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Abstract

The empirical success of the Artificial Intelligence (AI), has enhanced importance of the transparency in 

black box Machine Learning (ML) models. This study pioneers in developing an explainable and 

interpretable Deep Neural Network (DNN) model for a Guideless Irregular Dew Point Cooler (GIDPC). 

The game theory based SHapley Additive exPlanations (SHAP) method is used to interpret contribution of 

the operating conditions on performance parameters. Furthermore, in a response to the endeavours in 

developing more efficient metaheuristic optimisation algorithms for the energy systems, two Evolutionary 

Optimisation (EO) algorithms including a novel bio-inspired algorithm i.e., Slime Mould Algorithm (SMA), 

and Particle Swarm Optimization (PSO), are employed to simultaneously maximise the cooling efficiency 

and minimise the construction cost of the GIDPC. Additionally, performance of the optimised GIDPCs are 

compared in both statistical and deterministic way. The comparisons are carried out in diverse climates in 

2020 and 2050 in which the hourly future weather data are projected using a high-emission scenario defined 

by Intergovernmental Panel for Climate Change (IPCC). The results revealed that the hourly COP of the 

optimised systems outperform the base design. Although power consumption of all systems increases from 

2020 to 2050, owing to more operating hours as a result of global warming, but power savings of up to 

72%, 69.49%, 63.24%, and 69.21% in hot summer continental, Arid, tropical rainforest and Mediterranean 

hot summer climates respectively, can be achieved when the systems run optimally.

Keywords: Dew point cooler; Multi objective evolutionary optimization; Particle Swarm Optimization; Slime Mould 

Algorithm; Artificial Intelligence

1 Introduction

Air conditioners are vital need of the modern buildings for providing comfortable indoor air for the residents. Several 

alternatives for the traditional coolers [1] are introduced to improve the cooling efficiency but among them, Evaporative 

Coolers (ECs) absorbed more attention owing to their intelligible structure and high efficiency [2]. ECs are categorized 

into two types, i.e., Direct Evaporative Coolers (DECs) and Indirect Evaporative Coolers (IECs) [5]. However, IECs 

are more favourable among the researchers due to their ability in delivering the cooled air (supply air) within the 

comfortable relative humidity ranges [7]. Continuous endeavours resulted in development of Dew Point Coolers 
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(DPCs) which enables the supply air to reach the dew point temperature [8]. The main innovation of DPCs relies in 

invention of a M-cycle Heat and Mass Exchanger (HMX) which contributes towards increasing the efficiency of the 

ECs by up to 30% [7]. DPCs are categorized into two types based on direction of the air flows within the HMX, i.e., 

cross flow and counter flow [8]. In a project in USA, which is known as Coolerado®, the cross flow DPC is tested for 

the first time in which the high efficiency of the DPC, i.e., wet bulb efficiency of 80%, was proved [7]. This 

experiment followed by numerous research studies which were mainly aimed to assess the efficiency of the technology 

in more details. For instance, Jradi et al. [9], showed that in a cross flow DPC, the wet bulb efficiency of up to 117% is 

reachable when the supply air flow rate is in the range of 300–1500 m3
.h
−1

.

Continuous studies resulted in introduction of a state-of-the-art DPC in which the flat plates within HMX are replaced 

by corrugated plates [10]. This resulted in 30–60% more cooling efficiency in the proposed counter flow DPC with 

Guideless Irregular HMX (GIDPC). Furthermore, it is concluded that the GIDPC can reach the record COP of 52.5 in 

the identified ideal condition in which the working air ratio was 0.36 [11]. In separate studies, the best operating 

conditions of a counter flow DPC [12] which led to improved performance in terms of wet bulb efficiency and COP is 

identified [13]. Badiei et al. [14], developed a whole building energy model for the GIDPC in which the performance 

of the system in different climates are compared by various models. It was concluded that the developed building 

energy model performs better than the selected numerical model.

The immense growth in data volume has enhanced the necessity of implementing the Machine Learning (ML) 

algorithms [15] to build the data-driven models for energy systems. The data-driven ML models for the DPCs are a 

vital need to integrate the embedded information within data through the ML algorithms. This can lead to 

commercialisation of this newly emerged technology and to improvement of the decision-making processes in future 

[16]. The concern in limiting the effect of global warming [17] and enhancing the efficiency of the technology are 

mainly mitigated through technological breakthrough which has led to underrated importance of optimisation 

algorithms. In general, the optimisation is aimed to reduce the construction and operating costs simultaneously [18]. 

Owing to the numerous operating, design and performance parameters in the energy systems, the metaheuristic 

algorithms [19] are extensively considered to overcome the complexity of the systems by exploring all possible 

solutions by considering one or multiple objective functions.

In one of the pioneer studies, the Response Surface Methodology (RSM) is used for a cross flow DPC [20] in which, it 

is concluded that the supply air flow rate, and air properties of the intake air are the main parameters affecting the 

system performance. However, the study suffers from lack of optimisation algorithm to truly identify the optimum 

parameters. In addition, the selected parameters are limited to a few operating parameters for a traditional DPC. The 

Multi Objective Optimization (MOO) and Group Method of Data Handling-type neural network (GMDH) are 

employed [21] to disclose the performance improvement when a cross flow DPC operates under the optimum 

conditions which led to 8.1% and 6.9% improvements in COP and cooling capacity respectively. However, the 

decision variables and objective functions were limited to few parameters and the annual average amounts were 

considered rather than hourly data which could lead to more sensible outcomes. Although the hourly optimisation is 

considered in another study by Sohani et al. [22], but the study was again limited to only two decision variables. 

Although a through operating and design parameters are considered in a regression-based study for a counter flow 

DPC [23] but the study was ignored the optimisation algorithms. The optimum length (0.50 m) and working air ratio 

(0.40) are identified for a DPC in an optimization-based study [24]. However, the study was ignored the applicability of 

the outcomes in diverse climates as well as the hourly performance investigation of the optimised system.

The aforementioned ML studies have mainly focused on the existed commercial counter flow and cross flow DPCs but 

there are few ML based studies for the novel GIDPC. A regression-based studies are conducted in energy systems [25] 

in which for the GIDPC, Akhlaghi et al. [26], used Multiple Polynomial Regression (MPR) to provide the polynomial 

equation for performance prediction of the GIDPC. However, the model was unable to consider the design parameters 

in the produced equations. In addition, in another study [27], the Feedforward Neural Network (FFNN) and Genetic 

Algorithm (GA) are developed for the GIDPC to predict the performance of the optimized system in diverse climates. 

