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Abstract

The chondrocranium is the cartilage component of the vertebrate braincase. Among jawed vertebrates it varies greatly in structure, miner-
alisation, and in the extent to which it is replaced by bone during development. In mammals, birds, and some bony fish, most of the chon-
drocranium is replaced by bone whereas in lizards, amphibians, and chondrichthyan fish it may remain a significant part of the braincase
complex in adulthood. To what extent this variation relates to differences in skull biomechanics is poorly understood. However, there have
been examinations of chondrocranium histology, in vivo strain, and impact on rostrum growth following partial removal of the chondro-
cranium. These studies have led to suggestions that the chondrocranium may provide structural support or serve to dampen external loads.
Advances in computing-power have also facilitated an increase in the number of three-dimensional computer-based models. These models
can be analysed (in silico) to test specific biomechanical hypotheses under specified loading conditions. However, representing the material
properties of cartilage is still problematic because these properties differ according to the speed and direction of loading. The relationship
between stress and strain is also non-linear. Nevertheless, analyses to date suggest that the chondrocranium does not provide a vertical sup-
port in lizards but it may serve to absorb some loads in humans. We anticipate that future models will include ever more detailed representa-
tions of the loading, anatomy, and material properties, in tandem with rigorous forms of model validation. However, comparison among a
wider range of vertebrate subjects should also be pursued, in particular larvae, juveniles, and very small adult animals.
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Introduction

The chondrocranium is the cartilage portion of the verte-
brate braincase (DE BEER, 1930, 1937; BELLAIRS & KAMAL,
1981; Evans, 2008). It varies greatly among taxa with
respect to its frame-like structure, mineralisation, as well
as when and to what extent it is replaced by bone dur-
ing ontogeny (DE BEER, 1930). There is also variation in
how much of the chondrocranium, and associated endo-

chondral bone, contributes to the adult braincase (neuro-
cranium) compared to the dermal roofing bones (CouLy
et al., 1993). Variation in chondrocranium shape and de-
velopment has been extensively documented since the
19 century (e.g., PARKER, 1883; Gaurp, 1900; HowEs &
SwiNNERTON, 1901; MEAD, 1909; DE BEER, 1930; PALUH &
SHEIL, 2013; HaAs ef al., 2014). This work, coupled with
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Fig. 1. A simplified phylogeny of Metazoa showing the general pattern of character distribution for cartilage, bone, and the chondrocra-
nium (DE Begr, 1930; BELLAIRS & KamaL, 1981; CoLe & HaLL, 2004a, b; DONOGHUE et al., 2008; Zuu, 2014; ZHANG et al., 2006; see also
the excellent recent reviews Kaucka & ApamMeyko, 2019 and GiLuis, 2019). For each of the vertebrate groups, we have scored the six major

components of the chondrocranium to reflect the extent of bone replacement during growth. These scores should be viewed as tentative and

are admittedly crude and problematic for appreciating the full breadth of variation within clades. Dagger = extinct.

data from fossils (e.g., ATKINS ef al., 2009; Znu, 2014),
histology (e.g., CoLE & HaLL, 2004a, b), and molecular
biology (e.g., ZHANG et al., 2006; Kaucka & ADAMEYKO,
2019; GiLLis, 2019), provides an understanding of chon-
drocranium character distribution, evolution, and dispar-
ity (Fig. 1).

The chondrocranium is a vertebrate character but the
evolution of cartilage and its genetic regulatory network
has a much deeper history within Bilateria (and possibly
Metazoa) (CoLE & HaLr, 2004a, b; RYCHEL & SWALLA,
2007; CoLE, 2011; Kaucka & Apamevko, 2019). Carti-
lage-like connective tissues are known to occur within
Arthropoda, Mollusca, Brachiopoda, and Annelida where
they often serves to protect the central nervous system and
support the feeding apparatus (CoLe & HaLL, 2004a, b;
RYcHEL et al., 2007; Kaucka & ADAMEYKO, 2019; GILLIS,
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2019). Some of these tissues are cellular and histologi-
cally indistinguishable from the cartilage found in verte-
brates (CoLE & HALL, 2004a, b) and, in some taxa, they
may even involve the same genes and signalling path-
ways (TarazoNa et al., 2006). However, the patchy
phylogenetic distribution of cellular cartilage is sugges-
tive of multiple independent or parallel origins (CoLE &
HaLt, 2004a, b; Girus, 2019). A cartilage-like tissue is
present in cephalochordates where it supports the phar-
ynx. However, this tissue lacks cells and does not form
a framework to protect the sensory structures (RYCHEL &
SwaLra, 2007; FisH, 2019).

