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Abstract:

Quantitative reconstructions of vegetation abundance from sediment-
derived pollen systems provide insights into past ecological conditions. 
Recently, the use of pollen accumulation rates (PAR, grains cm-2 yr-1) 
has shown promise as a bioproxy for plant abundance. However, 
successfully reconstructing region-specific vegetation dynamics using 
PAR requires that accurate assessments of pollen deposition processes 
be quantitatively linked to spatially-explicit measures of plant 
abundance. Our study addressed these methodological challenges. 
Modern PAR and vegetation data were obtained from seven lakes in the 
western Klamath Mountains, California. To determine how to best 
calibrate our PAR-biomass model, we first calculated the spatial area of 
vegetation where vegetation composition and patterning is recorded by 
changes in the pollen signal using two metrics. These metrics were an 
assemblage-level relevant source area of pollen (aRSAP) derived from 
extended R-value analysis and a taxon-specific relevant source area of 
pollen (tRSAP) derived from PAR regression. To the best of our 
knowledge, aRSAP and tRSAP have not been directly compared. We 
found that the tRSAP estimated a smaller area for some taxa (e.g., a 
circular area with a 225 m radius for Pinus) than the aRSAP (a circular 
area with a 625 m radius). We fit linear models to relate PAR values 
from modern lake sediments with empirical, distance-weighted estimates 
of aboveground live biomass (AGLdw) for both the aRSAP and tRSAP 
distances. In both cases, we found that the PARs of major tree taxa – 
Pseudotsuga, Pinus, Notholithocarpus, and TCT – were statistically 
significant and reasonably precise estimators of contemporary AGLdw. 
However, predictions weighted by the distance defined by aRSAP tended 
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to be more precise. The relative root-mean squared error for the aRSAP 
biomass estimates was 9% compared to 12% for tRSAP. Our results 
demonstrate that calibrated PAR-biomass relationships provide a robust 
method to infer changes in past plant biomass.
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17 Abstract

18 Quantitative reconstructions of vegetation abundance from sediment-derived pollen systems 

19 provide unique insights into past ecological conditions. Recently, the use of pollen accumulation 

20 rates (PAR, grains cm-2 yr-1) has shown promise as a bioproxy for plant abundance. However, 

21 successfully reconstructing region-specific vegetation dynamics using PAR requires that 

22 accurate assessments of pollen deposition processes be deterministically quantitatively linked to 

23 spatially-explicit measures of plant abundance. Our study addressed these methodological 

24 challenges. Modern PAR and vegetation data were obtained from seven lakes in the western 

25 Klamath Mountains, California. To determine how to best calibrate our PAR-biomass model, we 

26 first calculated the spatial area of vegetation where vegetation composition and patterning is 

27 recorded by changes in the pollen signal using two metrics. These metrics were an assemblage-

28 level relevant source area of pollen (aRSAP) derived from extended R-value analysis (sensu 

29 Sugita 1993) and a taxon-specific relevant source area of pollen (tRSAP) derived from PAR 

30 regression (sensu Jackson 1990). To the best of our knowledge, aRSAP and tRSAP have not 

31 been directly compared. We found that the tRSAP estimated a smaller area for some taxa (e.g., a 

32 circular area with a 225 m radius for Pinus) than the aRSAP (a circular area with a 625 m 

33 radius). We fit linear models to relate PAR values from modern lake sediments with empirical, 

34 distance-weighted estimates of aboveground live biomass (AGLdw) for both the aRSAP and 

35 tRSAP distances. In both cases, we found that the PARs of major tree taxa – Pseudotsuga, Pinus, 

36 Notholithocarpus, and TCT (Taxodiaceae, Cupressaceae, and Taxaceae families) – were 

37 statistically significant and reliable reasonably precise estimators of contemporary AGLdw. 

38 However, predictions weighted by the distance defined by aRSAP tended to be more precise. 

39 The relative root-mean squared error for the aRSAP biomass estimates was 9% compared to 12% 
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40 for tRSAP. Our results demonstrate that calibrated PAR-biomass relationships provide a robust 

41 method to infer changes in past plant biomass.  

42

43 Key words: 

44 Pollen accumulation rate (PAR), quantitative reconstruction, biomass, source area of pollen, 

45 Klamath Mountains, California 
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46 1. Introduction

47 Quantitative reconstruction of past plant abundance has been an important goal in paleoecology 

48 since the field’s inception (Von Post 1918) and a major research frontier spanning decades 

49 (Davis and Deevey 1964, Likens and Davis 1975, Davis et al. 1984, Hicks 2001, Seppä et al. 

50 2009, Matthias and Giesecke 2014, Marquer et al. 2014). Currently, tThe research community 

51 lacks a complete understanding of how the pollen signal reflects plant population parameters 

52 (e.g., biomass), and therefore past population change (Fagerlind 1952, Davis et al. 1984, Prentice 

53 1988, Seppä et al. 2009). Developing methods to quantitatively reconstruct past plant 

54 populations would aid climate science and restoration ecology. In climate science, for example, 

55 quantitative reconstructions of past plant populations would allow better understanding of long-

56 term ecosystem dynamics (Galliard et al. 2000) and provide past analogues to test complex 

57 climate models that account for the effects of landcover on the climate system (Galliard et al. 

58 2010). Restoration ecology would benefit from an improved understanding of the impact of 

59 disturbances (natural and anthropogenic) on landscapes and ecosystems (Broström et al. 1998, 

60 Crawford et al. 2015) and from the increased participation by paleo-ecologists in the debates of 

61 modern restoration ecology (Swetnam et al. 1999, Hellman et al. 2009). 

62 Palynologists often use pollen percentage data in pollen-vegetation models to reconstruct 

63 landcover and understand past plant populations, but this approach does not provide separate 

64 reconstructions for each taxon’s plant population change (Davis 1963, Prentice 1988). Relative 

65 changes in abundance of species have been inferred form Bayesian hierarchical spatio-temporal 

66 pollen-vegetation models (Dawson et al. 2019). In contrast, pollen accumulation rates (PAR) – a 

67 measure of the rate of pollen deposition at the sediment surface per unit area during a given time 

68 period (e.g., grains cm-2 yr-1, Davis and Deevey 1964) – depend solely on the abundance of the 
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69 plant taxa producing that pollen type around the collection site. That is, the PAR for each taxon 

70 is independent of all other taxa. PAR allows results from different regions to be directly 

71 compared, irrespective of other taxa in the investigations (Hicks and Hyvärinen 1999, Giesecke 

72 and Fontana 2008). PAR has been used to reconstruct not only landcover, but also population 

73 dynamics and plant biomass (Seppä et al. 2009, Theuerkauf et al. 2012, Matthias and Giesecke 

74 2014). For example, PAR has been used to reconstruct past population growth rates (Bennett 

75 1983, 1986, MacDonald 1993, Giesecke 2005) and to reconstruct Holocene biomass records in at 

76 least two areas: the Finnish boreal zone (Seppä et al. 2009) and a sub-alpine forest in Utah 

77 (Morris et al. 2015). 