The results revealed that the COP and surface area of the system can be improved by up to 72.5% and 23.57% 

respectively [27]. However, the study has ignored the hourly performance of the system and the saving values were 

based on the monthly average climate data which can lead to substantially inaccurate results.



Although the valuable results are presented in the reviewed literature but there are outstanding gaps in them. Firstly, the 

majority of the studies are based on the traditional M-cycle DPCs whereas the GIDPC is proved to have a superior 

efficiency [11]. Secondly, the optimisation-based studies have focused on Genetic Algorithm (GA) and they suffer from 

comparing diverse algorithms to establish the best one. However, the most substantial gap is the lack of performance 

investigation in upcoming years when the proposed systems will operate in diverse unforeseen climates. This can 

present the efficiency of the optimisation outcomes by disclosing the energy saving potential of the GIDPC in 

forthcoming operating climates. In addition, the aforementioned developed models are considered as the black-box ML 

models which are suffering from a barrier of explainability. An emerging need in interpreting the sophisticated ML 

models such as opaque Deep Neural Networks (DNNs) which empirically have been successful over the last years, has 

become vital [28].

Therefore, firstly, this research is pioneered in bringing eXplainable Artificial Intelligence (XAI) to the GIDPC research 

studies by employing the game theory based SHapley Additive exPlanations (SHAP) method. For the newly evolving 

XAI, this is considered as a preliminary approach by SHAP to demonstrate the features contributions on the predicted 

parameters throughout the force plots. The XAI is based on the Deep Neural Network (DNN) model which was 

developed by the authors [27]. Secondly, it is aimed to employ the state-of-the-art bio-inspired algorithm, i.e., Slime 

Mould Algorithm (SMA) as the main MOO method along with the popular Particle Swarm Optimization (PSO) to 

identify the optimum operating and design parameters of the system by comparing the performance of both methods. 

The decision variables of the algorithms are: velocity of the intake air, working air fraction, height, channel gap, and 

number of layers in the HMX structure. Both algorithms are aimed to maximise the cooling efficiency of the system 

and to minimise the construction cost. Eventually, a climate scenario defined by Intergovernmental Panel for Climate 

Change (IPCC) is used to produce the hourly temperature and relative humidity in 2020 and 2050 for the performance 

prediction of the GIDPC in upcoming climate [29]. Eventually, the power consumption of the systems, i.e., base 

system, optimized system by PSO and optimized system by SMA, in operating hours throughout a year are calculated 

and the power saving potential of the GIDPC is presented in both 2020 and 2050. The summarised research 

methodology of the current study is shown in Fig. 1.

2 Guideless Irregular dew point cooler

The GIDPC as a novel counter-flow DPC with guideless irregular HMX [10] is selected in the current study. The 

selected GIDPC is called the base system in this study which its dimensions are inspired from authors previous study 

and listed in the upcoming sections of the current study [27]. The GIDPC is constructed from few components in 

which the HMX is the core section which is depicted in Fig. 2(a). As seen, the considered HMX is constructed from 

plenty corrugated layers which have formed several dry and wet channels to carry out the cooling and evaporation 

Fig. 1

Summary of the research methodology.



processes during the system operation. The utilization of corrugated layers as a replacement of the traditional flat layers 

result in more heat transfer area and less flow resistance within the channel [10]. As seen in Fig. 2(b), two wet sides of 

neighbour layers form the wet channels and two dry sides of the neighbour layers build the dry channels. The material 

used in wet sides is Coolmax-fabric while the dry sides are built from aluminium.

To cool down the air, firstly the intake air with determined temperature and relative humidity enters the dry channel 

with adjusted velocity. According to value of the adjusted working air ratio, part of the intake air is transferred into the 

wet channel, i.e., called working air, via the holes located on the layers and the rest of it is delivered into the space as 

the cooled supply air. The temperature dropping of the intake air happens while it moves along the dry channel by 

losing the heat to the neighbour wet channel. This occurs owing to the cooler surface and the water evaporation taking 

Fig. 2

Heat and mass exchanger (a): heat and mass exchanger structure (b): corrugated surfaces (top view) [27].



place within wet surface of the wet channel. The working air within the wet channel receives considerable amount of 

heat and moisture form the wet surface and carries them out as the warm and wet working air (also called exhaust air).

3 Explainable Artificial Intelligence

3.1 Deep Neural Network

The developed DNN model is chosen for the optimization and interpretation of the features contributions in XAI. 

Neural Networks (NNs) are black box models which have three main sections: (1) input layer, (2) hidden layer(s), (3) 

output layer. The input layer includes the input variables of the model which contains the key operating and design 

parameters of the GIDPC for the developed DNN model [27]. These parameters are temperature, relative humidity and 

velocity of the intake air, and working air fraction which are all representing the operating parameters while the design 

parameters are: height of the HMX, channel gap and number of layers in the HMX. The output layer includes those 

performance parameters of the GIDPC which are needed to be predicted under various operating conditions. The 

output layer of the developed model includes the performance parameters of the GIDPC [30]. In the developed model, 

the cooling capacity, COP, wet bulb and dew point efficiency, temperature drop and surface area of the layers are the 

performance parameters. Among them, the cooling capacity and COP are used to observe the system performance in 

terms of cooling and power consumption. However, to evaluate the system performance in more details, other 

parameters are needed as well. For instance, Wet-bulb efficiency is needed to see the system performance in reducing 

the intake air temperature to its wet-bulb temperature. In a similar manner, the dew point efficiency is used to observe 

the system performance in reducing the intake air temperature to its dew point temperature. In addition, to take the 

construction cost of the GIDPC into consideration, the surface area of the layers is selected as another performance 

parameter. The formulas for the selected performance parameters are listed in Table 1.

A big dataset with 78,125 data points is constructed using the validated numerical model [27] and considering the 

aforementioned operating, design and performance parameters. The holdout cross-validation is employed to split the 

big dataset into three subsets i.e., a training data set (70%), a validation data set (15%), and a testing data set (15%). Fig. 

3, depicts the operating ranges of the inputs and the structure of the developed DNN model. The connections are 

weighted by initial random values which are needed to be updated through an iterative back propagation process. The 

Table 1

Performance parameters of the GIDPC.

Performance parameter Formula

Cooling capacity

COP

Wet bulb efficiency

Dry bulb efficiency

Surface area

Terms descriptions

 is specific heat capacity,  is intake air temperature in dry channel,  is outlet air temperature in dry channel,  is 

working air fraction,  is mass flow rate of intake air in dry channel,  is electrical power consumed by fan,  is 

electrical power consumed by pump,  is the wet-bulb temperature of the intake air in dry channel,  is the dew point 

temperature of the intake air in dry channel,  is the surface area, is the number of layers,  is height of the HMX and w 

represents the width of the surface.

