-forward network. The second
principle is to use higher dimensional representations to facil-
itate local processing within the network. The third principle
is that more features can be disentangled by increasing the
activations per tile in a convolutional network, and spatial
aggregation on lower dimensional embedding will lead to not
much or no loss in representational power. The fourth princi-
ple is to balance the width and depth of the network. Based
on these principles, inception v3 can get high performance.
A more detailed overview of the design principles performed
to construct the Inception_v3 model from GoogleNet can be
found in [5], [6], [24].

5) SqueezeNet
SqueezeNet’s overarching objective is to identify deep con-
volution neural networks that have few parameters while
conserving good performance. In order to obtain this, the fol-
lowing strategies are employed [25]:

o 3 x 3 filters are replaced by 1 x 1 filters.

« the number of input channels is reduced to 3 x 3 filters.

« Downsample late in the network to make large activation

maps of convolution layers.

Furthermore, the Fire module is defined, which is com-
posed of a squeeze convolution layer, feeding into an expand
layer with a mix of 1 x 1 and 3 x 3 convolution filters.
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Compared to AlexNet, SqueezeNet can achieve the same
accuracy level on ImageNet with 50x fewer parameters and
510 x smaller than AlexNet [25].

6) DenseNet

Inspire by the idea that CNNs can be trained to substan-
tially deeper, more accurate, and efficient if their connections
between layers close to the input and those close to the
output is shorter, Huang et al. [26] presented Densely Con-
nected Convolutional Network, namely DenseNet, which is
composed of densely connected CNN layers, and, in a dense
block, each layer’s outputs are connected with all subsequent
layers. For each layer, the feature-maps of all preceding layers
are used as inputs, and its own feature-maps are used as inputs
into all successor layers. Therefore, there are L(L + 1)/2
direct connections for a convolutional network with layers.
The detailed structures of different DenseNets can be found
in [26].

B. IMAGE PRE-PROCESSING

1) USE OF TRAINING DATA

Above all, the original dataset was divided into training and
testing datasets. The training dataset includes 80% of the orig-
inal dataset, and the rest 20% is included in the testing dataset.
In neural network applications, Ferentinos thinks that the
80720 splitting ratio of training/testing datasets is generally
applied, and other similar splitting ratios such as 70/30 should
have little impact on the developed model’s performance [3].
Therefore, we randomly choose 4,325 images and use them
to train the Deep Learning models while the rest 1,081 images
are reserved for testing the model’s performance in distin-
guishing the plant disease severities from new, previously
“unseen’” images.

The batch size is a hype-parameter which determines the
number of samples to work through before updating the
parameters in a model. According to the batch size, there are
three ways to use the training data [27].

e The first one is Batch Gradient Descent, in which the
batch size is equal to the size of training set. The
advantage of Batch Gradient Descent is that it can get
more accurate concentrating direction to find the optimal
point. Of course it also needs huge computer memory
and a lot of time.

e The second one is Stochastic Gradient Descent, on the
contrary, in which the batch size is equal to 1. It means
the internal model parameters will update each time for
each sample. Apparently, it needs very little memory and
is very fast. However, it is easy to make the algorithm
divergent.

o The third one is known as Mini-Batch Gradient Descent,
in which the batch size is between 1 and the size of
training set. Therefore, it possesses the advantages of
both Batch Gradient Descent and Stochastic Gradient
Descent.

172886

Therefore, in our experiments, we choose the third way to
train the models. In both training and testing datasets, there
are three classes, namely Early, Moderate and Severe respec-
tively. As depicted in [28], [29], the batch size = 32 take a
great advantage of the speed-up of matrix-matrix products
over matrix-vector products. Therefore, we set batch size =
32 and Mini-Batch size=16, which means 32 x 16 = 512
images will be randomly selected from the training dataset as
input of the models for each update of network parameters.
Furthermore, if the size of dataset is not divisible by the batch
size, then the last batch will be smaller, and we will drop the
last incomplete batch in our work.