78 PAR is not a simple reflection of vegetation abundance because the pollen signal is a 

79 distance-weighted measure of taxa abundance in the surrounding vegetation, responding to the 

80 structure of the plant community as well as species abundance (Jackson 1990). Modern PAR 

81 values must be quantitatively correlated with modern plant population data from the lake 

82 surroundings in order to parameterize the PAR-population relationship before fossil PAR records 

83 can be interpreted in terms of past plant population change. This correlation step requires 

84 accurate vegetation data from forest inventories (Seppä et al. 2009, Matthias and Giesecke 2014), 

85 careful field surveys (Bunting et al. 2013), or well-resolved spatial imagery coupled with 

86 ground-truthing (Han et al. 2017) that encompasses the relevant source area of pollen (‘RSAP’, 

87 discussed below and in section 2.3, sensu Sugita 1993). Previous work has shown a linear 

88 relationship between PAR and distance-weighted biomass across a range of lake sites in 

89 northeastern Germany (Matthias and Giesecke 2014). 

90 In addition to quantitative vegetation data, reliable PAR data require a robust chronology 

91 of the pollen system being studied. Ideally, a sedimentary core for PAR data collection has two 
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92 features: it is obtained from an undisturbed lake environment where sediment accumulates 

93 evenly over time, and the resulting sediment is dated at high resolution. Where lakes are found to 

94 have stable sedimentary conditions, reliable PAR datasets can be obtained (e.g., Ritchie 1969, 

95 Hyvärinen 1975, Seppä and Hicks 2006) though there may still be channel funneling. The recent 

96 development of Bayesian tools has improved the construction of chronologies from isotopic data 

97 such as 210Pb activity measurements, giving more reliable measures of uncertainty (Aquino-

98 López et al. 2018). 

99 Lastly, all sedimentary basins have a relevant source area of pollen (RSAP), which is 

100 sometimes referred to as the “pollenshed” of the basin (sensu Sugita 1993). The basic premise is 

101 that vegetation within a certain area distance of the basin corresponds to the quantity and type of 

102 pollen deposited at the site. With distance from the lake shore, Ccorrelations between plant 

103 abundance and pollen loading are expected to improve close to the lake shore, then approach an 

104 asymptote at some distance because source vegetation of pollen far from the basin should have 

105 much less influence on the pollen representation than vegetation closer to the basin. Estimating 

106 the RSAP is a key step for quantitative calibration because it provides information about the 

107 spatial extent of any subsequent vegetation reconstruction (Sugita et al. 1999, Bunting et al. 

108 2004, Hellman et al. 2009). To our knowledge, the distinction between an assemblage-level 

109 pollenshed RSAP (aRRSAP, Sugita 1993) and taxa-specific RSAPpollensheds (tRRSAP, sensu 

110 Jackson 1990, Matthias and Giesecke 2014) has not yet been drawn within the same basin (Table 

111 X). Comparing these estimates provides insight about how pollen assemblages “sense” 

112 vegetation, which is critical to the extraction of vegetation information from pollen data.

113 Given the methodological challenges, the application of calibrated PAR-biomass transfer 

114 functions to any ecosystem is not routine. This paper develops PAR-biomass models using short 
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115 cores from seven small lakes in the western Klamath Mountains, California, and follows the 

116 general approach used in previous studies (e.g., Seppä et al. 2009, Matthias and Giesecke 2014) 

117 whilst critically evaluating each step in the process. The Klamath bioregion contains numerous 

118 small lakes and is an area where Holocene-length paleoecological records have already provided 

119 a portrait of ecological change (Fig. 1). We measured modern PAR from lake sediments and 

120 acquired vegetation abundance data to achieve three goals: 1) to understand the spatial 

121 relationship between pollen assemblages flux in small lakes and surrounding vegetation cover, 

122 through modeling of the aRSAP and tRSAP, 2) to calibrate a PAR-biomass model using 

123 distance-weighted biomass for major tree taxa, and 3) to assess the potential of this model to 

124 reconstruct past changes in assemblage-wide biomass from the region. 

125

126 2. Background

127 Below, we describe the study area’s physical features (2.1), our pollen-vegetation modelling 

128 approach (2.2), and the methodology used to estimate aRSAP and tRSAP (2.3).

129

130 2.1  Study Area 

131 The Klamath bioregion, a physically and floristically diverse area in northwestern California 

132 (Whittaker 1960, Cheng 2004), contains hundreds of small lakes. Many lakes are found at high 

133 elevations and are glacial in origin, but there are also landslide-created lakes at low- and mid-

134 elevations in the western portion of the region (Wahrhaftig and Birman 1965). The landscape has 

135 deep catchments and steep mountains (Irwin 1981)), and the climate is Mediterranean, consisting 

136 of cool, wet winters and warm, dry summers (Skinner et al. 2006). Prior to 20th century fire 
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137 suppression, the landscape had a mixed-severity fire regime characterized by mostly small, low-

138 intensity, frequent fires, and infrequent large burns of mixed-severity (Taylor and Skinner 2003). 

139 Our study focused on the western Klamath Mountains where low-elevation forests 

140 (<600–800 m) are dominated by Pseudotsuga menziesii (Douglas-fir). Multiple Pinus (pine) 

141 species including Pinus lambertiana (sugar pine), Pinus jeffreyi (Jeffrey pine), and Pinus 

142 ponderosa (ponderosa pine) are also common but less frequent than Douglas-fir. The most 

143 common broadleaf tree species in the low-elevation forests are Notholithocarpus densiflorus 

144 (tanoak), followed by Arbutus menziesii (Pacific madrone), Chrysolepis chrysophylla (golden 

145 chinquapin), and Quercus kelloggii (California black oak). Chamaecyparis lawsoniana (Port-

146 Orford-cedar) is mainly found in riparian areas but can be found on slopes. Higher-elevation 

147 montane forests are dominated by Abies concolor (white fir) and Abies magnifica (red fir; 

148 Sawyer and Thornburg, 1977), whereas sub-alpine (above ~1700 m) zones include Tsuga 

149 mertensiana (mountain hemlock) and Picea breweriana (Brewer spruce) (Sawyer and Thornburg 

150 1977). On areas of ultramafic soils derived from serpentinite and peridotite bedrock, Jeffrey pine, 

151 Pinus monticola (western white pine) and Calocedrus decurrens (incense-cedar) are the 

152 dominant forest taxa (Whittaker 1960; nomenclature follows Hickman 1993).