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



back propagation is applied to update the weights with the aim of maximising the model accuracy [31]. The random 

constant bias values are also used to calibrate the outputs of each weighted sum of the inputs as well as to smooth the 

fitting process of the model. The hyperbolic tangent sigmoid function is selected as the activation function in each layer 

as a conclusion of a robust comparison with different functions. The structure of the DNN model is defined by 

selecting the number of layers and neurons. These two hyperparameters are calibrated through a test harness. 

Numerous DNN structures are built by monitoring the model quality through two accuracy metrics (Mean Square 

Error, (MSE), and coefficient of determination ( )). The gradual complexity enhancement of the model was revealed 

that a model with two hidden layers and 45 neurons in each hidden layer were the most desirable DNN. The MSE of 

the selected model had the low value of 0.04 and  held the ultimate value of 1.

3.2 Explainable Artificial Intelligence

Owing to the empirical success of the ML models in complex computational tasks, the need for interpreting the black 

box models, e.g., a complex DNN model with numerous layers and parameters is increased [32]. The transparency of 

such models will contribute the experts with providing more detailed information about the model than a final accurate 

prediction [33]. Furthermore, it will lead to more trustable ML models in which the researchers can observe the 

evolving process of the model [32]. The aforementioned need for interpreting the complex ML models has led to 

appearance of eXplainable Artificial Intelligence (XAI) field. The newly evolving XAI has the ability to demonstrate 

the rationality of the results bin different ways [34]. SHapley Additive eXplanations (SHAP) is based on a game theory 

which can be used as a XAI method to interpret the ML models [35]. In this study, the SHAP is used to mainly show 

how the operating and design parameters of the GIDPC affect the performance parameters using the function provided 

by the developed DNN model. SHAP can demonstrate the contribution of each input to the predicted value using the 

calculated Shapley values which reveal how to distribute the predicted values (performance parameters) among the 

features (operating and design parameters). In SHAP, the Shapley value explanation is provided as an additive feature 

contribution [35]. In summary, SHAP describes the following three attributes:

1) Local accuracy:

Fig. 3

Structure of Deep Neural Network model and operating ranges of inputs for the GIDPC.

(1)



2) Missingness:

3) Consistency:

For any two different models  and :e

where  represents the explanation model,  is the mapping function,  represents the coalition vector,  is the feature 

attribution for the input i, N  is the maximum coalition size,  and  are the mapping functions which use the 

simplified input  to map the original input .

In local accuracy, the requirement of the explanation model (g) which can match the main model (f) for the simplified 

input ), is explained. The missingness simply says the contribution of missing input (feature) is zero. The 

consistency indicates when the model changes, the contribution of the feature will be higher and will stay same. 

Shapley values are given by the following expression which is the only set of values that satisfy the three 

aforementioned conditions:

in which the  in the group of non-zero values in , as the subset of .

The Shapley values can be visualized as forces to demonstrate the attribution of each feature on the prediction [35,36]. 

Fig. 4 shows the force plots for each of the performance parameters in the developed DNN. Force plots show how 

each of the input variables (features) contribute to the value of the performance parameters. Each figure consists of two 

sub figures in which the first one is demonstrated for one representative data point (operating condition) and the second 

one is demonstrated for 10 data points (out of 78,125 data points used in DNN model) which are rotated 90 degrees 

and stacked together horizontally [38].

(2)

(3)

(4)

Fig. 4





Each feature is considered as a force which either has a positive or negative effect. The prediction for each performance 

parameter starts from the base value which is the average value of the performance parameter in the training dataset 

used to train the DNN which would happen if the effect of features (operating and design parameters) was not 

considered. There is also an output value in each figure which is identical to the predicted value by the DNN model. 

SHAP values are the arrows in red and blue indicating how much contribution each feature has on the output value 

which results in increasing or decreasing the prediction. There are positive contributions in red colours which mean that 

the correspondent feature contributes to increase the performance parameter value from the base value to the actual 

predicted value by the DNN whereas the negative contributions with blue colours contribute to decrease the value of 

Force plots: (a): cooling capacity; (b): COP; (c): wet bulb efficiency; (d): dew point efficiency; (e): temperature drop; (f) surface area.



the performance parameter from the base value to the actual predicted value. As seen, the contribution of each data 

point is different which is simply because of the different operating and design parameter values. These plots allow us 

to know the impact of each parameter on the predicted values in the desired data point. This information let the 

researchers to observe the positive and negative contribution of each parameter and identify the appropriate operating 

condition for each performance parameter. This will eventually result in improved system performance and energy 

management. For instance, Fig. 4 (a) shows the force plots for the cooling capacity in which the data point number 8 is 

selected as the representative. As seen, the base value is increased from 1.77 (kW) to the model predicted value of 3.59 

(kW) in which four inputs in red colours have positive contribution while other three inputs i.e., gap, relative humidity 

and height have negative contributions. The force plots of other performance parameters are also provided for ten 

sample data points as demonstrated in Fig. 4 (b)-(f).

4 Proposed multi objective optimization methods: SMA and PSO

The novel Slime Mould Algorithm (SMA) method is used to identify the optimum operating and design parameters of 

the GIDPC, in four selected operating climates, to improve the system efficiency in terms of cooling, power 

consumption and construction cost. Evolutionary Algorithms (EA) and intelligent swarm techniques are two major 

classifications of the metaheuristic algorithms. The common Genetic Algorithm (GA) falls into the group of EA while 

the algorithms like PSO are in the class of swarm intelligence techniques which are inspired from collective behaviour 

of some biological creatures. Exploration and exploitation are two stages of the metaheuristic algorithms which are 

needed to be balanced [39].

The No-Free-Lunch (NFL) theory [40] has proven that none of the substantially improved metaheuristic algorithms, 

can assure to find the global optimum. As a result, the endeavours in introducing the new efficient algorithms are in 

place in which the SMA is one of the newly introduced methods. The SMA makes a superb balance between the 

explorations and exploitations which leads to better statistical performance than the PSO. In addition, SMA is fast in 

operation and also in diverging to an optimal solution and has less computational complexity [41]. In addition, the 

Particle Swarm Optimization (PSO) is also developed to compare the results of two methods and to show the validity 

of the novel SMA.

4.1 Slime Mould Algorithm

The SMA, as one of the state-of-the-art bio-inspired algorithms that has been proposed by [41] and can diverge to the 

optimal value of the problem, is used as the first optimization algorithm. The SMA has three phases including approach 

food, wrap food and grabble food. In the approach food, Eq. (5) can be used as a mathematical model for approaching 

behaviour of slime mould.

where  stands for the distance between the fitness of  and the fitness achieved in all iterations ( ), 

 is an internal vector in SMA with the range defined based on Eq. (6),  is another vector that linearly decreases 

from one to zero, t stands for current iteration number. The location of a point with the highest rate of odour 

concentration that currently found can be represented by , and current location of the slime mould is represented by 

. In each iteration, two individuals are randomly selected from the swarm as  and  and their distance will be 

gained by weight of slime mould as .