The origin of the chondrocranium in vertebrates is
linked to the origin of neural crest cells (DONOGHUE ef al.,
2008; SQUARE et al., 2020; but see ABITuA et al., 2012)
and the capacity to generate type II collagen (ZHANG
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Fig. 2. A schematic diagram of a lizard-like chondrocranium (redrawn and
modified from BELLAIRS & KaMAL, 1981). A, dorsal view of early stage show-
ing the six main components of the chondrocranium: trabeculae cranii (tr),
nasal cartilage of the ethmoid capsules (nca), otic capsule (otc), orbital carti-
lage (orc), parachordals (pch) fused to form the basal plate, and the vertebral
elements (ve) which includes the occipital and preoccipital arches. The nasal
cartilage, orbital cartilage, and otic capsule are transparent on the right side.
B, dorsal view of later stage. The nasal cartilage, orbital cartilage, and otic
capsule are absent on the right side. C, left lateral view of a later stage show-
ing also parts of the mandibular arch and location of some cranial nerves.
Note that some components are artificially separated. — Abbreviations: 2,
optic nerve and fenestra; 5, trigeminal nerve roots in trigeminal notch (incisu-
ra prootica); 7, facial nerve; 9, glossopharygeal nerve; 10, vagus nerve; 12,
hypoglossal nerve foramina; a, region of apposition between otic capsule and
basal plate; ac, aditus conchae; bc, basicapsular commissure; bf, basicranial
fenestra; bpl, basal plate; bpt, basipterygoid process; ¢, occipital condyle; cp,
crista parotica; cr, crista sellaris; fn, fenestra narina; fen, fenestra epiotica;
fo, fenestra olfactoria; ica, internal carotid artery; is, interorbital septum; Mc,
Meckel’s cartilage; mf, metotic fissure; n, notochord; ns, nasal septum; oa,
occipital arch; oq, otic process of the quadrate; pac, pila accesoria; pan, pila
antotica; par, palatine artery; pas, ascending process of the pterygoquadrate
(epipterygoid); pat, anterior process of tectum; pf, pituitary fenestra; pfc,
prefacial commissure; pi, pituitary location; pme, pila metopica; pmp, pos-
terior maxillary processes; poa, preoccipital arches; ppr, pterygoid process
of the pterygoquadrate; pq, pterygoquadrate (intermediate part); ps, planum
supraseptale; q, quadrate; sc, sphenethmoid commissure; tma, taenia margin-
alis; tp, tectum posterius; ts, tectum synoticum.
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et al., 2006). Hagfish and lampreys (Cyclosto-
mata), as the only living jawless vertebrates, are
important for understanding the evolution of the
chondrocranium. However, they differ from one
another and neither necessarily represents the
ancestral condition (Oisi ef al., 2013; Kaucka &
ADAMEYKO, 2019). They both possess an organ-
ised cartilage framework that provides structure
to the sensory organs and support for the feed-
ing apparatus (CourtouLD et al., 2003; MARTIN
et al., 2009; Orsi et al., 2013; Kaucka & Apa-
MEYKO, 2019), but it is difficult to find obvious
shared homologies between parts from either
framework in cyclostomes, and that of jawed
vertebrates (gnathostomes) (Oist et al., 2013).
Fossils of extinct jawless fish, such as osteo-
stracans, that lie on the stem of gnathostomes,
exhibit armour-like plates of dermal bone and a
braincase preserved in perichondral bone (JAN-
VIER, 2008; KURATANI & AHLBERG, 2018).

Among gnathostomes, the chondrocranium
has six recognisable components in develop-
ment (Fig. 2A; DE BEER, 1937; BELLAIRS & KaA-
MAL, 1981):

1.) the nasal capsules (which support the nasal
apparatus and may form the ethmoid plate);

2.) the orbital cartilages (which are located
medial to the eyes);

3.) the otic capsules (which contain the inner
ear);

4.) the parachordals (which form the posterior
base of the braincase);

5.) a pair of rod-like trabeculae cranii that sit
between the parachordals and nasal cap-
sules beneath the orbital cartilage and inter-
orbital septum;

6.) the occipital and preoccipital arches (which
enclose the posterior part of the brain).

The trabeculae cranii eventually meet in the
midline anteriorly to form the internasal septum
(BELLAIRS & KaMAL, 1981). The chondrocranium
includes more conspicuous sheet-like compo-
nents and provides more complete support of the
neurosensory apparatus (Kaucka & ADAMEYKO,
2019). Nevertheless, within gnathostomes there
is considerable variation to the extent and tim-
ing of the replacement of the chondrocranium
by bone.

In extant chondrichthyan fish (sharks, rays,
and chimaeriforms), the chondrocranium pro-
vides the bulk of the skull including the dor-
sal roof of the braincase (MaIsgy, 2013; MARA
et al., 2015; CoATes et al., 2017). The cartilage
is not replaced by endochondral bone even in
adults and dermal bone is entirely absent. How-
ever, the outer layer of chondrichthyan cartilage
incorporates a shell of mineralised blocks or
tesserae that provides stiffness (DEaN & Sum-
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MER, 2006; MAISEY, 2013; PORTER et al., 2013; Liu et al.,
2014). It may also have internal calcified struts (Mai-
sEY, 2013). Fossil and molecular evidence indicates
that this absence of bone was not the ancestral condi-
tion for Chondrichthyes (DONOGHUE et al., 2006; Zuu
etal., 2013; Znu, 2014; LoNG et al., 2015; GiLLis, 2019;
Brazeau et al., 2020). Among chondrichthyans there is
significant variation in the shape of the chondrocranium
as well as how it is connected to the upper and lower jaws
(e.g., MIYAKE ef al., 1992; WALLER & BARrANES, 1991; Hu-
BER et al., 2005; Howarp et al., 2013; Mara et al., 2015).
There is also variation in levels of mineralisation that is
potentially related to differences in loading during biting
(WALLER & BARANES, 1991; HUBER et al., 2005).

Among (non-tetrapod) osteichthyan fishes, the chon-
drocranium may be extensively replaced by bone during
ontogeny but in a variable sequence (NORMAN, 1926; Pat-
TERSON, 1975; BASDEN et al., 2000; MATTOX et al., 2014;
Kusicek & Conway, 2015). There may also be variation in
the location of gaps between the eventual endochondral
elements (ParTeERsON, 1975). The dermal roofing bones
form the roof of the braincase. Within Actinopterygii
(ray-finned fish) there is variation in the shape and os-
sification of the braincase. Among end members of the
least nested lineages, such as Amia (Amiidae), the chon-
drocranium remains largely cartilaginous, with regions of
endochondral ossification (e.g., otic and occipital regions)
(ALLs, 1897; GRANDE & Bemis, 1998), whereas the chon-
drocranium of Polypterus (Polypteridae) is more exten-
sively replaced by bone (ALLIs, 1922). Sturgeons (Acipen-
seridae) and paddlefish (Polyodontidae) have a braincase
that is largely cartilaginous and lined by perichondral os-
sifications (HiLTON et al., 2011; WARTH et al., 2017).