2) IMAGE CROPPING

In order to make the images suitable for the input of the
Deep Learning models, we should randomly crop all the
images in the experiment to be 224 x 224 for AlexNet,
SqueezeNet, VGG, DenseNet and ResNet, and 299 x 299 for
Inception as well. In the process of cropping and resizing,
we chose the bilinear interpolation, which can reduce the
stepped effect created by the nearest neighbor approach and
make the images look smoother.

3) TRANSFORMING AND NORMALIZING IMAGES

Before using the images to train Deep Learning models,
we should transform images into tensors. Then in order to
speed up the training process, we normalize a tensor image
with mean and standard deviation. For a color image, there
are usually three channels. Given means of three channels
are M1, M>, M3 and standard deviations are S, S», S3 respec-
tively. Then we have

Original Ch I — M;
Normalizing Channeli = rigina annel; 1,

Si
i=1,23 (3)

C. GANs-BASED DATA AUGMENTATION

1) GANs

Generative Adversarial Networks (GANs) are presented by
Ian J. Goodfellow et al. in 2014 [31], [32]. GANSs train two
models at the same time. One is a generative model called
Generator. The other is a discriminative model called Dis-
criminator. In the course of training, Generator is employed
to capture the distribution of the original data and contin-
ually generates new samples with the approximate distri-
bution of the original dataset. On the contrary, Discrimi-
nator is used to detect whether a sample is from the orig-
inal dataset or generated by Generator. The training will
be ended when the Generator can generate the high-copy
samples of the original data which Discriminator can always
properly distinguish the generated and original sample at 50%
confidence.

From the description of GANs above, we can see that
GANs are employed to instruct a Deep Learning model
to obtain the distribution of the original data. Therefore,
we can produce new data from the approximate distribu-
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tion as the original dataset [32]. Based on this idea, the
GANSs can be used to augment training datasets by generating
new data.

Recently, after the basic GANs was proposed, GANs
have been attracting many researchers in different fields,
and many different version of GANs have been developed,
such as ACGANSs [33], BEGANSs [34], BicycleGANs [35],
DCGANSs [15] and so on [36].

2) DCGANs DATA AUGMENTATION

In practical application, GANs are known to be unsta-
ble to train, often resulting in generators that produce
nonsensical outputs [15]. As a direct extension of the
GANSs discussed above, DCGANs were firstly presented by
Radford et al. [15], [32]. In DCGANSs, the Discriminator
consists of stride convolutional layers, batch norm layers and
LeakyReLU activations, while the Generator is made up of
convolutional-transpose layers, batch norm layers and ReLU
activations. Owing to the architectural topology of DCGANS,
they are stable to train in most setting. Therefore, in order
to test whether the augmented data can improve the model
performance, we will use DCGANS to augment the training
dataset to three times the size of the original one. Then
the original training images and augmented ones are used
to create a new training dataset. Table 3 gives the specific
augmented information.

TABLE 3. The specific augmentation size of different classes.

. . Size of Original
Size of Size of s
L Augment Training Data &
Original Augmented X
- to Augmentation
Training Data Data
Ones
Early 1166 2332 ind 3498
Moderate 2046 4092 - 6138
Severe 1113 2226 ind 3339

D. TRAINING AND TESTING MODEL TO FIND THE BEST
MODEL

1) SOFTWARE AND HARDWARE FOR IMPLEMENTATION

In this work, we employed PyTorch, an optimized tensor
library for deep learning using GPUs and CPUs [37], to train
models and test their performance.

Our code is largely based on the codes provided by
Arsenic [38]. All experiments in this research were performed
on the High Performance Computer of the University of Hull
named as Viper. There are four general use GPU nodes named
GPUO1~GPUO04 on Viper, respectively. Each of these nodes
have four NVIDIA K40M GPGPU (or sometimes referred to
as APU) in them; so a total of 16 units. Furthermore, there
is also a GPU node named GPUOS5, which has two Tesla
P100 cards with 16GB of memory. We can see the specifi-
cation of GPU on Viper in Table 4. These are connected via
PClI-e to Intel 28 core Broadwell processor with 128 GB.

In order to make the experimental results preserve the
comparability, all our experiments are uniformly performed
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TABLE 4. The specification of GPUs on Viper.