153 We selected seven small lakes in the Six Rivers National Forest with small basins, and 

154 minimal stream inputs, and shallow slopes (Table 1, Fig. 1). Vegetation around the lakes is 

155 representative of the diverse mixed conifer forest of the Klamath bioregion (Hudiburg et al. 

156 2009) although the dominant overstory varies at each lake site. Holocene-length pollen records 

157 (percentage and PAR) already exist for three of the seven lakes and suggest that the modern 

158 forest structure and composition have been relatively stable for the last 2,000 years (Wanket 
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159 2002) but also imply a 3,000-year historic high of Douglas-fir in the contemporary forest 

160 (Crawford et al. 2015). 

161 2.2  Pollen-vegetation models

162 Linear pollen-vegetation models (PVMs) have a long history of use in palynology (Davis 1963, 

163 2000; Andersen 1970; Prentice 1985, 1988; Sugita 1993, 1994; Bunting and Middleton 2005, 

164 Bunting et al. 2013). PVMs use the relationship between pollen assemblages and vegetation to 

165 infer past vegetation composition or structure from fossil pollen data. The main strengths of 

166 linear PVMs are: 1) they provide the means to reconstruct vegetation from landscapes with no 

167 modern analogue; 2) they have been widely tested against empirical data in quantitative 

168 reconstruction research (e.g., Davis 1963, Andersen 1970, Prentice 1985, Sugita 1993, Bunting 

169 and Hjelle 2010); and 3) they have been successfully validated in at least one region (southern 

170 Sweden, Sugita 2007a, b; Hellman et al. 2008a, b).

171 In this work, we used a version of Sutton’s original PVM model (Sutton 1947, 1953) 

172 inverted by Prentice (1985) and modified by Sugita (1994) for lake environments. This model’s 

173 form – called Prentice-Sugita-Sutton – assumes that pollen could land anywhere on the lake 

174 surface and would be perfectly mixed in the water column before being deposited on the lakebed. 

175 The Prentice-Sugita-Sutton model also assumes that pollen transport is largely via wind above 

176 the canopy and gravity beneath the canopy, and that the sampling basin is circular with uniform 

177 wind in every direction (Sugita 1994, full list of assumptions in the supplement). Under this 

178 approach, we a) divide the vegetation into rings, b) distance-weight each ring, and c) compare 

179 the PAR from the basin with the summed distance weighting from one or more rings, working 

180 out from the edge of the basin. This model calculates the total pollen influx from each source 

181 across the whole lake. Its simplest linear form is:

Commented [MOU2]:  Addressed Reviewer 3 concern 
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182                 (1)𝑌𝑖𝑘 =  𝛼𝑖 ∙  𝑖𝑘 

183 where, 

184 Yik =  pollen influx for a taxon i at site k 

185 i = pollen productivity of taxon i 

186 ik = the distance-weighted plant abundance (DWPA) of taxon i around site k with the 

187 weighting term reflecting the pollen dispersal of taxon i (weighting term calculation shown in 

188 Eqequation. 3). 

189

190 DWPA (ik) is defined as:

191 (2)Ψ𝑖𝑘 = ∫∞
𝑅 𝑋𝑖𝑘(𝑧)𝑔𝑖(𝑧)𝑑𝑧

192 where, 

193 R = the radius of the canopy opening in which the sample site is located 

194 Xik (z) = the plant abundance measure consisting of the contribution of taxon i to the pollen 

195 assemblage formed at site k from plants located distance z from sampling location k, and gi(z) is 

196 the distance weighting term for taxon i at distance z from any sampling location. 

197

198 The Prentice-Sugita-Sutton weighting term gi for taxon i at distance z is calculated using:

199         (3)𝑔𝑖(𝑧) = 𝑏𝑖𝛾𝑧𝛾 ― 1𝑒𝑏𝑖𝑧𝛾

200 where (3a)𝑏𝑖 =  
4𝑣𝑔

𝑛𝑢√𝜋𝐶𝑧

201 and,

202 z = distance

203  = a coefficient of 0.125 (Prentice 1985)𝛾

204 vg = approximated by vs (fall speed, m sec-1)
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205 Cz = the vertical diffusion coefficient (m1/8)

206 n = a dimensionless turbulence parameter equal to 2

207 u = windspeed (m sec-1), set equal to 3. 

208 Note that Cz and n depend on atmospheric stability. 

209 Equation 2 can be re-written as a sum with two addends: 1) the unique contribution of the 

210 vegetation close to site k where  is the pollen source area for site k, and 2) the long-distance 

211 pollen transport (‘background pollen,’ which is uniform beyond ), giving:

212  (4)Ψ𝑖𝑘 =  ∫𝜁
𝑅𝑋𝑖𝑘(𝑧)𝑔𝑖(𝑧) 𝑑𝑧 + ∫∞

𝜁 𝑋𝑖𝑘(𝑧)𝑔𝑖(𝑧)𝑑𝑧

213 Which can be written as 

214 (5)𝑌𝑖𝑘 =  𝛼𝑖𝜓𝑖𝑘 + 𝜔𝑖

215 Where 𝜓𝑖𝑘 = ∫𝜁
𝑅𝑋𝑖𝑘(𝑧)𝑔𝑖(𝑧)𝑑𝑧

216

217 2.3  Spatial area represented by the pollen record

218 We estimated the spatial extent of our sites’ pollenshedssource area of pollen in two ways 

219 (definitions in Table 2). We calculated the standard assemblage-specific metric – the relevant 

220 source area of pollen (aRSAP) – which is defined as the area beyond which the correlation 

221 between pollen and vegetation does not improve (Sugita 1993). Estimates of aRSAP can be 

222 extracted from extended R-value (ERV) analysis using pollen percentage data (Parsons and 

223 Prentice 1981). ERV analysis is the process of solving n equations for 2n unknowns in order to 

224 extract the parameter estimates, where ERV sub-models 1, 2 and 3 are the underlying vegetation-

225 pollen relationship models. The three sub-models define background pollen differently (Sugita 

226 1994). Whereas models 1 and 2 use pollen data and vegetation percentages (Parsons and Prentice 

227 1981), model 3 uses pollen percentages and plant abundance data in absolute units (e.g., biomass 
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228 per area) (Sugita 1994). Using the maximum likelihood method, ERV models iteratively fit the 

229 relationship between pollen and vegetation percentages (Bunting and Hjelle 2010). Maximum 

230 likelihood function scores measure the goodness of fit between pollen percentages and distance-

231 weighted plant abundance. The aRSAP can be estimated from visual inspection of the likelihood 

232 function score plotted against distance; it is the point at which scores approach an asymptote 

233 (Sugita et al. 1999, Bunting et al. 2005). 

