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Abstract

A model macroscopic system imitating entering of viruses into living cells is suggested. The

system represents the contact of a composite (core-shell) liquid marble with

hydrophobic/hydrophilic particles. Composite liquid marbles are water droplets coated with

silicone oil armored with nanometric hydrophobic particles and served as an interfacial model of

a living cell. Composite marbles swallowed hydrophilic polymer particles, but prevented

hydrophobic particles from entering their core. Swallowing of hydrophilic particles by composite

marbles resembles the budding of living cells by viruses. The interfacial mechanism of

swallowing is suggested.

Keywords: bi-liquid composite marbles; fumed fluorosilica particles; oil coating; enveloped

viruses; coronavirus; budding.

Viruses are the most abundant biological entities on earth, more than single-celled

organisms and bacteria together.1 They also represent the largest and most genetically diverse

reservoir of nucleic acid that can infect all forms of life. Currently,1.67 million unknown viruses

are estimated to be circulating in animal reservoirs, demonstrating the potential for epidemics.1

Coronavirus belongs to the so-called enveloped viruses.2-4 Enveloped viruses have a lipid-based

membrane surrounding the protein capsid.2-4 This envelope is partly composed of the cell

membrane within which the virus replicated, and it contains proteins and carbohydrates.4 Viruses

are tiny objects with a characteristic dimension of ca. 100 nm.1 Thus, their experimental



exploration is extremely challenging. In particular, the experimental study of the physics of the

process of viral shedding occurring via viral budding5 is a complicated task.

We suggest a macroscopic system imitating viral budding by living cells, namely we

explored swallowing of solid particles by bi-liquid composite marbles. Liquid marbles are

non-stick water droplets coated with nano- or micron-sized particles.6-8 Liquid marbles are not

hermetically coated by solid particles. The respirability of liquid marbles makes them suitable for

the cultivation of microorganisms and cells.9-12 Liquid marbles may be used as mini-reactors and

bio-reactors.9,13-14 Use of liquid marbles for non-traditional computing was reported recently.15-16

Liquid marbles may be actuated by UV and IR light17 and Marangoni flows.18-19 Liquid marbles

demonstrate obvious potential for micro-fluidics applications.20-21 Bi-liquid, core-shell or

composite marbles, i.e. water marbles coated with a thin layer of oil comprising solid

hydrophobic particles, were introduced recently.22-24 The structure of the external interface of a

composite liquid marble resembles that of living cell membranes, built of lipid bilayers

(including cholesterols) and containing intrusions of globular proteins and fragments of the

cytoskeleton, as depicted in Figure 1 a-b. In both of the composite marbles and living cells

water is enveloped by a hydrophobic layer filled by heterogeneities. We do not exaggerate the

physical similarity of the composite marbles and living cells, however we demonstrate that the

core-shell marbles enable us to exemplify the budding of enveloped viruses within a

macroscopic system. Thus, composite marbles supply an interfacial model of a living cell.

We studied the contact of composite marbles with four kinds of solid object of two

different millimetrically-scaled sizes, namely: hydrophobic particles, hydrophilic particles,



hydrophobic and hydrophilic particles coated with oil. Three very different scenarios of contact

were observed: (i) pristine hydrophobic and oil-coated hydrophobic particles were attached to the

surface of the liquid marble, (ii) hydrophilic particles were swallowed by the composite marbles

and penetrated its core, at occurs when a living cell “absorbs” the enveloped virus; (iii)

oil-coated hydrophilic particles accomplished the coating layer of the composite marbles,

becoming attached to the marble in the nearest vicinity of its surface. All of these scenarios will

be addressed below in detail. We pose a following general question: how do soft objects filled

with water and coated with armored oil layers contact with entities possessing different

hydrophilicity?

Composite marbles prepared as shown in Figure 2 and Movie S1 and described in detail

in the Method section were transferred to hydrophobized glass slides. An image of the

composite marble is shown in Figure 3. Objects possessing very different wetting properties (in

other words various surface energies) were placed in the vicinity of the composite marble, as

shown in Figure 4 and pushed gently with a spatula towards the surface of it. Let us start with

the millimetre-sized hydrophobic (polypropylene, PP) particles which were attached to the

surface of the composite marble, as shown in Figures 4a, 5a and Movie S2. Let us introduce the

spatial scales, inherent for this experimental situation, according to Eq.1:

, (1)𝑅
𝑎 ≫1; 𝑎

𝑏 ≫1

where , and primary diameter more like 30 nm are the radii𝑅≅4. 0 𝑚𝑚 𝑎≅0. 5 𝑚𝑚 𝑏≅50 𝑛𝑚

of the marble, PP and fumed fluorosilica particles respectively (see Figure 1). Thus,



hydrophobic PP particles are small relative to the marble but large relative to the fumed

flurosilica particles. For the purposes of brevity we label these PP particles as “small” ones, and

the fumed flurosilica particles as the “colloidal” ones. The same spatial inter-relation generally

keeps for “budding” of living cells by viruses, if R, a and b represent the characteristic

dimensions  of a living cell, virus particles and globular proteins respectively (see Figure 1).