Sarcopterygia includes tetrapods and two living lin-
eages of lobe-finned fishes: coelacanths and lungfishes.
Ancestrally, the neurocranium of sarcopterygians was di-
vided into two halves by an intracranial joint and was ex-
tensively ossified, so that the neurocranial anatomy is rel-
atively well-known for different fossil lobe-finned fishes
and early tetrapods (Lu et al., 2012, 2016; AHLBERG et al.,
1996; CLack, 1998; Downs et al., 2008; PArRDO et al.,
2014). Living lobe-finned fishes, however, diverge from
this ancestral condition and large parts of the chondrocra-
nium remain cartilaginous. The evolution of coelacanths
is marked by an extensive reduction and a fragmentation
of the endochondral ossification centres, which are sepa-
rated by large cartilaginous regions in Latimeria and in
Mesozoic coelacanths (Forey, 1998; DUTEL ef al., 2019).
It has been proposed that the remaining ossification cen-
tres are located in regions of high loading in Latimeria
(Forey, 1998), but this hypothesis has yet to be tested.
The skull of living lungfishes (three genera; Neocerato-
dus, Lepidosiren and Protopterus) is extensively modi-
fied with respect to that of fossil lobe-finned fishes, and
the neurocranium of living genera consists largely of
cartilage (CLEMENT & AHLBERG, 2014). Here as well, this
condition is the result of a secondary reduction as Devo-
nian lungfishes display a well-ossified lateral wall to their
neurocranium.
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In amphibians (frogs, salamanders, caecilians) the
chondrocranium provides a crucial framework to the
head in many larval forms and there is extensive vari-
ation in structure among groups (Hicton, 1950; SokoL,
1981; Haas et al., 2006; Roc¢ex et al., 2016; KRINGS ef al.,
2017a, b; THEsKA et al., 2019). Differences in the timing
of replacement by bone have been used to assess phylo-
genetic relationships (e.g., LArsoNn & DE SA, 1998) but
these differences presumably also have some relationship
to function. The tadpoles of frogs can be predatory and or
burrow (e.g., CanpioTi, 2007; Haas ef al., 2014; KLINGER-
STROBEL et al., 2020). Phylogenetic studies involving
fossil data suggest that the evolution of modern clades
is associated with a reduction in braincase ossification
(ATKINS ef al., 2019), e.g., loss of the basioccipital, loss
of the basisphenoid and reduction of the sphenethmoid to
a paired element.

Within amniotes a general chondrocranial structure
is evident from which homologies can be inferred (Fig.
2BC; DE BEER, 1937; BELLAIRS & KaMAL, 1981; WITMER,
1995; WERNEBURG & YARYHIN, 2019) but there is varia-
tion in the shape and presence of interorbital components
such as the taenia marginalis (tma), pila metoptica (pme),
and pila antotica (pan) (DE BEgr, 1937; PALuH & SHEIL,
2013; SHEIL & ZAHAREWICZ, 2014).

In lepidosaurs (snakes, lizards, and tuatara) a signifi-
cant portion of the chondrocranium may be retained into
adulthood (KamaL & ABDEEN, 1972; BELLAIRS & KAMAL,
1981). Adult lizards generally possess the nasal capsules,
a nasal septum (derived from the anterior ends of the tra-
beculae cranii), an interorbital septum and central frame-
work of slender bars (derived from the orbital cartilage
and posterior ends of the trabeculae cranii) (e.g., Gaurp,
1900; DE BEERr, 1930; BELLAIRS & KaMAL, 1981; ZADA,
1981; Huai et al., 2010; HERNANDEZ-JAMES, 2012; Y AYHIN
& WERNEBURG, 2018). However, there is also significant
variation among lizards with respect to shape and miner-
alisation (PEarRsoN, 1921; DE BEER, 1930, 1937; KamaL
& ABDEEN, 1972; BELLAIRS & KaMAL, 1981; Zapa, 1981;
Huai, 2010; HERNANDEZ-JAMES, et al., 2012; YAYHIN &
WERNEBURG, 2018): the pila metoptica of the orbital carti-
lage may be replaced with an orbitosphenoid bone (BELL-
AIRS & KamaL, 1981; Evans, 2008); the pila antotica may
be replaced by a pleurosphenoid; the trabeculae cranii
may be replaced by a septosphenoid; parts of the planum
supraseptale may be replaced by ventral processes from
the frontal bones; and a ventral portion of the interorbital
septum may become supported by a dermal parasphenoid
rostrum (= cultriform process, BELLAIRS & KamaL, 1981;
Evans, 2008). Such variation is suggestive of a relation-
ship to function, skull mechanics, and life style (DE BEER,
1937; BELLAIRS & KAMAL, 1982; JoNEs et al., 2017; Y AY-
HIN & WERNEBURG, 2018) given the location of the carti-
lage in relation to the kinetic cranial joints (e.g., mesoki-
nesis, metakinesis) of some lizards (HALLERMANN, 1992;
PAYNE et al., 2011; MEzzasALMA et al., 2014). Similarly,
the structural relationship between the nasal cartilage,
trabeculae cranii, and orbital cartilage are important to
rhinokinesis in snakes (CUNDALL & SHARDO, 1995). As
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previously noted, it seems unlikely that kinesis could
have evolved without associated evolution of the chon-
drocranial structure (BELLAIRS & KamaL, 1982; CUNDALL
& SHARDO, 1995).

In turtles there is significant variation in shape among
clades and large parts of the orbital and nasal cartilages
persist into adulthood (Kuratani, 1999; PALuH & SHEIL,
2013; SHEIL & ZAHAREWICZ, 2014). Compared with oth-
er amniotes, turtles are characterised by closure of the
fenestra epiotica, expansion of the planum supraseptale,
and reduction of the taenia medialis (PALuH & SHEIL,
2013; SHEIL & ZAHAREWICZ, 2014). Among crocodylians
differences in chondrocranial structure have been re-
corded between species (e.g., WERNEBURG & YARYHIN,
2019; FErNANDEZ-BLANCO, 2019) and a nasal septum re-
mains present in adulthood (KLENNER ef al., 2016). There
is significant variation among birds but replacement by
bone is generally early and extensive (ZAHER & ABU-TAI-
RA, 2013; Huept et al., 2019). The nasal capsule and as-
sociated conchae are one of the few regions that remain
cartilaginous (BoUuRKE & WITMER, 2016). As in lepidos-
aurs, some variation in chondrocranium structure may
be associated with cranial kinesis (ZAHER & ABU-TAIRA,
2013).

Replacement of the chondrocranium in mammals is
generally extensive with often only the nasal cartilage re-
maining into adulthood (SANCHEZ-VILLAGRA & FORASIEPI,
2017; LAVERNIA et al., 2019; MAIER, 2020; SMITH ef al.,
in press). However, the nasal cartilage shows significant
variation in form (BRUINTIES et al., 1998; HUpp1 ef al.,
2018). Much of the variation of facial cartilages among
mammals appears related to sensory systems, communi-
cation, thermoregulation, and respiration (Boyp, 1975;
HiLcenius, 1992; MEeisami & BHATNAGAR, 1998; Huppi
et al.,2018; WROE ef al., 2018; MaIERr, 2020) but what it
means for regional and total skull biomechanics in these
taxa remains largely unexplored. In a recent review of
the chondrocranium, it was suggested that plasticity of
facial cartilages has reached its peak in humans (e.g.,
Kaucka & ApamEyko, 2019: p. 10), but the variation in
shape and mineralisation exhibited by other mammals,
particularly bats (e.g., GOBBEL, 2000; CurTIs & SIMMONS,
2018) makes this suggestion seem potentially anthropo-
centric.