Weight of slime mould  can be calculated by Eq. (7) in which “Smell Index” is a sorted version of fitness vector.

(5)

(6)



where r is a uniformly distributed random number with the range of [0, 1], the ranked first half of the population is 

indicated by , bF and wF denote the best and the worst fitness values in each iteration respectively. In the wrap food 

phase, the location of the slime mould can be formulated using the Eq. (8) as follows:

where upper bound and lower bound of the search algorithm can be defined by UB and LB, respectively. Both rand 

and r are uniformly distributed random numbers which range from 0 to 10.

In the grabble food phase which is generated through a random oscillation procedure with the bound of , and a 

negative gain,  which gradually tends to zero over the iterations. Similarly,  value is generated through a random 

oscillation procedure with the bound of [−1,1] and a negative gain that eventually approaches zero in the final iteration. 

The initial parameters for the SMA are listed in Table 2.

The optimization function is developed based on the fitness function and the constraint function. The fitness function is 

the trained DNN model which is used to approach the optimisation objectives while the constraint function limits the 

operation of the fitness function through the predefined operating ranges. The following Multi-Objective (MO) fitness 

function is considered in the SMA in which seven dimensions are associated, i.e., intake air temperature ( ), intake 

air relative humidity ( ), intake air velocity ( ), working air ratio ( ), HMX height ( ), gap ( ), and number 

of layers in HMX structure ( ). Noted that and  are predefined based on the climates. It means that the 

decision variables of the optimization algorithm are intake air velocity, working air ratio, channel gap and number of 

layers. In addition, the objective of the optimization is to maximise the cooling capacity ( ), COP and wet bulb 

efficiency ( ,), and to minimise the surface area of the layers ( ) [27].

(7)

(8)

Table 2

Parameter settings for SMA.

Parameter Values

Max. number of iterations 500

Slime mould dimension size 5

Number of search agents 30

Upper Bound Vector (UB) [3.3, 0.9, 3.0, 0.008, 200]

Lower bound vector (LB) [2.0, 0.1, 0.8, 0.004, 100]

Degradation ratio 0.1

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

(9)



where  represent the weights for each objective, R , RCOP, , and  are typical values of , COP,

, and respectively.

4.2 Particle Swarm Optimisation

PSO is also used alongside the SMA as the second optimization algorithm to compare the results derived from both 

algorithms [42]. It should be mentioned that there are various versions of PSO algorithm such as basic [43] and 

adaptive [44] bare-bones, variable-size cooperative coevolutionary PSO [45], and hybrid optimization algorithm [46]. 

In this study, three different behaviours are defined for the particles in this optimization algorithm; (1) The fundamental 

behaviour is persistence of a particle having a random search in the solution space, (2) Tendency of the particle to 

redirect towards the best current solution of the whole swarm (Global best), and (3) The self-tendency of the particle to 

rely on its best own best solution. Eq. (10) provides the mathematical behaviour of particles over iteration t.

where  is the position of the particle I and it should be bounded with upper and lower bounds based on the problem 

definition. The parameter “V” stands for the velocity that can cover the three explained behaviours [47] as expressed by 

Eq. (11).

where C
1
 represents the Cognitive attraction rate, C

2
 represents the global attraction rate,  stands for the global best 

solution/fitness and Y stands for the local best solution for each particle, r
1
 and r

2
 are used as additional random 

weights to improve the exploration and prevent trapping on local minimums. In this equation, w is the inertial 

coefficient that has been set to one in our implementation. Table 3 provides the initial settings for the PSO algorithm. In 

order to be able to compare the results derived from both SMA and PSO, the same MO fitness function, as expressed 

by Eq. (9), is used for both algorithms.

(10)

(11)

Table 3

Parameter settings for PSO.

Parameter Values

Number of objectives 5

Population number 50

Max. number of iterations 500

Cognitive attraction rate, c1 2

Global attraction rate, c2 2

Damping ratio of inertia coefficient 0.99

Inertia coefficient 1

Upper inertia [3.3, 0.9, 3.0, 0.008, 200]

Lower inertia [2.0, 0.1, 0.8, 0.004, 100]

Velocity limit Infinite

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



5 Future weather forecasting

Hourly temperature and relative humidity in 2020 and 2050 are forecasted for the selected climates. Based on the 

operating ranges of the GIDPC, four different climates with one representative city for each climate [29] are chosen to 

firstly, compare the GIDPC performance in base and optimised designs, and secondly, to investigate the power saving 

potential of the optimized systems in both aforementioned years. Beijing with hot summer continental climate (Dwa), 

Doha with arid climate (BWh), Miami with tropical rainforest climate (Af), and Rome with mediterranean hot summer 

climate (Csa) are the chosen cities.

5.1 Weather data creation

The Intergovernmental Panel for Climate Change (IPCC) developed a quantity of probable scenarios of future 

greenhouse gas emissions based on the socio-economic data and scenarios to project the future climate variations for 

impact and adaptation assessment [48]. A number of emissions pathways are presented through the Special Report on 

Emission Scenarios (SRES) and then through the sets of emission scenarios called Representative Concentration 

Pathways (RCPs).

In this paper, IPCC’s SRES A2 climate scenario that represents a high emission future scenario is considered in order to 

calculate the operating hours for GIDPC in both 2020 and 2050. It is worth mentioning that in two sets of scenarios 

(SRES and RCPs), two high emission scenarios, i.e., A2 and RCP8.5, are equivalent [49,50]. Meteonorm software 

[51] is used to generate the hourly temperature and relative humidity data for the selected cities. In this study, based on 

the operating ranges of the GIDPC, the temperatures above 25 ℃ are selected as the operating conditions in order to 

calculate the operating hours.

5.2 Hourly data

Fig. 5 shows the number of operating hours for all climates in 2020 and 2050. According to the results, in all climates, 

the number of operating hours are increased by 2050 as a result of global warming. In hot summer continental and 

Mediterranean hot summer, the GIDPC is not needed in winter (December-February) while in other two climates, it is 

needed to operate in all seasons.

Fig. 5

Number of operating hours: (a): hot summer continental; (b): arid; (c): tropical rainforest; (d): Mediterranean hot summer.