Number of .
GPU Name Br?.rnd :nd Attached M;r;ogy[%lze
P GPUs
GPU0I-GPU04 Tesla K40m 4 12 GB
Tesla P100-
GPUO5 SXM2 2 16 GB

on the GPUO1~GPUO04, submitted to the Viper in the form of
Exclusive batch jobs. GPUOS are simply used to interactive
programming and debugging.

2) LOSS FUNCTION

Loss function is used to create a criterion for measuring
the difference between neural network outputs and targets.
Here, we select the Cross-Entropy Loss as the Deep Learn-
ing model’s loss function because it can be used to train a
classification problem with C classes ( C is the number of the
classes, which is no less than 1). The Cross-Entropy Loss [39]
can be calculated by (4):

K—1
loss(x, class) = —x[class] + log Z exp(x[j]) (@)
Jj=0

In the above, x is the input tensor with a total of K elements
(K >1),j=0,1,2,...,K — 1, and class is a class index
in the range [0, C — 1], corresponding to the input’s target
class. In the end, we obtain the average of losses for all the
observations, namely inputs, in each Mini-batch.

3) OPTIMIZING THE MINI-BATCH GRADIENT DESCENT
ALGORITHM

In order to increase the convergence speed and improve the
accuracy of the models, we need to further optimize the
algorithm.

First of all, we apply the TORCH.CUDA package to trans-
fer the data to GPUs, which will accelerate the training speed.
Moreover, by trial and error, we set learning rate to be 0.001,
momentum to be 0.9, and weight decay to be 0.005 to accel-
erate the training speed, which will update the parameters by
using the following formulas:

v=p"v+g, p=p-—1Irty, (5)

where p denotes the parameters, g denotes gradients, v
denotes velocities, Ir denotes learning rates, and p denotes
momentums.

The hyper-parameter configurations of the six selected
deep learning models were used the same values as shown
in Table 5.

IV. RESULTS AND DISCUSSION

A. RESULTS AND DISCUSSION FOR THE EXPERIMENTS OF
FINDING THE BEST MODEL

All the six different kinds of Deep Learning models with
Deep Strategy for detecting plant disease severity were
trained by adopting the same training parameters in Table 5
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TABLE 5. Configuration of Training hyper-parameters.

TABLE 6. The experimental results of the models with top 3 accuracies.

i : Mini-
Le;rnmg Momentum Weight Bqtch batch Epochs
ate Decay Size .
Size
0.001 0.9 0.0005 32 16 10’12(())6""

but with different epochs. In order to see the relationship
between accuracy and epochs for different Deep Learning
models, we plot them in a graph as shown in Fig. 4.

75

OV

Accuracy (%)

—O— AlexNet
—— DenseNet169
—P— Inception_v3 4
—E— ResNet34

—+— SqueezeNet1_1

—6— VGG13

‘
10 20 30 40 50 60 70 80 ) 100
Epochs

FIGURE 4. The relationship between Epochs and Accuracy.

In addition, we take epochs=60 as an example, showing
the experimental results of the models with Top 3 accuracies
in Table 6.

Generally speaking, the deep CNN approaches are better
than traditional machine learning ones which need to extract
the features from images before training. However, the results
of our research show that different Deep Learning models
with transfer learning have different abilities to detect plant
disease severity.

Furthermore, the normalized confusion matrices of the
Top 3 models are shown in Fig.5. From Fig. 4 and Table 6,
we can see that the accuracies of different models are very
close to each other. Comparatively, in all six Deep Learning
models, Inception_v3 has the best accuracy of 74.38% in
the experiments for the severity detection of plant disease
when the training epochs are equal to 60. Then AlexNet
is top 2 with accuracy 72.34%, followed by Resnet34 with
accuracy 72.16%. Moreover, when the epochs are more
than 60, the accuracy of Inception_v3 tends to be stable,
but those of AlexNet and Resnet34 become unstable or
even worse.

In addition, based on Fig.5, we find that Inception_v3 has
a good balance in detecting three kinds of disease severities.
Therefore, Inception_v3 with epochs=60 is chosen as the
‘best’ models, though its accuracy (74.38%) is not good
enough.