The experimental findings evidence that the small hydrophobic PP particles behave as

colloidal ones and do not penetrate into the marble volume, instead adhering to the composite

marble surface. The physics of this attachment was explained in refs. 6-8, when a smooth

spherical particle of radius r comes to the liquid surface from air, the energy gain is given by:

∆𝐺
𝑎𝑖𝑟→𝑖𝑛𝑡𝑒𝑓𝑎𝑐𝑒

=− π𝑟2γ 1 + 𝑐𝑜𝑠θ
𝑌( )2

(2)

where is the Young contact angle inherent to the particle/liquid/air system and is the surfaceθ
𝑌

γ

tension of the liquid/air interface. It is seen from Eq.2, that the entire system containing the

marble and particle lowers its energy by the particle adhering to the interface regardless of the

radius of the particle. However, it is thermodynamically unfavorable for the hydrophobic PP

particle to enter into the water volume, and it remains attached the composite marble surface as

depicted in Figures 4a, 5a.

The behavior of hydrophilic (plasma treated) PP particles contacting the composite

marble was rather different. The marble swallowed the particle as shown in Figures 4b, 5b and

Movie S4, S5. Hydrophilic particles penetrated into the core of the composite marble, thus



resembling the behavior of enveloped viruses under their budding of the living cell, as shown in

Figures 4b, 5b and Movie S4. The characteristic time of the “swallowing” was established

experimentally as . The mechanism of the “swallowing” is suggested in Figureτ≅??? 𝑃𝑅𝐼𝑇𝐴𝑀

6: interface with an area S separates a hydrophilic particle from water. The particle is

hydrophilic, thus wetting of this surface is thermodynamically favorable and results in the free

energy gain:

,ΔΦ = γ
𝑠/𝑤

− γ
𝑠/𝑎( )𝑆 =− γ𝑆𝑐𝑜𝑠θ

𝑌

(3)

where and are the interfacial tensions at the solid/water and at the bare solid/airγ
𝑠/𝑤

γ
𝑠/𝑎

interfaces, respectively. The free energy gain is increased with the increase of the wetted areaΔΦ

S. Thus, the force (where r is the radial coordinate of the center of mass of the𝐹
→| | = ∂Φ

∂𝑟
|| ||

hydrophilic particle) emerges, pushing the particle into the water core (see Figure 6). The force

acts until the wetted area is increased, in other words until complete wetting of a hydrophilic𝐹
→

particle by water. It seems reasonable to suggest that the similar interfacial mechanism governs

entering of viruses into living cells. However, the study of the exact mechanism of virus budding

of living cells remains a challenging experimental and theoretical task. It is noteworthy that the

study of our model system only sheds light on the interfacial aspect of this mechanism.

In the case of oil-coated hydrophobic and hydrophilic particles the wetting scenario was

different. Both of these particle types adjusted themselves to the coating layer of liquid marbles,

thus accomplishing wrong word- not sure what you are trying to say? it as demonstrated in



Figure 4c-d and Movies S6, S7. It was observed that oil-coated hydrophobic particles are

attached to the composite marble surface outside of the marble, whereas oil-coated hydrophilic

particles are adhered to the composite marble, keeping the PP particles connected to the oil layer

from inside.

We also studied the contact of large hydrophobic and plasma hydrophilized𝑎≈2. 5 𝑚𝑚

PP particles by the composite marble, illustrated in Figures 6a, b and c, d and the supporting

Movies S8, S9 and S10. In this case the spatial scales are given by Eq. 4:

𝑅
𝑎 ≅1; 𝑎

𝑏 ≫1

(4)

The nature of the interfacial processes remained the same irrespective of the change in the spatial

scales, namely: hydrophobic PP polymer particles did not penetrate into the composite marble

core, whereas plasma hydrophilized PP particles were swallowed by the composite marble, as

shown in Figure 7. The characteristic time of the “swallowing” was established experimentally

as .τ≅??? 𝑃𝑅𝐼𝑇𝐴𝑀

We conclude that the composite (core-shell) marbles swallowed hydrophilic polymer particles,

thus supplying the interfacial model of the processes occurring under budding of living cells by

viruses. At the same time, the composite marbles prevented hydrophobic particles from entering

their core. This conclusion is true for particles of various sizes.