Despite the wide structural variation of the chon-
drocranium among vertebrates its biomechanical role
remains poorly understood (Jones et al.,2017). This
lack of analysis restricts functional interpretations. A
more accurate representation of soft tissue structures
in biomechanical models is also crucial for a more
complete understanding of vertebrate skull mechan-
ics (e.g., ZHANG et al., 2001; Hu et al., 2003; Kupczik
et al., 2007; MoAZEN et al., 2009; GRONING et al., 2011;
CurrTis et al., 2011a, b, 2013; MANUEL et al., 2014; TsE
etal., 2015; JonEs et al., 2017; LiBBY et al., 2017; Mc-
CorMACK et al., 2017; LippHAUS & WiTZEL, 2020). Here
we review previous studies of the biomechanical role of
the chondrocranium and provide some suggestions for
future research.

SENCKENBERG

Experimental removal of the nasal cartilage

There have been several studies investigating the impact
of removing part of the nasal cartilage in mammals, e.g.,
in rabbits (WEXLER & SARNAT, 1965; SARNAT & WEXLER,
1966; SArRNAT, 2008), rats (Moss et al., 1967, GANGE &
JounstoNn, 1974; Copray, 1986), and guinea pigs (STEN-
STROM & THILANDER, 1970). Some of these studies involved
large sample sizes and different experimental combina-
tions of removal of the nasal cartilage and surrounding
structures (STENSTROM & THILANDER, 1970). Typically,
the experimental animals were early juveniles. After a set
period of time the experimental animals were measured
against control animals. The results suggest that removal
of the cartilage does not prevent snout (rostral) growth but
growth is abnormal (KEMBLE, 1973; GANGE & JOHNSTON,
1974; CorrrAY, 1986). The nasal bones are often found to
be ventrally displaced and this might lead to problematic
malocclusion (STENSTROM & THILANDER, 1970). The rare
absence of the nasal cartilage in young humans can simi-
larly lead to abnormal growth, particularly of the max-
illa (KemBLE, 1973; but see BERGLAND & BORCHGREVINK,
1974). These observations have led to suggestions that the
nasal septum is not necessary for growth to occur but is
instead required for maintaining structural integrity of the
rostrum during growth. Rather than a site of growth, the
nasal septum may serve as an important vertical support
strut (Moss et al. 1968; STENSTROM & THILANDER, 1970;
KEeMBLE, 1973). Removal of the nasal septum in adult rab-
bits has no obvious effect indicating that the cartilage has
no major structural role in adult animals (SARNAT, 2008).
More recent research on mammalian models has provided
more detailed evidence of how the nasal septum is related
to mammalian skull growth (e.g., MCBRATNEY-OWEN et al.,
2008; Kaucka et al., 2018). To what extent these experi-
ments on small mammals can be used to make general in-
ferences for other vertebrates is uncertain. Similar experi-
ments on non-mammalian taxa could help to address this
issue but as with all animal experiments there are ethical
concerns to evaluate.

Strain in vivo

Strain gauges can be used to measure the surface strain of
an anatomical structure due to loading (e.g., BuCKLAND-
WRIGHT, 1978; Ross & HYLANDER, 1996; THOMASON et al.,
2001; Ross & METZGER, 2004; MARKEY et al., 2006; CUFF
et al., 2015). There has been at least one investigation
of nasal cartilage using strain gauges (AL DAYEH ef al.,
2009). It involved miniature pigs (Sus scorfa), which
are model organisms for mammalian skull biomechan-
ics and have contributed greatly to our understanding of
chewing, sutures, and strain distribution (e.g., HERRING
& TENG, 2000; RAFFERTY ef al., 2003). Experimental ani-
mals were anesthetized and strain gauges were applied to
the septoethmoid junction and the nasofrontal suture, and
electrodes were inserted into the jaw muscles (AL DAYEH
et al., 2009). After a period of recovery, the animals were
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encouraged to eat and the electrodes were used to meas-
ure muscle activity (AL DAYEH et al., 2009). The animals
were then re-anesthetised and fitted with a third strain
gauge along the anterior end of the nasal cartilage. Whilst
the animals were still anesthetised, the jaw muscles were
tetanized to stimulate contraction (AL DAYEH efal.,
2009). The in vivo strain measurements indicated that the
septum was subject to loading. Relative timing suggested
that this loading was due to occlusion rather than muscle
contraction. However, compression was anteroposterior
rather than dorsoventral. No evidence was found to sup-
port a vertical strut role for the septum. Instead, a role
related to absorbing dynamic strains that arise from feed-
ing was suggested (AL DAYEH et al., 2009).

Histology and Material Properties

The chondrocranium is composed of cartilage, which is
a type of connective tissue that can be both tough and
flexible. Generally, it comprises water, collagen, proteo-
glycans, and cartilage cells: chondrocytes (LiTTLE, 2011).
Among mammals, cartilage may be classified as hyaline,
elastic, or fibrous (CoLe & HaLL, 2004a). Hyaline car-
tilage has a metachromatic matrix, rounded cells, and
extracellular collagen. Elastic cartilage is similar but the
protein elastin is present in the extracellular matrix. Fi-
brocartilage, has a higher fibrous content (CoLE & HALL,
2004a; GiLLis, 2019). Further variation is found within
fish related to the proportion of cellular to intercellular
matrix as well as the precise content of the intercellular
matrix (BEnjamiN, 1990; DeaN & Summer, 2006; Wit-
TEN et al., 2010). Among elasmobranch fishes, blocks of
mineralisation connected by ligaments to form tesselated
cartilage (PORTER et al., 2013; Liu et al., 2014).