172888

Rank Model Training time(h) Final Training Loss Accuracy
1 Inception v3 0.51156 0.522349786 0.743756
2 AlexNet 0.09117 0.581407353 0.723404
3 ResNet34 0.24351 0.964943375 0.721554

The normalized confusion matrix of Inception_v3
The normalized confusion matrix of AlexNet
The normalized confusion matrix of Resnet34

FIGURE 5. The normalized confusion matrix of different models.

B. RESULTS AND DISCUSSION FOR DCGANs DATA
AUGMENTATION

In order to improve the performance of the best model, Incep-
tion_v3 with epochs=60, we employed DCGANS to augment
the training dataset, and combined the original dataset with
augmented data to retrain it.

The pictures comparing the original and DCGANs-generated
images of three different classes are shown in Fig.6 (a) to
(c). Moreover, for obtaining relatively high quality gener-
ated images, we set the related parameters of DCGAN to
determine whether or not to save the generated images. For
example, we set the error of Generator and Discriminator
between the real value and network output less than 0.5, and
the training epochs bigger than 50. Moreover, we manually
select the quality generated images to get the planned aug-
mentation size.

C. RESULTS AND DISCUSSION FOR MODEL
PERFORMANCE IMPROVEMENT

After achieving enough augmented data, we mixed the origi-
nal training images with the augmented ones to create a new
training dataset, whereas the same test dataset was used to test
the performance of the newly trained model.

After using the new training dataset to retrain the Incep-
tion_v3 with epochs=60, the experimental results show that
the retrained model gets an improved performance with
accuracy of 92.60% (about 20% higher than that of the
model trained by the original training dataset, 74.38%).
Furthermore, we obtained a good accuracy for each class.
Fig.7 shows the confusion matrices of Inception_v3 trained
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(c) Images in severely infected stage (Original images vs. Generated images)
FIGURE 6. Original vs. generated images for different Classes.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1
Severe

Moderate

Moderate  qayere -~y Early

Earl
v Moderate g 00

B Inception_v3 trained by the original data without the augmented data
B Inception_v3 trained by the new dataset including the original and augmented data

FIGURE 7. The normalized confusion matrix of Inception_v3 trained
without and with the augmented data.

by the original dataset and the one combined the original with
augmented data.

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

In this work, we proposed the idea of classifying the HLB-
infected citruses into different severity levels, which provides
a good evidence for citrus farmers or growers to make corre-
sponding decisions. Especially, finding HLB at the early time
can not only protect the healthy citruses from being infected,
but also can reduce the farmers’ financial loss.

VOLUME 8, 2020

According to the experimental results, Deep Learning
model with deep transfer learning strategy are good choices
for plant disease severity detection. Comparatively, Incep-
tion_v3 with epochs=60 could be the first choice of selection
for severity detection of plant disease. Furthermore, training
epoch size is an important parameter influencing the perfor-
mance of Deep Learning. It is depended on the size of dataset
and the type of the model.

Besides, the technique of data augmentation based on
DCGANs was employed to augment dataset size. By com-
bining the original images with the augmented ones and using
the same test dataset, the performance of the Deep Learning
model was significantly improved.

Finally, it should be pointed out that this work could be
an example on how to employ deep convolutional neural
networks to detect plant diseases in general. In addition, early
detection and prediction of plant or human diseases are the
most promising research direction in the future, with different
image datasets being created.

B. FUTURE WORK

It should be recognized that the datasets used in this work
have some major limitations because the images in them
are all from PlantVillage and crowdAl or generated by
DCGANS, which have been preprocessed. In practical situ-
ations, the results will be influenced by many factors such
as illumination differences, sensor differences, cultivar, geo-
graphic area, etc. Therefore, our work needs to be further
assessed in more real-world scenarios. In our future work,
we will create a dataset with images captured in the real
environment and test what effects they will be for different
Deep Learning models.

In addition, many traditional augmented methods such as
flipping, translation, rotation, scaling, and shearing etc. can
also be used to augment data. Consequently, comparing the
DCGANSs data augmentation with the traditional data aug-
mentation could be one of our future works.
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