6 Results and discussions

6.1 Optimization results

The optimum value of the decision variables in each climate is identified by both SMA and PSO. The results are 

derived based on the average value of the air properties, i.e., temperature and relative humidity, over the operating 

hours in 2020. This is done because a single optimized unit in each climate is aimed to operate for the next 30 years. 

Five scenarios are considered for each climate in which different weight distributions are assumed in order to assess and 

compare different weight distributions over the objectives. The primary scenario is to equally distribute the weights 

over selected objectives (multi objective). It means that importance of objectives for the optimization algorithms is same 

while in other four scenarios weight distribution is focused on one objective (single objective). This means that 

optimization algorithm will mainly focus on maximising/minimising that particular objective. This allows us to observe 

and compare performance of the system under each scenario.

The comprehensive results derived from PSO and SMA are listed in Table 4 and Table 5 respectively. In addition, the 

base system properties are listed in the above tables [27]. The results revealed that identified optimum decision variables 

by PSO and SMA are similar. In addition, compared to the base system, the equally distributed weights lead to better 

results in terms of cooling capacity and COP while other objectives, i.e., wet bulb efficiency and surface area, remain 

almost same. However, the system performance under other single objective scenarios is not satisfying. Although, the 

third scenario where COP is considered as the dominant objective (W3 = 0.85) leads to convincing results, where COP 

is maximised and the surface area is lower than the base system, but cooling capacity which is one of the main 

performance parameters are lower than the base system. This trend is same in scenario 5 where surface area is the 

dominant objective (W4 = 0.85). High surface area in second scenario where cooling capacity is the dominant objective 

(W1  =  0.85) and low cooling capacity in fourth scenario where wet bulb efficiency is the dominant objective 

(W3 = 0.85) have made these scenarios unsatisfactory. As a consequence, scenario 1 in both PSO and SMA methods is 

selected to discuss optimization results and to investigate performance of the optimized systems.

Table 4

Optimisation results by PSO.

Method: Multi Objective Particle Swarm Optimization (PSO)

Climate: Hot summer continental (Dwa) - Beijing

No.

Design weights Decision variables Objectives

W1 W2 W3 W4 (m/s) (-) H (m) G (m) NL  (-)

1 0.25* 0.25* 0.25* 0.25* 2.00 0.26 0.80 0.005 196.29 1.72 39.17 0.87 62.20

2 0.85 0.05 0.05 0.05 2.55 0.25 2.10 0.008 200.00 3.19 21.21 0.85 167.32

3 0.05 0.85 0.05 0.05 2.00 0.18 0.81 0.008 104.62 1.04 47.77 0.65 32.16

4 0.05 0.05 0.85 0.05 2.00 0.32 1.38 0.004 100.09 0.88 19.52 1.40 55.02

5 0.05 0.05 0.05 0.85 2.00 0.23 0.80 0.005 100.00 0.93 41.50 0.86 31.75

Base system 3.00 0.44 1.00 0.005 160.00 1.60 13.60 1.00 62.49

Climate: Arid (BWh) - Doha

1 0.25* 0.25* 0.25* 0.25* 2.00 0 0.27 0.80 0.005 170.11 2.04 51.55 0.94 53.78

2 0.85 0.05 0.05 0.05 2.52 0.25 1.93 0.008 200.00 4.33 31.86 0.84 153.63

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 111.49 1.55 66.40 0.65 34.05

4 0.05 0.05 0.85 0.05 2.00 0.34 1.43 0.004 100.00 1.18 25.29 1.38 57.09

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



5 0.05 0.05 0.05 0.85 2.00 0.24 0.80 0.005 100.00 1.26 53.86 0.92 31.75

Base system 3.00 0.44 1.00 0.005 160.00 2.22 18.88 1.00 62.49

Climate: Tropical rainforest (Af) - Miami

1 0.25* 0.25* 0.25* 0.25* 2.00 0.24 0.80 0.006 200.00 1.39 31.96 0.83 63.38

2 0.85 0.05 0.05 0.05 2.53 0.24 2.20 0.008 200.00 2.48 16.12 0.87 175.00

3 0.05 0.85 0.05 0.05 2.00 0.17 0.80 0.008 100.00 0.79 38.01 0.67 31.75

4 0.05 0.05 0.85 0.05 2.00 0.30 1.31 0.004 100.00 0.71 16.84 1.44 51.84

5 0.05 0.05 0.05 0.85 2.00 0.21 0.80 0.006 100.00 0.75 34.35 0.85 31.75

Base system 3.00 0.44 1.00 0.005 160.00 1.21 10.25 1.01 62.49

Climate: Mediterranean hot summer (Csa) - Rome

1 0.25* 0.25* 0.25* 0.25* 2.00 0.27 0.80 0.005 199.43 1.83 40.78 0.88 63.21

2 0.85 0.05 0.05 0.05 2.51 0.26 2.09 0.008 200 3.35 23.08 0.85 165.91

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 107.69 1.12 50.05 0.64 32.80

4 0.05 0.05 0.85 0.05 2.00 0.35 1.40 0.004 100.00 0.91 19.82 1.39 55.81

5 0.05 0.05 0.05 0.85 2.00 0.24 0.80 0.005 100.00 0.98 43.12 0.85 31.75

Base system 3.00 0.44 1.00 0.005 160.00 1.71 14.52 0.99 62.49

Table 5

Optimisation results by SMA.

Method: Slime Mould Algorithm (SMA)

Climate: Hot summer continental (Dwa) - Beijing

No.

Design weights Decision variables Objectives

W1 W2 W3 W4 (m/s) (-) H (m) G (m) NL  (-)

1 0.25* 0.25* 0.25* 0.25* 2.00 0.26 0.80 0.004 128.03 1.06 33.12 1.07 40.70

2 0.85 0.05 0.05 0.05 2.30 0.24 1.60 0.008 200.00 2.72 28.35 0.81 126.79

3 0.05 0.85 0.05 0.05 2.00 0.18 0.81 0.008 103.34 1.03 47.79 0.65 31.99

4 0.05 0.05 0.85 0.05 2.00 0.32 1.41 0.004 100.00 0.88 19.30 1.40 56.28

5 0.05 0.05 0.05 0.85 2.00 0.22 0.80 0.005 100.00 0.93 41.23 0.86 31.75

Base system 3.00 0.44 1.00 0.005 160.00 1.60 13.60 1.00 62.49

Climate: Arid (BWh) - Doha

1 0.25* 0.25* 0.25* 0.25* 2.00 0.22 0.80 0.004 141.36 1.65 48.54 0.98 44.99

2 0.85 0.05 0.05 0.05 3.02 0.22 1.40 0.008 200.00 4.26 27.27 0.67 111.59

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 110.21 1.53 66.38 0.65 33.58

4 0.05 0.05 0.85 0.05 2.00 0.34 1.41 0.004 100.00 1.18 25.56 1.38 56.25

5 0.05 0.05 0.05 0.85 2.00 0.24 0.80 0.004 100.00 1.16 44.82 1.08 31.75

Base system 3.00 0.44 1.00 0.005 160.00 2.22 18.88 1.00 62.49

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



6.2 Decision variables

In all climates optimum velocity of the intake air derived by both PSO and SMA is 2 (m/s) which is lower than the 

velocity in base system, i.e., 3 (m/s). This is resulted from a robust trade-off by the optimization algorithms as higher 

velocity leads to higher pressure drop and to lower COP values which is not preferred [27] but could lead to more heat 

and mass transfer rate within the HMX. This low value was expected as the higher COP was aimed.