The microstructure and mineralisation of cartilage
is related to the loading to which it is subjected in life
(CArTER & WonNG, 2003; AL Daven & HEerrING, 2014).
Therefore, the microstructure of the chondrocranium in a
particular taxon may provide indications of its mechani-
cal role. The cartilage found in the tetrapod chondrocra-
nium is generally hyaline cartilage (BEnjamiN, 1990; AL
Daven & HERRING, 2014; GRIFFIN ef al., 2016a; KLENNER
et al., 2016). It is avascular and includes large quantities
of type II collagen but its exact composition varies among
taxa and anatomical location (CoLE & HALL, 2004a, b; AL
DayeH & HERRING, 2014; XA ef al., 2012). A histologi-
cal examination of the nasal septum in crocodiles found
that it is associated with an underlying cord of highly
elastic tissues. This structure might resist tensile strains
and stabilize the long-axis of the rostrum during feeding
(KLENNER et al., 2016). Similarly, regional differences
in the pig septum appear to support its possible role in
dampening stress from feeding loads (AL DAYEH & HER-
RING, 2014).

The material properties of the chondrocranium can
be estimated from measurements on cartilage using, for
example, nano-indentation (HocH et al., 1983; EBEN-
STEIN & Pruitt, 2006), drop loading (JEFFEREY & ASPDEN,
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2006), quasi-static loading (e.g., PORTER ef al., 2006), and
tensile extension (RicHMON ef al., 2005). Reported val-
ues for Young’s modulus (or stiffness) of cartilage range
from 0.4 to 564 MPa (e.g., FLaM, 1974; PORTER ef al.,
2006; EDELSTEN et al., 2010; CoLumBo et al., 2014; AL
Daven & HERRING, 2014; GRIFFIN ef al., 2006a; PETERS
etal., 2017; CurcLirFE & DEFRrATE, 2020). This varia-
tion arises primarily from the rate and direction of load-
ing but is also related to the collagen content, degree
of mineralisation, hydration, and specimen preparation
(LANGELIER & BuscuMmann, 2003; Gupta ef al., 2009; PE-
TERS et al., 2017; CHANG et al., 2020). The structure of
cartilage means it is stronger and stiffer in compression
than in tension (CARTER & WoNG, 2003). The response
to compressive loading is governed largely by defor-
mation of the highly hydrated matrix causing water to
be squeezed out, the anionic charges on proteoglycans
being brought closer together and stress-transfer to the
tensile reinforcing collagen fibrils (WRIGHT & Dowson,
1976; LiTTLE et al., 2011). The response is non-linear and
depends strongly on the rate of loading. Some samples
may appear stronger in tension if they have a surround-
ing layer of perichondrium (WESTREICH et al., 2007); the
perichondrium itself may bear some of the load or it may
constrain the deformation of the cartilage thus apparently
increasing the modulus by restricting Poisson’s ratio ef-
fects (Asppen, 1990). Cartilage may be considered as a
biological fibre-composite material in which the collagen
fibres provide tensile reinforcement to a weak, highly-
hydrated proteoglycan gel (HukiNs & AsPDEN, 1985;
AsPDEN, 1994). The anisotropic material properties of
cartilage are due to the anisotropic arrangements of the
constituent collagen and proteoglycans (AsPDEN, 1994;
Xia etal., 2012; Al Daven & HERRING, 2014; KLENNER
et al., 2016). Studies have examined the relationship be-
tween histology and tensile failure for articular cartilage
(e.g., Sasazaki et al., 2006) and found that the collagen
fibres are able to reorientate relative to tensile strains.

Most analyses of cartilage have focused on mamma-
lian articular cartilage (unmineralised hyaline cartilage) to
better understand the biomechanics of postcranial joints
(e.g., HocH et al., 1983; CARTER & WONG, 2003; FERGUSON
et al., 2003; LANGELIER & BuscHMANN, 2003; BURGIN,
2003; MANSOUR, 2004; SAsAzAKI et al., 2006; EDELSTEN
etal.,2010; LITTLE et al., 2011; BURGIN et al., 2014). Due
to the interstitial fluid flow within cartilage the modulus
is strongly time-dependent and studies using impact load-
ing provide Young’s modulus values of 50 to 200 MPa
(JEFFREY & ASPDEN, 2006; BURGIN ef al., 2014), whereas
those using slow loading report values that are typically
below 10 MPa (e.g., HocH et al., 1983; Jin & Lewis, 2004;
PETERS et al., 2017).

Values for other types of vertebrate cartilage are
available such as nasal, septal, and alar cartilages (e.g.,
ZAHNERT et al., 2000; Hu et al., 2003; PORTER et al., 2006;
Gurta et al., 2009; AL DAYEH & HERRING, 2014; GRIFFIN,
20164, b). These tissues have values that are less than 35
MPa and frequently less than 5 MPa (WESTREICH et al.,
2007; AL DAYEH & HERRING, 2014; CoLuMBoO et al., 2013;
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GRIFFIN et al., 2006a; CHANG et al., 2020). Some regional
differences may exist (GRIFFIN ef al., 2006a) as well as
differences relating to the direction of loading (RicHmoN
et al., 2006). In pigs, the anterior nasal septum was found
to have a higher compressive stiffness and lower tensile
stiffness than the posterior portion (AL DAYEH & HERRING,
2014: about 5 vs. 3 MPa and 0.5 vs. 0.8 MPa). Stiffness
values are also available for human auricular cartilage
(ZAnNERT et al., 2000; WESTREICH ef al., 2007; GRIFFIN
et al., 2016b). Again, there are some regional differences
but stiffness is generally less than 3 MPa (GRIFFIN et al.,
2016b) and rarely as high as 25 MPa (WESTREICH et al.,
2007). The higher values are likely related to a surround-
ing layer of perichondrium (WESTREICH et al., 2007).

Mineralisation adds stiffness to cartilage such that
quasi-static loading of mineralised cartilage (elasmo-
branch vertebrae) has Young’s modulus values as high
as 564 MPa (PorTER et al., 2006). The Young’s modulus
of the chondrocranium of chondrichthyan fish (tesselated
cartilage) varies significantly between taxa (PORTER ef al.,
2013). In some species it may still be less than 50 MPa
but in others it may exceed 700 MPa, or even in some
regions, and under certain loading conditions, begin to
approach the stiffness of bone (PorTeR et al., 2013; Liu
et al.,2014; WROE et al., 2008).