Materials and Methods



Materials

The following materials were used in order to prepare the sandwich liquid marbles make full

sentences:

● microscope glass slides (3 mm × 2 mm);

● poly(dimethylsiloxane) (PDMS) Sylgard 184, supplied by Dow Corning, USA;

● deionized water (DI) from Millipore SAS (France) (specific resistivity ρ
^

= 18. 2 𝑀Ω 𝑐𝑚

at 25 ºC, surface tension γ = 72.9 mN/m; viscosity );η = 8. 9 ×10−4𝑃𝑎 𝑠

● Poly(dimethylsiloxane), bis(hydroxyalkyl) terminated supplied by Sigma-Aldrich

(molecular weight 5600 g/mol, surface tension γ = 19.2 mN/m, viscosity η = 0. 1 𝑃𝑎 𝑠

(100 cSt), volume magnetic susceptibility χoil = - 7.5×10-6 not needed?, boiling point

449.7 ± 45.0 °C at 760 mmHg);

● fumed fluorosilica particles were synthesized according to the protocol reported in ref.

26; the primary particle diameter is approx. 30 nm.

A Nikon 1 v3 camera was used to capture images, movies of composite liquid marbles and

the process of swallowing of different particles.

Polypropylene (PP) particles of two diameters (1 mm and 5 mm), supplied by

Sigma-Aldrich, were used as hydrophobic particles. The apparent water contact angle of pristine

PP was θ =??? 𝑃𝑟𝑖𝑡𝑎𝑚

Methods



Hydrophobic glass substrates were prepared by coating of the cold plasma-treated microscope

glass slides with a very thin layer of PDMS oil as described in our earlier work [35]. The slides

were coated with silicone oil with a spin coater (Laurell Technologies, WS-650MZ-23NPPB

Spin Processor) at 5000 rpm. A 5 µL water drop was deposited using a micropipette on the

oil-coated hydrophobic glass. The spreading parameter describing wetting of the silicone

oil/water system is positive (for the detailed analysis of the spreading parameter see the

discussion in ref. 25); thus, the silicone oil covers the water drop. Tilting of the glass substrate

forced the water drop covered with silicone oil to roll to the Petri dish containing fumed

fluorosilica particles, as shown in Figure 2. The particles adhere to the drop giving rise to a

stable composite liquid marble as depicted in Figure 3. The process of composite liquid marble

preparation, carried out under ambient conditions, is illustrated in the supplementary Movie S1.

The weight ratio of the components of the composite marbles, namely water/oil/particles was

established by weighing as1/0.054/ 0.102.

Polypropylene (PP) particles were plasma treated using an inductive radio frequency air plasma

discharge with the following parameters: frequency was 13.56 MHz; air pressure was 0.5 Torr;

power of the plasma discharge was 18 W; time span of irradiation was 300 s. The apparent water

contact angle of plasma treated PP was .θ =??? 𝑃𝑟𝑖𝑡𝑎𝑚

Apparent contact angles were measured with a Rame-Hart goniometer at ambient conditions.
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Figure 1. Sketch demonstrating the interfacial resemblance of a composite liquid marble (a) and

living cells (b); the radius of the marble ; the primary diameter of the hydrophobic𝑅≅4. 0 𝑚𝑚

fumed fluorosilica particles .𝑏≅30 𝑛𝑚



Figure 2. Preparation of a composite liquid marble is shown. A water droplet coated with

silicone oil rolls along a hydrophobic substrate and falls onto a solid substrate containing fumed

fluorosilica particles. The process results in the formation of a composite (core-shell) marble.



Figure 3. Optical image of a composite liquid marble (V=??? Pritam) is presented.



Figure 4. Scheme illustrating the contact between hydrophobic (a), hydrophilic (b), oil-coated

hydrophobic (c) and oil-coated hydrophilic (d) particles with a composite liquid marble.



Figure 5. Optical images show contact between hydrophobic (a), hydrophilic (b), oil-coated

hydrophobic (c) and oil-coated hydrophilic (d) particles with a composite liquid marble.

in (b) the original marbles appears to have bare patches on its surface: is this why particles enter?

in (b), how can you prove that particles are actually in the core water? some could argue they are

on the surface…



Figure 6. Mechanism of penetration of hydrophilic particles into the bulk of a composite liquid

marble. Interface of area S separates a hydrophilic particle from water. Force pushes particle?𝐹
→

into the water core.



Figure 7. Attachment of oil-coated hydrophobic particle to a composite liquid marble: (a)

scheme, (b) sequence of images illustrating particle attachment. Swallowing of oil-coated

hydrophilic polystyrene particle by a composite liquid marble: (c) scheme, (d) sequence of

images representing the swallowing.
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