The optimum working air ratio by both PSO and SMA methods in all four climates are in the range of 0.22 – 0.27 

which are lower than the working air ratio in base system, i.e., 0.44. The working air ratio is proportion of the exhaust 

air to intake air which its higher value will lead to more temperature drop, more efficiencies but will bring down the 

COP and cooling capacity. The identified working air ratio by both methods in hot summer, typical rainforest and 

Mediterranean hot summer climates are same which are 0.26, 0.24 and 0.27 respectively. But the identified working air 

ratio in Arid climate identified by PSO is 0.27 and by SMA is 0.22.

The optimum HMX height identified by PSO and SMA is in narrow range of 0.80–0.82 (m) which is lower than the 

base system height, i.e., 1 (m). A GIDPC with longer HMX has better performance in terms of cooling capacity but it 

brings up negative effects by increasing the surface area, pressure drop and fan power consumption [10]. Therefore, 

although it provides the users with more efficient system but it can’t be an economical choice. As a consequence, over a 

trade-off, it is concluded by both optimization methods that the optimum HMX height is 0.8 (m) in all climates.

The channel gap in the base system is 0.005 (m) while it is revealed that the optimum values are different. Base on the 

PSO method, the optimum channel gap in tropical rainforest climate is 0.006 (m) while it is same as the base system in 

other climates. However, based on SMA results, it holds the optimum value of 0.004 (m) in hot summer continental and 

arid climates, and 0.006 (m) in tropical rainforest and Mediterranean hot summer climates. High pressure drop can be 

recorded in smaller channel gap values which requires higher fan power consumption while larger channel gap can 

lead to better cooling capacity values.

Higher number of layers will bring about more power consumption as a result of higher pressure drop and adds up to 

the construction and running cost. However, it can improve the system performance in terms of cooling capacity. The 

number of layers in the base system is 160 while the optimum numbers in PSO ranges from 170.11 to 200.00 and in 

SMA it is in the range of 128.03–199.86.

6.3 Performance of the optimized system in 2020 and 2050

In this section the hourly COP of base system is compared with the optimized systems by PSO and SMA in all climates 

in years 2020 and 2050. In addition, the average value of the cooling capacity, COP and wet bulb efficiency in 

Climate: Tropical rainforest (Af) - Miami

1 0.25* 0.25* 0.25* 0.25* 2.00 0.24 0.80 0.006 199.86 1.40 32.83 0.79 63.33

2 0.85 0.05 0.05 0.05 2.28 0.23 2.22 0.008 200.00 2.33 18.93 0.90 176.89

3 0.05 0.85 0.05 0.05 2.00 0.16 0.80 0.008 100.00 0.79 38.04 0.67 31.75

4 0.05 0.05 0.85 0.05 2.00 0.29 1.32 0.004 100.00 0.71 16.80 1.44 52.27

5 0.05 0.05 0.05 0.85 2.00 0.21 0.80 0.005 100.96 0.75 33.49 0.88 31.79

Base system 3.00 0.44 1.00 0.005 160.00 1.21 10.25 1.01 62.49

Climate: Mediterranean hot summer (Csa) - Rome

1 0.25* 0.25* 0.25* 0.25* 2.00 0.27 0.82 0.006 158.41 1.52 42.34 0.84 51.19

2 0.85 0.05 0.05 0.05 2.23 0.27 1.89 0.008 200 3.00 28.84 0.88 150.16

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 104.96 1.10 50.03 0.65 32.21

4 0.05 0.05 0.85 0.05 2.00 0.34 1.39 0.004 100.00 0.91 19.90 1.39 55.41

5 0.05 0.05 0.05 0.85 2.00 0.21 0.80 0.006 100.00 1.01 46.57 0.76 31.75

Base system 3.00 0.44 1.00 0.005 160.00 1.71 14.52 0.99 62.49



operating hours are compared for all systems. The performance of the base system is calculated based on the base 

system properties which were listed in Tables 4 and 5, i.e., air velocity of 3 (m/s), working air ratio of 0.44, HMX 

height of 1(m), Gap of 0.005 (m) and number of layers of 160. Furthermore, the performance of the SMA and PSO 

systems are calculated using the selected optimum decision variables from the previous section. In general, the COP of 

the PSO and SMA systems are superior than the base system while the identified decision variables by SMA and PSO 

play the key role in introducing the superior optimisation methods. The differences between the SMA and PSO are the 

results of the robust trade-offs made by the optimisation methods by considering the advantageous and disadvantageous 

of the identified optimum decision values.

Fig. 6 shows the hourly COP of three systems over the operating hours in each climate with an enlarged view for 

period of hours for better visualization. As shown in Fig. 6 (a), the COP of the systems in hot summer continental 

climate is demonstrated over the operating hours. As expected, the optimised system outperforms the base system. 

However, COP in PSO outperforms the SMA in both years which is mainly due to the differences in gap, i.e., 0.005 in 

PSO versus 0.004 in SMA, and number of layers, i.e., 196.29 in PSO versus 128.03 in SMA.

Fig. 6







In 2020, the COP of the base system is in the range of 2.28–33.16 while the COP of the improved system by PSO 

ranges from 7.14 to 85.53, and by SMA is in the range of 7.22–70.39. The trend is similar in 2050 where the COP of 

the base system varies from 2.32 to 36.87 while in PSO it ranges from 6.89 to 95.46 and in SMA it is in the range of 

7.05–78.26.

As seen in Fig. 6 (b), the system behaviour in Arid climate is similar to the hot summer continental climate where the 

PSO outperforms the SMA and base system in both years. This is because of the higher working air ratio, larger gap 

and a greater number of layers in PSO which have led to slightly better COP values. In 2020, the COP of the base 

system is in the range of 2.39–43.74. This range is significantly improved when the optimized systems are in operation. 