Biomechanical modelling

Finite element analysis (FEA) of virtual computer mod-
els of the skull provides a powerful tool for testing specif-
ic biomechanical hypotheses (e.g., MoAazeN et al.,2008,
2009; CurTis et al., 2011a, b; MARCE-NOGUE ef al., 2015).
The approach can involve many steps (Fig. 3). In brief,
it involves building a model of the anatomical structure,
subdividing it into many simpler elements, and specify-
ing material properties, constraints and loads appropri-
ate for the question of interest (FAGAN, 1996; Dar et al.,
2002; Ross, 2005; RicumonD et al., 2005; CURTIs,
2011; RAYFIELD, 2007; TSE et al., 2015; WILKEN ef al.,
2020). The model output has to be compared to other
sources of data to “validate” the results (e.g., BRIGHT &
GRONING, 2011).

Anatomical model

In the past, representing the complex three-dimension-
al shape of the chondrocranium presented a significant
challenge (Woob et al., 1991; LozANOFF, et al., 1993;
HoFsSTADLER-DEIQUES ef al., 2005): the chondrocranium
can be small and delicate, and it lies deep within the
skull. However, particularly in the last few years, a
wealth of detailed computer models have been success-
fully built for a range of vertebrate taxa including the
hagfish (Eptatretus burger; Oisi et al., 2015), lamprey
(Lethenteron reissneri; Oisl et al., 2015), various sharks
(WROE et al., 2008; HOwARD et al., 2013; MARA et al.,
2015; McQuisTon, et al., 2017), coelacanth (Latimeria;
DUTEL ef al., 2019), various frogs (RoCexk et al., 2016;
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KRINGs et al., 2017a, b), tuatara (Sphenodon punctatus;
YARYHIN & WERNEBURG, 2019), turkey (Meleagris gal-
lopavo; BoUuRKE & WITMER, 2016), mouse (KAucka et al.,
2018; TesAROVA et al., 2019), and various primates in-
cluding humans (LozaNOFF, ef al., 1993; MANUEL et al.,
2014; TsE et al., 2015; LEARY et al., 2015; SHAMOUELIAN
et al., 2015; HUANG et al., 2018; SMITH et al., 2020).

Approaches used include assembly from histologi-
cal sections (e.g., HOFSTADLER-DEIQUES ef al., 2005; OisI
et al., 2015), CT scanning (e.g., TSE et al., 2015; KrINGS
etal., 2017; TeEsAROVA et al., 2019; ZHENG et al., 2020;
KAczMmAREK ef al., 2020), or hypothetical and schematic
models (e.g., LEE ef al., 2010; MaNUEL ef al., 2014; ME-
NAPACE et al., 2020). Cartilage is not always well repre-
sented by x-rays even when using contrast stains such
as iodine or phosphotungstic acid (e.g., METSCHER, 2009;
GIGNAC et al., 2015; JonEs et al., 2019), but achieving
greater differentiation of cartilage is possible (KRrINGs,
etal., 2017a; ZHENG et al., 2020; GABNER et al., 2020).
For some subjects, magnetic resonance imaging may be
appropriate (TsE et al., 2015; DuTEL et al., 2019).

Once the shape of the model is finalised, it is subdi-
vided into very many simply shaped discrete elements
(e.g., hexahedra, tetrahedra) that mathematically ap-
proximate the deformation of the geometry under load-
ing (Fagan, 1996; Dar, 2002; RicumonD et al., 2005;
RAYFIELD, 2007). If the number of elements with respect
to the dimension of the structure of interest (mesh den-
sity) is insufficient, the analysis will incorrectly predict
the deformation of the model and fail to resolve strain
“hotspots” (BRIGHT & RAYFIELD, 2011a).

Material properties

Before performing the analysis, the material properties of
the model must be specified, in particular Young’s modu-
lus (E) (resistance to deformation, commonly referred to
as stiffness), and the degree of compression or expansion
of the material in the direction perpendicular to loading,
Poisson’s ratio (v). Ideally, the values used should cor-
respond as closely as possible to material properties of
the anatomical component being modelled. However, the
range of material properties used may be limited by the
software used and computer processing capacity.

Bones and teeth are often given uniform material
properties comprising a Young’s modulus value between
8,000 MPa (ZHANG et al., 2001; TsE et al., 2015) and
17,000 MPa (Kupczik et al., 2007; GRONING et al., 2011,
CurTis et al., 2013). Material properties of bone within
the same skull can show significant variation (e.g., CUFF
et al., 2015), and variable bone properties can be includ-
ed within finite element models (e.g., MCHENRY ef al.,
2007; Davis et al., 2011; CHaMoLI & WROE, 2011). How-
ever, the degree of variation within bone is drastically
different from that between bone and cartilage. There-
fore, representing cartilage and the cranial sutures which
hold the bones together may be more important than rep-
resenting the variation within bones. Sutures, if included
in a model, are typically given a value of 20 MPa and

705



JONES, M. E. H. et a/.: The biomechanical role of the chondrocranium and the material properties of cartilage

Stage 2
B IR , segment out
/ - ,»/ sutures and
;42/ 7 chondrocranium
[

further

microCT segmentation
scan mesh
live animal
A VI
3 )
} ;." o boundary

conditions

Inverse Dynamics:

predicts muscle Finite

activity, joint-reaction Element
— forces, and bite-force Analysis:
in vivo . :
measurements based on jaw predicts

movements under strain

the MDA model distribution

Fig. 3. A protocol for in silico biomechanical analysis of the skull of the lizard Salvator merianae (GRONING et al., 2013; JoNES et al., 2017).
Stage 1 involves multibody dynamics analysis (MDA) to establish likely loading (boundary) conditions whereas stage 2 involves a finite
element analysis (FEA) to predict strain distribution. Image attributions: live animal, Bjern Christian Terrissen via Wikimedia Commons

(CC BY-SA 3.0); in vivo measurements, Anthony Herrel; other images, the authors.

due to size constraints may be slightly enlarged relative
to actual size (Kupczik et al., 2007; Jones et al., 2017).
Cartilage, when included in models, has been given dif-
ferent values that are generally related to the species and
anatomical region being analysed (WROE ef al., 2008;
LEE et al., 2010; LEARY et al., 2015; Jones et al., 2017).