234 We then calculated a taxon-specific metric of the relevant source area (tRSAP) to 

235 compare to the aRSAP. We call the tRSAP the distance beyond which the correlation between 

236 PAR and DWPA summed to that distance does not improve (Jackson 1990). We fit a linear  

237 equation (equation 5) for each individual taxon because both y and  are measured in 𝜓

238 independent terms. We again used the ring source model, which converts the integral into a 

239 summation. That is, we summed the value for each of the rings and gi(z) includes ring area in 

240 this formulation. As with aRSAP, tRSAP can be estimated from visual inspection of the R2 value 

241 against the distance from the lake shore (m) (Matthias and Giesecke 2014).

242

243 3. Methods

244 Fitting PAR-biomass relationships requires a number of steps shown in a flowchart (Fig. 2) with 

245 numbers matching the following sections. 

246

247 3.1  Lake selection and core sampling

248 We used the following criteria to determine suitable lake sites: small size (radius approximately 

249 100 m), no permanent outflow, simple basin, and core length greater than 25cm. Ten such lakes 

250 were identified from topographical maps and satellite imagery as promising, but each were 
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251 assessed in the field. Out of this collection, seven lakes were viable and selected for 210Pb dating. 

252 During the summer of 2018, short cores (~50 cm) of 7 cm diameter were taken from each lake’s 

253 center using either a gravity corer (Ogaromtoc, Fish Lakes) or a piston corer (all other lakes). 

254 The sediment-water interface was immobilized by sodium polyacrylate for transport. Cores were 

255 later split and sectioned in the laboratory. 

256 3.2  Sediment dating, age-depth model, and sediment lithology

257 We used lead-210 (210Pb; 22.3 yr half-life) to assign ages to sediment deposited in the last 150 

258 years. Surface bulk sediments from 0 cm to a maximum of 45 cm were taken from each core and 

259 dried to 105C (see Tables S1-S7). 210Pb activity was determined by alpha spectrometry (see SI 

260 for complete dating methodology)., via 210Po. An aliquot of 0.2 to 1.0 g of dried and pulverized 

261 sample was digested using concentrated HF, HNO3, and HCl and a known amount of 209Po spike 

262 in an oven at 90°C for ~ 24 hours. The digested solution was dried, and the residue was mixed 

263 with 1 M HCl until the pH was ~2. Auto-plating of Po was cold-plated onto an Ag disk for 24 

264 hours at room temperature (Jweda and Baskaran 2011). The plated disk was assayed for Po using 

265 Octete PC ORTEC alpha spectrometer. The reagent blanks were run simultaneously with each 

266 batch of eight samples and were subtracted. Certified reference materials were periodically run. 

267 For the determination of parent-supported (i.e., background) 210Pb, several samples were run for 

268 the activity of 226Ra (using 352 and 609 keV) along with 137Cs (661.6 keV) by Ge-well detector 

269 (Baskaran et al. 2015). Small sample sizes prevented reliable 137Cs from being obtained.

270 We used the Bayesian-based Plum software to develop age models from excess (unsupported) 

271 210Pb data (Aquino-López et al. 2018). The Plum model is related to the constant rate of supply 

272 (CRS) method (Appleby and Oldfield 1978) and retains two of the basic assumptions of CRS: 

273 the rate of supply of 210Pb is constant and there is no vertical mixing of radionuclides. Testing 
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274 these assumptions requires independent validation using another marker, which is outside of this 

275 paper’s scope. The Plum model is formulated within a robust statistical framework to quantify 

276 uncertainty (Aquino-López et al. 2018). Plum uses a self-adjusting Markov Chain Monte Carlo 

277 (MCMC) algorithm called the t-walk (Christen and Fox 2010). Plum uses millions of MCMC 

278 iterations to model the accumulation of sediment, using a gamma autoregressive semiparametric 

279 age-depth function (Blaauw and Christen 2011). This algorithm results in a probability envelope 

280 around the mean age model. The envelope allows the precision at any depth to be estimated 

281 explicitly. Plum makes use of prior information to determine the datable horizon, which is 

282 affected by two factors: the precision of methodology (alpha versus gamma counting) and the 

283 initial amount of excess lead. In Plum, the chronology limit is determined by the rate of supply 

284 of 210Pb to the site and the equipment error, usually ~3 Bq/kg for a sample size of 1 g by alpha 

285 spectrometry for research laboratories. Supported 210Pb activities were determined from the 

286 direct measurements of 226Ra by gamma-ray spectrometry. 

287

288 3.3   Pollen analysis

289 Pollen samples – one from each lake site – were extracted from 0.63 cm3 of wet sediment from 

290 the top 0.5 cm of each core and were processed according to standard pollen preparation 

291 procedures (Faegri and Iversen 1989) but modified to include two steps: 1) sieving with 5- and 

292 153-micron mesh under vacuum and 2) swirling, with the less dense fractions retained. These 

293 steps draw oncurrent US Geological Survey protocol (Tom Sheehan, personal communication), 

294 which is based on DDoher’s palynomorph methodology and current United States Geological 

295 Survey procedures (Doher 1980). One Lycopodium spore tracer tablets containing 20,848 spores 

296 wereas added to each sample to calculate pollen concentration (Stockmarr 1971, Faegri and 
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297 Iversen 1989). Acetolysis and sieving steps were repeated for samples containing high amounts 

298 of organic material. Pollen samples were mounted in silicone oil and examined at 500× 

299 magnification. At least 400 terrestrial grains per sample were counted and identified using the 

300 UC Berkeley Museum of Paleontology modern pollen reference collection, as well as pollen 

301 atlases (Knapp 1969, Halbritter et al. 2018).

302 Seven wind-pollinated taxa were identified at all sites: Pinus, Pseudotsuga, Quercus, 

303 Notholithocarpus, Alnus, TCT (Taxodiaceae, Cupressaceae, and Taxaceae families),, and Abies. 

304 The corresponding plant taxa from the study area were sugar pine, Jeffrey pine, ponderosa pine 

305 (Pinus); Douglas-fir (Pseudotsuga); California black oak, canyon live oak (Quercus); tanoak, 

306 golden chinquapin (Notholithocarpus); white alder (Alnus); Port-Orford-cedar, incense-cedar 

307 (TCT); white fir, red fir (Abies). we only encountered Port-Orford-cedar and incense-cedar in the 

308 vegetation survey at the study sites and assume all TCT originating within the surveyed 

309 vegetation area came from these species. Counts of Pinus, Quercus, Notholithocarpus and Abies 

310 reflect all the pollen grains from their respective genera (i.e., we report total Pinus which likely 

311 contained sugar pine, Jeffrey pine, and ponderosa pine grains). Pseudotsuga and Alnus counts 

312 represent the species Pseudotsuga menziesii (Douglas-fir) and Alnus rhombifolia (white alder). 