The COP ranges from 7.37 to 116.78 in PSO system and it is in the range of 7.95–100.61 in SMA system. This trend 

Hourly COP values: (a): hot summer continental; (b): arid; (c): tropical rainforest; (d): Mediterranean hot summer.



continues in 2050 when the COP of the base system is in the range of 2.47–45.72 while in SMA it is in the range of 

8.45–105.37 and the performance is occurred in PSO system where the COP varies from 7.73 to 122.38.

As seen in Fig. 6 (c), the overall COP values of the optimized systems in tropical rainforest climate are improved 

compared with the base system in both years. However, owing to the identical optimum parameters derived by both 

PSO and SMA methods, the performance of both systems are almost same. In 2020, the COP of the base system is in 

the range of 2.31–25.13 while in PSO and SMA systems, it is in the same range of 7.61–72.73. The similar behaviour 

in both optimized systems were expected due to the extremely similar identified optimum operating and design 

parameters. In 2050, the COP of the base system varies from 2.31 to 24.37 while in the systems optimized by PSO and 

SMA, it is in the same range of 7.58–70.37.

In Mediterranean hot summer the optimized systems outperform the base system in terms of COP where the SMA has 

slightly performs better than PSO in both 2020 and 2050. This is because of the differences in optimum values of three 

parameters, i.e., HMX height, gap and number of layers by both methods. As seen in Fig. 6 (d), in 2020, the COP of 

the base system was in the range of 2.83–28.37 while it is improved to the ranges of 8.10–71.23 and 9–09–79.01 by 

PSO and SMA respectively. Same behaviour is occurred in 2050 when the COP of the base system was in the range of 

2.39–27.85 while the SMA and PSO have increased the ranges to 7.97–82.41 and 7.06–73.94 respectively. This 

superior performance by SMA is mainly due to the slightly higher HMX height compared with the SMA.

Three Empirical Cumulative Distribution Function (ECDF)-based statistical distance measures, i.e., Kolmogorov 

Smirnov Test, Kuiper Test, and Anderson Darling Test, are selected to analyse the results. We have focused on COP 

estimation in the four climates in 2020 and 2050. The Table 6 shows the statistical analysis of the PSO and SMA 

results in comparison to the base model. It should be noted that all measures have valid values with the p-value less 

than 0.01. As can be seen in the Table 6, from a statistical point of view, in tropical rainforest 2020 and 2050 both PSO 

and SMA have the same statistical distance from the base model. While in hot summer continental and Arid climates, 

PSO results have a higher rate of statistical differences and in Mediterranean hot summer the SMA results have a higher 

rate of statistical differences.

Table 6

Statistical analysis of the PSO and SMA results.

Test name

PSO vs. Base SMA vs. Base PSO vs. SMA

Hot summer continental (Dwa) - Beijing 2020 – COP Estimation

Kolmogorov Smirnov Test 0.4730 0.4217 0.1239

Kuiper Test 0.4730 0.4217 0.1282

Anderson Darling Test 0.3187 0.2766 0.0313

Hot summer continental (Dwa) - Beijing 2050 – COP Estimation

Kolmogorov Smirnov Test 0.5434 0.4933 0.1472

Kuiper Test 0.5434 0.4933 0.1519

Anderson Darling Test 0.4385 0.3813 0.0403

Arid (BWh) - Doha 2020 – COP Estimation

Kolmogorov Smirnov Test 0.8399 0.7290 0.1705

Kuiper Test 0.8399 0.7290 0.1705

Anderson Darling Test 1.1154 0.9861 0.0763

Arid (BWh) - Doha 2050 – COP Estimation

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



In order to further compare the impact of optimization algorithms on the system performance, the average value of three

objectives, i.e., cooling capacity, COP and wet bulb efficiency, over the operating hours are summarized in Table 7. In

terms of COP, the performance of the optimized systems has significantly improved by both PSO and SMA methods.

However, in terms of cooling capacity and wet bulb efficiency, the changes are not same.

Kolmogorov Smirnov Test 0.8136 0.7147 0.1662

Kuiper Test 0.8136 0.7147 0.1662

Anderson Darling Test 1.0827 0.9489 0.0670

Tropical rainforest (Af) - Miami 2020 – COP Estimation

Kolmogorov Smirnov Test 0.7622 0.7622 0.0035

Kuiper Test 0.7622 0.7622 0.0052

Anderson Darling Test 0.7994 0.7994 0.0000

Tropical rainforest (Af) - Miami 2050 – COP Estimation

Kolmogorov Smirnov Test 0.7756 0.7756 0.0026

Kuiper Test 0.7756 0.7756 0.0052

Anderson Darling Test 0.8240 0.8241 0.0000

Mediterranean hot summer (Csa) − 2020 – COP Estimation

Kolmogorov Smirnov Test 0.5145 0.5378 0.0889

Kuiper Test 0.5145 0.5378 0.0889

Anderson Darling Test 0.2819 0.2974 0.0131

Mediterranean hot summer (Csa) − 2050 – COP Estimation

Kolmogorov Smirnov Test 0.6029 0.6379 0.1032

Kuiper Test 0.6029 0.6379 0.1032

Anderson Darling Test 0.4281 0.4628 0.0181

Table 7

Average value of three performance parameters in base and optimized systems.

Year

Climate
Hot summer continental 

(Dwa)

Arid (BWh) Tropical rainforest 

(Af)

Mediterranean hot summer 

(Csa)

Objective Base PSO SMA Base PSO SMA Base PSO SMA Base PSO SMA

2020

(kW)

1.68 1.71 1.06 2.31 2.08 1.61 1.26 1.41 1.41 1.74 1.78 1.54

COP 14.27 37.56 31.69 19.57 51.78 44.92 10.73 32.70 32.70 14.80 38.55 42.86

1.01 0.98 1.23 1.00 0.97 1.07 1.02 0.86 0.86 0.99 0.95 0.85

2050

(kW)

1.67 1.72 1.06 2.32 2.10 1.64 1.26 1.42 1.41 1.60 1.65 1.42

COP 14.21 37.51 31.67 19.66 52.30 45.52 10.68 32.71 32.71 13.61 35.71 39.73

1.01 0.98 1.23 1.00 0.98 1.08 1.03 0.86 0.87 1.00 0.97 0.87

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



In 2020, the cooling capacity of the PSO system in hot summer continental, tropical rainforest and Mediterranean is 

better than the base system while it is almost unchanged in Arid climate. However, for the optimized system by SMA, 

except in tropical rainforest where the cooling capacity is better than the base system, in other climates the cooling 

capacity is lower than the base system. Although the operating hours in 2050 has increased in all climates but the 

behaviour of the systems remain exactly the same as 2020.