Like bones, cartilage models tend to be given uniform
material properties (e.g., LEE et al., 2010; LEary et al.,
2015; Jones et al., 2017) but multiple values have been
used to represent regional variation (WROE ef al., 2008).
Models of nasal cartilage have been given low stiffness
values, e.g., 0.8 MPa (LEARY et al., 2015). However, the
values used have generally been greater than those typi-
cally measured from fresh tissues (e.g., GRIFFIN ef al.,
2016a). To accommodate uncertainty, a range of values
can be used in different analyses to bracket the likely true
value (DaRr, 2002; JonEs et al., 2017). Nevertheless, when
using a model with a single homogenous material proper-
ty, alterations to the specified material property may make
little difference to strain distribution, only magnitude
(Jongs et al., 2017). The cartilage may also be given the
same values as bone to provide a control or baseline
comparison (WROE et al., 2008; Jones et al., 2017). For
chondrichthyan tessellate cartilage a range of material
property values has been used (WROE et al., 2008: 10 to
7047 MPa).

Analysing how the cartilage components of biome-
chanical models behave under high strain is challenging
because of the non-linear stress-strain-time relationships
in cartilage (CoHEN et al., 1998; MENAPACE et al., 2020;
CurcLiFre & DEFRATE, 2020). Repetitive loading, such as
in chewing, may also result in an evolution of proper-
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ties during the process; something used by some material
testing scientists as ‘preconditioning’ as it results in more
uniform and repeatable measurements. It is possible to
model and analyse this viscoelastic behaviour but it adds
further complexity to the model and may be computa-
tionally intensive (CoHEN ef al., 1998; Hu et al., 2003;
TsE et al., 2015; HUANG et al., 2018).

Loading and boundary conditions

The loading and constraints used in the model must be
appropriate for the question being investigated (Ross,
2005; RAYFIELD, 2007; PorRrO et al., 2013; MARCE-NOGUE
et al., 2015). To examine how different shaped nasal car-
tilages respond to nose tip depression the loading can be
very simple (LEE et al., 2010; LEarY et al., 2015): an-
teroposterior deformation. However, to analyse the role
of the chondrocranium in the context of the entire skull
the loading is necessarily much more complex. One ap-
proach is to estimate the loading from the muscles and
bite reaction forces using a detailed representation of the
muscles and multibody dynamics analysis (CurTis et al.,
2010; GRONING et al., 2013). This method ensures that the
muscle loading and bite reaction forces are in equilib-
rium, reducing the need for the (incorrect) application of
a rigid constraint at a connection point between the skull
and neck (MoAZEN et al., 2008).

Validation

To understand the usefulness or limitations of a biome-
chanical model it is necessary to compare model output
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to other sources of data. For computer-generated biome-
chanical skull models, “validation” can be obtained by
comparisons to in vivo bite force performance (Fig. 3,
GRONING et al., 2013; SELLERS ef al., 2017), in vivo mus-
cle activity (CurTis et al., 2010), or in vivo and ex vivo
strain (REMLER, 1998; CARTER & WONG, 2003; BRIGHT
& RAYFIELD, 2011b; BRIGHT & GRONING, 2011; GRONING
etal.,2012; Porro et al., 2013, 2014; Curr et al., 2015).
These validation approaches are easier for some species
than they are for others. Bite force performance can be
estimated by encouraging test subjects to bite on custom
bite force transducers (e.g., DEsseM & DRruziNsKY, 1992;
PAPHANGKORAKIT & OsBORN, 1998; HERREL ef al., 1999;
ANDERSON et al., 2008; LaprPIN & JoNEs, 2014; VaN Vu-
UREN et al., 2020). This approach has been used success-
fully for a range of taxa, notably crocodylians, lizards,
bats, and rodents but also sharks (DEsSEM & DRUZINSKY,
1992; HERREL et al., 1999; HUBER et al., 2005; BECERRA
et al.,2011; ErRicksoN et al., 2012; LaPPIN & JoNEs, 2014;
LappIN et al., 2017; JonEs et al., 2020). Muscle activity
can be measured using electromyography (LoEB et al.,
1986; DEesseM & Druzinsky, 1992) although the rela-
tionships between EMG measurements and actual force
remain problematic to determine with certainty. Surface
strain can be measured using strain gauges (BuckLAND-
WriGgHT, 1978; Ross & HYLANDER, 1996; THOMASON,
et al.,2001; Ross & METZGER, 2004; BRIGHT & RAYFIELD,
2011b; CurF et al., 2015) or electronic speckle pattern in-
terferometry (BRIGHT & GRONING, 2011; GRONING ef al.,
2012). Internal strain can be measured using loading
within a CT scanner (Evans ef al., 2012).

Due to the possibility of intraspecific variation, com-
parisons should ideally be specimen-specific (GRON-
ING et al., 2013). Also, as cautioned by LaprpIN & JONES
(2014), “if model predictions do not match in vivo data
there are three possibilities prima facie: the model is in
error, the in vivo data are in error, or both are in error.”
It should not be assumed that estimates of strain or bite
force performance collected in vivo are 100% correct.
Even when biomechanical models and empirical data do
correspond, it can be due to chance alone (NikLAS, 1992;
ALEXANDER, 2003). Hence, multiple parallel comparisons
and sensitivity analyses are desirable.

Example Finite Element Analyses of chondro-
crania

To date, only a handful of studies have used computer
modelling to examine the biomechanics of chondrocra-
nial structures. Most of these have focused on the nasal
cartilage in humans (e.g., LEE ef al., 2010; MANUEL ef al.,
2014; SHAMOUELIAN et al., 2015; TsE et al., 2015; LEARY
et al., 2015; HUANG ef al., 2018), but there has also been
one focused on a tegu lizard (Jones et al., 2017) and an-
other study of possible relevance on the great white shark
(WROE et al., 2008).

Analyses of humans have identified where strains
might concentrate in nasal cartilages of particular shapes
when the nose is depressed (e.g., LEE et al., 2010; Ma-
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NUEL et al., 2014; LEARy et al., 2015). They have also
helped identify the relationship between loading and de-
formations associated with cleft lip (HuanG et al., 2018).
Models investigating hypothetical traumatic anterior im-
pacts suggest that, at least in humans, the nasal cartilage
can absorb significant amounts of impact energy that
might otherwise damage the brain (e.g., LEE et al., 2010;
Tsk et al., 2015). To date, most studies have modelled the
nasal cartilage as linear elastic (e.g., MANUEL ef al., 2014;
LEarY et al., 2015; Tse et al., 2015; MENAPACE et al.,
2020) but future work is likely to pursue more accurate
representation (MENAPACE et al., 2020).