313 Other wind-pollinated tree pollen present in trace amounts includes willow (Salix), buckthorn 

314 (Rhamnaceae), hazel (Corylus) and silk tassel (Garrya). This group of “other hardwoods” 

315 accounted for only 0.35% of the woody species. Given their rarity, we omitted them from the 

316 determination of pollen source area and subsequent PAR-biomass modeling. 

317

318 3.4   PAR determination 

319 Pollen concentrations (grains cm-3) and PAR (grains cm-2 yr-1)were determined using the 
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320 Lycopodium marker grains, pollen concentrations (Ci, grains cm-3) were calculated for each 

321 pollen type i using the following equation:

322                                            (6)𝐶𝑖 =  
𝐴𝑖 ×  𝐿𝑎

𝐿𝑐 ×  𝑉𝑖

323 Where Ai is the number of pollen grains counted for each taxon i, La is the number of added 

324 marker grains, Lc is the number of counted marker grains in each slide, and Vi is the volume of 

325 the pollen sample (e.g., 0.63 cm3) (Stockmarr 1971), and . Concentrations were used for PAR 

326 calculations by multiplying the concentration values by the sediment accumulation rate (Davis 

327 and Deevey 1964), which differed by lake site and was determined by the Plum age model in 

328 increments of 0.5cm (see SI for equations used).. The equation used was:

329                                                (7)𝑃𝐴𝑅𝑖 =  𝐶𝑖 ×  𝑆

330 Where PARi is the pollen accumulation rate for taxon i, Ci is the pollen concentration (grains cm-

331 3) for taxon i, and S is the sedimentation rate (cm yr-1) (Davis and Deevey 1964). 

332

333 3.5  Forest inventories

334 We used cruising prisms (wedges of glass with a known size/angle) to determine the basal area 

335 of the dominant pollen-producing taxa within 750 m from each lake’s shoreline (USDA Forest 

336 Service 2000). The prism method employs variable plot radius sampling at the stand level. 

337 Transects in eight directions (N, S, E, W, NE, NW, SE, SW) from the lake shore were sampled. 

338 The basal area of live trees was measured using the prisms were taken every 50m along the 

339 transects, following Han et al. 2017 (Fig. 3). 

340 We used aboveground live tree biomass (AGL) as the specific measure of abundance that 

341 is distance weighted. To estimate AGL from basal area measurements, we developed species-

342 specific allometric equations using contemporary data from the US Forest Service Forest 
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343 Inventory and Analysis program (FIA). From the FIA plots inventoried in Six Rivers National 

344 Forest between 2001 and 2017 (FIADB 2020), we calculated plot-level basal area (m2 ha-1) for 

345 every species in the plot and linked it to the estimate of plot-level aboveground live biomass (Mg 

346 ha-1) for each species (n = 3,428 plot-by-species observations). AGL was estimated using the 

347 regional model of tree biomass (Zhou and Hemstrom 2009). For every species, we predicted 

348 AGL as a function of basal area using a linear log-log (natural) equation (sensu Knight et al. 

349 2020). 

350

351 Specifically, 

352 (8)ln (𝐴𝐺𝐿𝑖𝑗) = 𝛽0𝑖 +  𝛽1𝑖 ∗ ln (𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎𝑖𝑗)

353 where ln(AGLij) is the natural log of aboveground live biomass for species i in plot j, ln(Basal 

354 Areaij) is the natural log of tree basal area for species i in plot j, β0i is the intercept for species i, 

355 and β1i is the slope coefficient for species i. For the six most abundant species that accounted for 

356 90% of the basal area, fits ranged from a low of 0.85 for sugar pine to a high of 0.97 for Port-

357 Orford-cedar (Table S8). With these equations and field measurements of species basal area, we 

358 calculated the AGL of each species in the prism sample. 

359

360 3.6  ERV analysis and estimation of aRSAP

361 The aRSAP values were extracted from conventional ERV analysis using model 3. We used 

362 PolERV from the software suite HUMPOL (Bunting and Middleton 2005) which has the same 

363 core code (erv-v6.exe and polsim-v3.exe) as other ERV software, e.g. POLLSCAPE (Sugita 

364 1994). In order to meet the requirement that the number of sites is at least twice the number of 

365 taxa used in ERV analysis (Soepboer et al. 2007), we analyzed sub-sets of three taxa across the 
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366 seven sites using the same reference taxon (TCT) every time. For example, one such sub-set 

367 combination was TCT, Pseudotsuga, and Pinus. We selected TCT as the reference taxon (i.e., 

368 specified that TCT has a relative pollen productivity of 1.0) for several reasons. First, a scatter 

369 plot of TCT pollen values and unscaled distance weighted plant abundance is positive and linear 

370 (Fig. S1). Second, TCT has an estimated relative pollen productivity in the middle of the dataset 

371 upon ERV analysis with all seven taxa. Lastly, TCT is represented in pollen data at all sites 

372 (unlike Abies, Alnus, or Quercus), and is present in vegetation close to the sampling pointcoring 

373 site. aRSAP was estimated by plotting the likelihood scores for each distance across all taxa 

374 combinations and pooling the results. 

375

376 3.7  Distance weighting and estimation of tRSAP

377 AGL results were first averaged by the number of plots in each concentric ring and then each 

378 ring was weighted using the Prentice-Sugita weighting under stable conditions, which affect 

379 parameters Cz and n (Eq. 3, 3a). We assumed stable atmospheric conditions because simulation 

380 experiments comparing unstable and stable models demonstrate little difference in estimated 

381 aRSAP and pollen productivity (Broström et al. 2004). The pollen-specific fall speeds (m sec-1) 

382 of Abies, Alnus, Pinus, Pseudotsuga, and Quercus have been determined in previous work (Table 

383 S9). For TCT, Stoke’s Law (Gregory 1973) was used to calculate fall speed using the average 

384 grain size of each taxon and weighted by relative abundance of the contributing species Port-

385 Orford-cedar and incense-cedar (both Cupressaceae family). For subprolate grain 

386 Notholithocarpus, major and minor axes were measured from reference slides in UC Berkeley’s 

387 collections, and then Stoke’s Law with Falck’s (1927) correction was used. Lastly, we 

388 determined the coefficient of determination (R2) of the linear model predicted from AGLdw at 
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389 distance z ( ) as a function of PAR. The R2 between PAR and summed AGLdw for each 𝐴𝐺𝐿𝑑𝑤𝑧

390 ring distance was plotted against the distance. The tRSAP occurs where the line reaches an 

391 asymptote. 