In terms of wet bulb efficiency, the performance of the systems follows the same trend in both 2020 and 2050. In hot 

summer continental, arid and Mediterranean climates, the wet bulb efficiency of the optimized system by PSO is 

slightly decreased (almost unchanged) but in tropical rainforest it is decreased by 16% by reaching the average value of 

0.86. The performance of the SMA system, compared with the base system, outperforms in hot summer continental and 

Arid climates while it holds the lower average values in tropical rainforest and Mediterranean hot summer climates.

As listed in Tables 4 and 5, the surface area of the base system with 200 layers is 62.49 (m
2
) whereas the optimized 

systems have lower values in some climates. For instance, in the selected scenario (No.1), for SMA system, except 

tropical rainforest climate in which the surface area is same as the base system, in all other climates, owing to a smaller 

number of layers, it has decreased. However, in the PSO system, the surface area is only decreased in Arid climate, i.e., 

53.78 (m
2
) while in all other climates the it is almost unchanged.

6.4 Energy saving potential of the optimized systems

The power consumption of the GIDPC considering the forecasted operating hours in 2020 and 2050 is analysed to 

assess the energy saving potential of the optimized systems. The power consumption values are calculated for the three 

existed systems, i.e., base, optimized by PSO and optimized by SMA. The basis of the calculations is the rate of power 

consumption for each system which is calculated considering the system performance in terms of cooling capacity and 

COP. The rate of power consumption for the base system is around 117.5 W while it is around 45 W for the PSO 

system and around 33 W for SMA system. The values are in line with the presented cooling capacity and COP values 

for each of three systems.

Based on the operating hours in each climate, the total power consumption is calculated in both 2020 and 2050. As 

seen in Fig. 7 (a), in the hot summer continental climate in 2020, the power consumption is 211.00 (kWh) for the base 

system whereas it has reduced to 80.55 (kWh) and 59.07 (kWh) for PSO and SMA respectively. In spite of higher 

operating hours in 2050, the trend is same and the optimized systems perform economically. The power consumption of 

the base system is 236.46 (kWh) whereas it is 90.27 (kWh) for the PSO and 66.19 (kWh) the SMA systems. This 

means that in both years the power savings of 61.82% and 72.00% can occur by the PSO and SMA respectively.

Fig. 7



In arid climate, as shown in Fig. 7 (b), the same story is predicted where the power consumption of the base system in 

2020 with 5486 operating hours is 647.34(kWh) while PSO system consumes 66.10% less energy and the SMA 

consumes 69.49% less energy. In 2050, the power consumption by the base system is estimated to be 685.69(kWh) 

while the PSO and SMA systems are estimated to consume 453.25(kWh) and 476.49(kWh) less power respectively.

Owing to the similar optimum operating and design parameters, the power consumption by both optimized systems in 

tropical rainforest climate is almost same. As seen in Fig. 7 (c), the power consumption by the base system in 2020 is 

572.01(kWh) while 63.24% less power is consumed by optimized systems. In 2050 the power consumption by the 

base system is 635.75(kWh) while for the both optimized systems is 233.73 (kWh).

As seen in Fig. 7 (d), in Mediterranean hot summer climate in 2020, the power consumption of the base system is 

estimated to be 165.67(kWh) whereas it has reduced to 65.13 (kWh) and 50.83(kWh) for PSO and SMA systems 

respectively. In 2050, the base system is estimated to consume 205.80(kWh) power while PSO and SMA systems 

consume 80.91(kWh) and 63.25(kWh) power respectively.

The aforementioned explanations revealed that in general, the power consumption of all systems will increase by 2050 

which is mainly due to the more operating hours caused by the global warming. Although this increase is valid for both 

optimized systems but the optimization has resulted in significant power saving.

7 Conclusion

The SHapley Additive exPlanations (SHAP) is used for the Guideless Irregular Dew Point Cooler (GIDPC) to 

illustrate the features contributions on the predicted parameters. In addition, two Evolutionary Optimisation (EO) 

algorithms, i.e., Slime Mould Algorithm (SMA) and Particle Swarm Optimization (PSO) are employed to optimise the 

system performance in 2020 and 2050. Four climates with one representative city for each are selected to compare the 

performance of the base system with optimized systems. The climate data revelaed that in general, the operating hours 

increase from 2020 to 2050 as a result of the global warming. However, it is possible to reduce the power consumption 

through the optimisation. The main outcomes of this reseach study is summarised as follows:

• The optimization results revealed that in general, performance of both optimized system in terms of 

COP outperform the base sysetem in all climates in both 2020 and 2050.

• The statistical analysis on the COP values revealed that, in tropical rainforest 2020 and 2050 both PSO 

Annual power consumption in 2020 and 2050: (a): hot summer continental; (b): arid; (c): tropical rainforest; (d): Mediterranean hot 

summer.



and SMA have the same statistical distance from the base model whereas in hot summer continental and 

Arid climates, PSO results have larger statistical differences. But in Mediterranean hot summer the SMA 

results have a higher rate of statistical differences.

• The surface area of the optimized system by SMA’s selected scenario (No.1) is same as the base system 

62.49 (m
2
) in tropical rainforest climate whereas it has decreased to the values of 40.70(m

2
), 44.99(m

2
), 

and 51.19(m
2
) in hot summer, arid and tropical Mediterranean climates. But in the optimized system by 

PSO, it has only decreased in the Arid climate, i.e., 53.78(m
2
) and it is almost unchanged in all other 

climates.

• In spite of more operating hours in 2050, the power consumption of the optimized systems is estimated 

to substantially decrease. The power consumption of the base system in all climates was in the range of 

165.67–647.34 (kWh) while it has reduced to the ranges of 65.13–234.09 (kWh) and 50.83–209.46 

(kWh) by the PSO and SMA systems respectively. This has resulted in power savings of up to 72%, 

69.49%, 63.24%, and 69.21% in hot summer continental, Arid, tropical rainforest and Mediterranean 

hot summer climates respectively.

8 Future works

In future works, one primary idea would be employing different mutation and acceleration mechanisms to improve the 

SMA performance. In addition, with the purpose of feature selection, the binary study based on the SMA. can be 

conducted. SMA can be a potential method to optimise the parameters of different ML methods such as SVM. 

Additionally, the advanced pareto-front optimisation can be developed for the new SMA method.
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Highlights

• Explainable Artificial Intelligence is used to interpret features contributions.

• New Slime Mould Algorithm is developed as the primary optimisation method.

• Particle Swarm Optimisation is considered as the comparing algorithm.

• Hourly weather data are produced using a high emission scenario in 2020 and 2050.

• Power savings of up to 72% is achievable by operation of optimized systems.
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