In the adult black and white tegu lizard, Salvator meria-
nae, the chondrocranium was found to have little impact
on the strain generated from anterior or posterior biting
regardless of material properties used (JONES et al., 2017).
When the chondrocranium was modelled as bone (17,000
MPa), strains were lower in some regions of the cranium
but only slightly (Jongs ef al., 2017). Within the chondro-
cranium itself, strains were twice as large during anterior
biting compared to posterior biting (JONEs ef al., 2017).
Moreover, for both anterior and posterior biting, the great-
est strains were located anteriorly rather than posteriorly,
and these were tensile rather than compressive (JONES
et al., 2017). These results do not suggest that the chon-
drocranium provides a vertical support structure in lizards
(Moss et al., 1968; STENSTROM & THILANDER, 1970; Kem-
BLE, 1973). Perhaps this result is not surprising given the
maturity of the animal used in the analysis and the huge
difference in the material properties of bone and cartilage.
It remains possible that the chondrocranium has a greater
role in juvenile or paedomorphic lizards. Moreover, the
chondrocranium is also still likely important for support-
ing the eye and associated muscles (PEARsON, 1921).

A biomechanical analysis of biting in the great white
shark, Carcharodon carcharias, did not measure strain in
the chondrocranium but it did examine stress and strain
in the tessellated cartilage jaws (WROE ef al., 2008).
Analyses found that despite being less stiff than a model
given the material properties of bone, the jaws could still
apply significant bite forces, as previous bite force es-
timates from other sharks might suggest (HUBER et al.,
2005). These results provide further evidence that car-
tilage can represent a support material when adequately
mineralised.

Discussion

The chondrocranium is highly variable among verte-
brates and this variation may reflect its function and bio-
mechanical role. To date, its biomechanical role remains
poorly known in most taxa. The extreme replacement of
the chondrocranium with bone in amniotes is associated
with greater rigidity of the skull and any flexion restrict-
ed to a small number of specific zones (DE BEER, 1930;
Kaucka & Apameyko, 2019). Cartilage is less stiff than
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bone and may, therefore, seem less suitable for use in le-
vers, applying bite force, or resisting feeding loads. Am-
niotes, which generally employ powered bites, may have
sophisticated oral food processing (REILLY ef al., 2001;
Ross et al., 2009; Jongs et al., 2012), and often retain
only a small fraction of the chondrocranium as cartilage.
Nevertheless, the jaw muscles of hagfish (which lack
bone) are estimated to generate similar forces to those
of gnathostomes (CLARK & SumMERS, 2007) and tadpoles
can pursue carnivorous and even macrophagous diets
with minimal mineralisation and replacement by bone
(e.g., Canbiorty, 2007; Haas et al., 2014; KLINGER-STRO-
BEL et al., 2020). With their mineralised cartilage, chon-
drichthyan fish can attain large body sizes and employ
great bite forces (HUBER ef al., 2005; WROE et al., 2008).
Moreover, complex oral food processing is not restricted
to amniotes (e.g., HEiss et al., 2019).

In mammals the location of the chondrocranium along
the long axis of the snout and the results of its experimen-
tal removal in the young have led to suggestions that it
might provide a vertical strut that serves to resist compres-
sive loading (Moss et al., 1968; STENSTROM & THILANDER,
1970; KeMBLE, 1973). Alternatively, measurements of in
vivo strain and comparisons of material properties in pigs
raised the possibility that the chondrocranium is involved
in dampening strain within the snout (AL DAYEH ef al.,
2009; AL DaYeEH & HERRING, 2014; LEE et al., 2010). In
humans the nasal cartilage clearly provides some sup-
port to the nose, and its capacity to deform may be use-
ful for accommodating some forms of trauma (LEE ef al.,
2010; TsE et al., 2015). The general relationships between
nose shape, regional climate, and sexual attraction and
communication in humans remain unclear and contro-
versial (CALDER & YOUNG, 2005; MIKALSEN et al., 2014;
Zaip! et al., 2018), but disruption to the nasal cartilage
can impact individual life quality (GRIFFIN ef al., 2016a;
LaverNIA ef al., 2019). Therefore, understanding the bio-
mechanical properties of this part of the chondrocranium
may improve the potential of aesthetic, corrective, and
reconstructive surgery (GRIFFIN ef al., 2016a; LAVERNIA
et al., 2019). Biomechanical modelling of the chondro-
cranium in lizards did not support the hypothesis that
it represents a load bearing vertical strut (JoNEs et al.,
2017). However, the lizard modelled, the South Ameri-
can tegu, Salvator merianae, was a very heavily built
adult. It is possible that the chondrocranium is more im-
portant in small or juvenile lizards (HALLERMANN, 1992).

Computer-based analyses provide the potential for
parallel analyses of different taxa, different life stages,
and hypothetical models that could establish the rela-
tionship between observed morphological variation and
biomechanical performance. The material properties of
cartilage are challenging to model but the potential to
gather empirical data is increasing (LakiN et al., 2017).
When modelling parts of the chondrocranium with the
skull, one issue that requires attention is how to model
the connection between the bone and cartilage. The na-
ture of the interface between the skull and nasal cartilage
appears relatively poorly known (Harkamp et al. 1999).
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In pigs it was found to differ between regions (AL DAYEH
& HEerrING, 2009): the connection between the nasal
cartilage and premaxilla, nasal, and frontal bones was fi-
brous, but a pad of loose connective tissue connected the
same cartilage to the vomer. How the interface between
the two materials is modelled will affect how strains are
transferred between them and in turn the overall strain
distributions. Connections between different parts of the
nasal cartilage may also be important (SHAMOUELIAN et
al., 2015).

Understanding the sources of biological variation is
a core goal of the biological sciences. Therefore, as well
as improvement to model detail and validation, a wider
range of vertebrate subjects should be examined, in par-
ticular larvae, juveniles, and very small adult animals.
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