392

393 3.8  PAR-biomass transfer equations 

394 We developed transfer equations to predict taxon-specific contributions to the distance-weighted 

395 AGL (AGLdw) as a function of taxon-specific PAR. Although biomass “predicts” pollen 

396 accumulation rates in a functional sense, our aim was to apply calibrated transfer functions to 

397 predict biomass in the past. Consequently, we fitted regression lines with PAR values as the 

398 independent variable. This reasoning has been used for needle accumulation rate as a predictor of 

399 Holocene-era basal area (Blarquez et al. 2011). 

400 In this analysis, each lake represented a sample with the depositional source area defined 

401 by either aRSAP or tRSAP. We included seven pollen-producing taxa, namely Pseudotsuga, 

402 Pinus, Notholithocarpus, TCT, Alnus, Quercus, and Abies, that collectively account for greater 

403 than 99% of the pollen-producing trees present in the surrounding landscape. Using the assigned 

404 source area distances, we calculated AGLdw for the taxa present at each lake and regressed it 

405 against PAR using linear models (see Fig. 8a,b). Specifically, we evaluated three model forms: a 

406 linear model with an intercept term and slope term, a linear model with only a slope term, and 

407 segmented linear model with one breakpoint. In the linear models with intercepts, the intercept 

408 represents the “background” pollen component; because we treated PAR values as the 

409 independent variable, these intercepts are negative. So, we included an origin-forced model as an 

410 option because negative-intercept models are not biologically meaningful for biomass 

411 reconstruction given that very low PAR values would yield negative biomass. We included the 
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412 segmented model to potentially capture threshold responses in the relationship between AGL and 

413 PAR (Muggeo 2008). We ranked the models by the Akaike Information Criterion for small 

414 samples (AICc) in order to compare performance. AICc imposes a stronger penalty on model 

415 complexity than AIC and was chosen in order to avoid fitting models which were overly 

416 complex given the size of the dataset (Burnham and Anderson 2002). 

417 To evaluate the uncertainty introduced by the PAR transfer functions, the AGLdw 

418 predicted from PAR at each lake (predicted AGLdw) was compared to the AGLdw calculated from 

419 the observed AGLdw. Error was propagated using a resampling method (Crowley et al. 1992). 

420 Specifically, we estimated the error in predicted AGLdw for each iteration as a random sample 

421 from a normal distribution with the mean equal to zero and the standard deviation equal to the 

422 standard error of the regression estimate (SEE) for each taxon. Results were based on 10,000 

423 iterations and reported as means and standard errors of the predicted AGLdw for each lake. Bias 

424 between the predicted and observed AGLdw was calculated as: 

425 (9) 𝐵𝑖𝑎𝑠 =  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐺𝐿𝑑𝑤 ― 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐴𝐺𝐿𝑑𝑤

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝐺𝐿𝑑𝑤

426

427 4. Results

428 4.1  Chronology

429 The seven lakes’ chronologies were established using at least 20 210Pb dates measurements at 

430 each site (see Table S3-S9 for exact number of samples for each core). Blue Lake is shown as an 

431 example (Fig. 4). The chronologies for Fish, North Twin, Ogaromtoc, Onion, Red Mountain, and 

432 South Twin lakes followed the same procedure (Fig. S2). The lakes are characterized by rapid 

433 sedimentation rates, with rates in the upper sediments in the range of 0.14-0.33 cm yr -1 (3-7 yr 

434 cm-1). Therefore, surface samples (upper 0.5cm) contain pollen from 2018 (collection date) to 
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435 2011 at the oldest. Core lithology results are provided in the supplement (Figs. S3-4).

436

437 4.2  PAR

438 A group of highly abundant tree taxa contained Pseudotsuga, Pinus, Notholithocarpus, and TCT, 

439 which were reflected in high (> 2,000 grains cm-2 yr-1) PAR values in most samples (Fig. 5, 

440 Table S10). For example, Pseudotsuga values were above 5,000 grains cm-2 yr-1 at all sites 

441 except Onion Lake. The highest overall PAR value was Pinus at Onion Lake which exceeded 

442 10,000 grains cm-2 yr-1.  High PAR values reflect the Douglas-fir and pine-dominant composition 

443 of Six Rivers National Forest. Onion Lake is the only lake situated in the True Fir alliance zone 

444 and, unsurprisingly, the Abies PAR value was the highest compared to all other sites (5,000 

445 grains cm-2 yr-1). PAR values for Notholithocarpus and TCT varied across sites and were 

446 between 1,000-4,000 grains cm-2 yr-1. 

447 The group of less abundant arboreal taxa included Alnus, Abies, and Quercus which were 

448 present in most samples with PARs of less than 2,000 grains cm-2 yr-1 (Fig. 5). Alnus values were 

449 generally around 1,000 grains cm-2 yr-1, although values above 2,000 grains cm-2 yr-1 were 

450 observed at Ogaromtoc and Fish Lakes. Abies values were low (< 1,000 grains cm-2 yr-1) at all 

451 sites except North Twin and Onion Lakes. Although pollen from Alnus, Abies, and Quercus were 

452 found at all sites, the taxa themselves were not recorded from the transect sampling at several 

453 lakes. This could be due to low abundance such that they were not captured in the survey or due 

454 to their absence in the pollenshed sedimentary basin in which case their PAR contributions are 

455 background deposition. Pollen from the “other hardwood” category (defined as willows, 

456 buckthorn, hazel, and silk tassel) was detected in trace amounts (< 100 grains cm-2 yr-1). 

457
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458 4.3  aRSAP and tRSAP

459 Using the sub-setting approach for the aRSAP calculation, a coherent pattern was exhibited in 

460 the likelihood function scores from model 3. The values were high at short distances and then 

461 decreased rapidly until 175 m where they begin to flatten out. For all taxa combinations, we 

462 inferred via visual inspection that the curves reached their asymptotes at a distance of 625 m and 

463 thus the aRSAP of these lakes is 625 m from the lake shore. The likelihood function scores in 

464 relation to the distance from the lake shore are shown for one of the three sub-set examples: 

465 TCT, Pseudotsuga, and Pinus (Fig. 6).

466 Based on tRSAP calculations for the four dominant tree taxa, maximum R2 values were 

467 reached before the maximum distance surveyed (750 m) from the shoreline (Fig. 7). The R2 

468 values for Pinus and TCT were high (> 0.75) at only 25 m from the shore and stabilized around 

469 225 m, the tRSAP. The R2 values for Pseudotsuga and Notholithocarpus continued to improve 

470 for some distance from the lake shore. For Pseudotsuga, the tRSAP was 625 m; for 

471 Notholithocarpus, it was 525 m. Sample sizes were insufficient to estimate tRSAP values for the 

472 minor taxa. For these taxa, we used the aRSAP value in AGLdw calculations (i.e., 625 m).

473

474 4.4  Transfer functions: PAR to AGLdw 

475 PAR was a statistically meaningful and reasonably precise  reliable estimator of contemporary 

476 AGLdw for most of the pollen taxa present (Fig. 8). Based on the aRSAP distances, the linear 

477 model without intercept was the best performing model (∆AICc > 4.0 ) for the four most 

478 abundant taxa (Fig. 8a). For these taxa, the no-intercept regressions were not only significantly 

479 better than the null model (p < 0.001) but also explained most of the variation. R2 ranged from 

480 0.87 for TCT to 0.96 for Pseudotsuga (Table S11). The model results for the three less abundant 
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481 species (i.e., Alnus, Abies and Quercus) were more complex (Fig. 8b). Based on ∆AICc, the 

482 segmented regression model best fit the Alnus and Abies data. However, both species were rare 

483 and found in abundance at only one lake (Fig. 5). The existence of this one abundant point exerts 

484 extraordinary leverage in the segmented regression. To avoid relying on a single point in these 

485 two transfer functions, we used the second-best regression model. For Alnus, it was a linear 

486 model; for Abies, it was a linear model without intercept (Table S11). For Quercus, none of the 

487 regression models were superior to the null (Fig. 8b, Table S11), so we used the mean and 

488 standard error to predict Quercus contribution to AGLdw estimates for each lake. We recalculated 

489 the biomass transfer functions using the tRSAP weighted AGLdw estimates for all taxa. Both the 

490 functional forms and fits were similar to aRSAP-based results (Table S12). However, the 

491 coefficients varied with changes in the source area distance. 

492 The transfer functions based on aRSAP distances provide robust means to estimate 

493 contemporary AGL from PAR (Table 32). The coefficient of variation (COV) in predicted 

494 AGLdw ranged from 13-17% for six lakes with Ogaromtoc being the exception with a COV = 

495 24%. The standard error of the estimate varied little among lakes and averaged 32 Mg ha-1. In 

496 terms of accuracy the relative root mean squared error (rRMSE) between predicted and observed 

497 AGLdw was 9.2%. There was a small tendency for predicted AGLdw to overestimate the 

498 observed. The mean bias was 4.8% with two lakes, Red Mountain and South Twin, contributing 

499 the most to the positive bias (Table 23). The predictions of AGL weighted using tRSAP 

500 distances (Table 34) tended to less accurate (rRMSE = 12.7%) and more biased (10.1%).  

501

502 Discussion

503 5.1  Source areas of pollen: aRSAP and tRSAP
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504 Calibration of pollen-vegetation relationships is only effective when the scale of the vegetation 

505 sampling is close to or exceeds the scale of the relevant source area of pollen (Bunting et al. 

506 2004). Therefore, being able to specify the source area of pollen in a given basin is an important 

507 step towards quantitative reconstruction of past vegetation (Sugita et al. 1999, Hellman et al. 

508 2009). A primary aim of this work was to understand the spatial extent represented by the pollen 

509 assemblage. We addressed this aim by determining the assemblage-level relevant source area of 

510 pollen (aRSAP) obtained from pollen percentage data and ERV analysis and comparing those 

511 estimates with the taxon-specific source area of pollen (tRSAP) for four main taxa. Both metrics 

512 estimate the extent of vegetation that requires surveying for a subsequent reconstruction step but 

513 are seldom compared. 

514 aRSAP values have been estimated for lakes similar in size to those presented here (i.e., 

515 100 m radius), in different settings including simulated landscapes. Reported aRSAP values have 

516 ranged from: 300 m in a simulation of a hemlock-hardwood forest in the US (Sugita 1994), to 

517 800-1,000 m in a simulation of spruce forest in Sweden (Sugita et al. 1999), to 1,700 m in 

518 varying landcover types in Denmark (Nielsen and Sugita 2005), to 1,500-2,000 m in semi-boreal 

519 forests of Estonia (Poska et al. 2011), and to 2,200 m in the upper Tibetan Plateau (Wang and 

520 Herzschuh 2011). Within this list, all aRSAP estimates were derived from Prentice-Sugita-Sutton 

521 distance-weighted models and are thus comparable to our estimate. Our aRSAP value of 625 m 

522 falls in the range (300-2,200 m), though on the small end. 

523 The aRSAP is unique to a given set of lakes and is sensitive to numerous factors such as 

524 lake size and basin shape (Sugita 1993), vegetation patch size (Sugita 1994, Broström et al. 

525 2005), vegetation patterns (Bunting et al. 2004), and taxa spatial distribution (Hellman et al. 

526 2009). For example, aRSAP values tend to increase with landscape openness defined as the 
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527 extent of the vegetation cover in the pollenshedsedimentary basin. For example, the aRSAP for 

528 small ponds in a closed forest was simulated to be 300 m (Sugita 1994) and empirically verified 

529 by Calcote (1995), whereas the aRSAP for small ponds in an open Swedish landscape was 1,000 

530 m (Sugita et al. 1999). However, expectations based on landscape openness can be complicated 

531 by vegetation heterogeneity. Higher vegetation diversity and complex spatial distribution of taxa 

532 are associated with larger aRSAPs (Hellman et al. 2009). The presence of rare taxa in a 

533 landscape can also increase the aRSAP, other factors being held constant (Bunting et al. 2004). 

534 For example, Commerford et al. (2013) observed the effect of rare taxa empirically: small lakes 

535 in a ‘very open’ grassland in Kansas had a large aRSAP of 1,060 m, which they attributed to 

536 scattered tree taxa in the tallgrass prairie.

537 The contemporary forests around our lake sites are dense, closed, and heavily dominated 

538 by Douglas-fir (Skinner et al. 2018). Taxa like black oak (Quercus), white alder (Alnus), and 

539 white fir (Abies) are present but not common. These rare taxa in the pollenshed area contributed 

540 little to the overall biomass (2.3%) but make the landscape more heterogeneous. This 

541 heterogeneity can result in a larger aRSAP than if there were no rare taxa present. All else being 

542 equal, longer distances from each sampling site are required to get a sufficient cover of all taxa 

543 within the landscape to reach the regional average. These greater distances produce larger 

544 aRSAP estimates (Hellman et al. 2009). 

545 tRSAPs have been estimated at small lakes and ponds. For example, the tRSAP for Pinus 

546 was 200 m from the lakeshore in southern northeastern Germany (Matthias and Giesecke 2014), 

547 and other tRSAP values in that study ranged from 50 m (Quercus) to 300 m (Fagus) to 1,000 m 

548 (Betula). Jackson (1990) found small tRSAP estimates from ponds in New York: Acer (< 20 m), 

549 Betula (> 1,000 m), Fagus (> 1,000 m), Picea (< 100 m), Quercus (> 1,000 m) and Pinus/Tsuga 
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550 (< 500 m). In this study, the tRSAP value for Pinus was 225 m, a near match to Matthias and 

551 Giesecke (2014) and comparable to Jackson (1990). The other tRSAP values in this study ranged 

552 from 225 m (TCT) to 525 m (Notholithocarpus) to 625 m (Pseudotsuga). Like Matthias and 

553 Giesecke’s results, the tRSAPs are inconsistent with expectations based solely on the respective 

554 fall speeds of the taxa. For example, Pinus has one of the assemblage’s lowest fall speeds and 

555 was expected to travel longer distances and have a large tRSAP; in fact, it had one of the shortest 

556 tRSAPs. 

557 Unexpectedly small source areas of highly dispersible taxa have been observed in 

558 simulated landscapes (e.g., Betula, Sugita 1994) and have been attributed to vegetation 

559 patterning. The estimated RSAP reflects the minimum distance at which the regional vegetation 

560 composition is attained. For example, if Betula is uniformly spread in a forest, the regional 

561 distribution signal of Betula will be captured closer to the sampling point than in a forest where 

562 Betula is heterogeneously spread across the forestWhen a taxon has a relatively homogeneous 

563 distribution across the landscape (e.g., found in all communities with small patch size, occurs 

564 frequently as individuals in all communities), the regional distribution of the taxon is attained 

565 relatively close to the sampling point (e.g., the lake); thus, the vegetation composition does not 

566 change with increasing distance beyond that point and the source area is small. In this case, 

567 tRSAP reflects the distance at which regional vegetation composition is reached, instead of being 

568 predominantly controlled by the taxon’s pollen dispersal ability and depositional properties 

569 (Sugita 1994). The vegetation patterns in the Klamath area are complex and heterogeneous 

570 (Skinner et al. 2018). Within the sampling area, Douglas-fir (Pseudotsuga) is the dominant 

571 species with large amounts of tanoak (Notholithocarpus) at most lake sites, with pines (Pinus) 

572 intermixed and some cedars (TCT). The small “patches” of pines and cedars within a Douglas-fir 
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573 dominant overstory could effectively shrink the tRSAPs of Pinus and TCT, following the logic 

574 presented in Sugita (1994). Thus, the finding of relatively small tRSAPs for Pinus and TCT, 

575 despite their fall speeds, and relatively large tRSAPs for Pseudotsuga and Notholithocarpus, 

576 aligns with the study area’s vegetation patterning.

577 Our estimated aRSAP (625 m) and tRSAP values (all 625 m or less) suggest consistent, 

578 though not identical, interpretations of the pollenshedsource area of pollen. Both estimates 

579 indicate that the pollen record “senses” a local view of about the same area of the surrounding 

580 vegetation. Given that vegetation surveying must meet or exceed the scale of the relevant source 

581 area of pollen for quantitative reconstruction (Bunting et al. 2004), vastly different aRSAP and 

582 tRSAP estimates would potentially be consequential. If, for example, we had estimated an 

583 aRSAP << tRSAP, it would imply that our assemblage-level view was in some way blind to taxa 

584 in the assemblage, and thus missing important landscape patterning or other features of the 

585 pollenshedarea from which pollen originated. On the other hand, if we had estimated an aRSAP 

586 >> tRSAP, it would imply the subsequent reconstruction represents a larger area than is 

587 potentially being recorded by the pollen system. 

588 This consistency between the aRSAP and tRSAP results was reflected in the similarity of 

589 the AGLdw reconstructions (Table 32, Table 34). On average, observed AGLdw for each lake was 

590 10.1 Mg ha-1 (5.2%) larger using aRSAP with the differences ranging from 2.6 Mg ha-1 (1.1%) 

591 larger at North Twin Lake to 22.2 Mg ha-1 (10.3%) larger at Onion Lake. The differences in 

592 terms of predictive ability were equally modest with aRSAP estimates producing somewhat more 

593 accurate and less biased results.

594

595 5.2  The potential of calibrated PAR as a bioproxy
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596 Establishing the relationship between contemporary biomass and modern PAR values is 

597 contingent upon obtaining accurate sedimentation rates in cores. We are confident in our 

598 estimated sedimentation rates for two key reasons. First, we used a state of the art, robust 

599 Bayesian model to develop age models from 210Pb dates (Aquino-López et al. 2018). Our results 

600 showed low uncertainty in the modeled ages in all cores, particularly in the top 20cm. Second, 

601 we were able to compare our upper sedimentation rates representing the last decade to estimates 

602 from two of the same lakes (Ogaromtoc and Fish lakes) that were collected in 2008 and 2009 

603 (Crawford et al. 2015). We found similar sedimentation rates in the upper sediments: 2.0-4.0 mm 

604 yr-1 compared to 2.0-3.3 mm yr-1. Our modern PAR values are also in agreement with PAR 

605 values from the youngest sediments in Crawford et al. (2015). 

606 The ultimate goal of this research was to assess whether PAR be used to predict distance-

607 weighted biomass for major tree taxa in the Klamath area, and therefore generate models suitable 

608 for reconstruction of past biomass dynamics. The fact that contemporary pollen influx is a 

609 reasonably reliableprecise predictor of contemporary distance-weighted AGL at these sites 

610 suggests that PAR can be used to infer changes in plant biomass at for these sites. But even with 

611 apparently statistically sound modern models, it may not be reasonable to apply the models for 

612 reconstruction in all contexts. 

613 In an ideal situation, the calibration dataset would include sites with a wide range of 

614 population sizes of the main taxa to allow any time in the fossil record to be reconstructed. Our 

615 model had less skill in estimating low levels of forest biomass because we were unable to find 

616 lake sites that met our selection criteria and supported sparse forest cover. Other modern 

617 quantitative vegetation reconstruction models have been restricted at the upper end of the 

618 calibration. Trees growing in dense forest stands produce less pollen than an exposed tree in a 
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619 field, which suggests that increased forest density could result in reduced net pollen productivity 

620 (Andersen 1970, Fægri and Iverson 1989, Feldman et al. 1999). For example, Blarquez et al. 

621 (2011) found that the relationship between needle accumulation rate and forest basal area tended 

622 to saturate above 40 m2 ha-1 for conifer-dominated sites. However, despite the high biomass-

623 density of the contemporary forest at our sites (Knight et al. 2020), there was no evidence of 

624 saturation in the PAR-biomass functions for the major taxa. Even at the maximum PAR values, 

625 the biomass values increase at pace following the log-linear fits (Fig. 8a).   

626 Long-term PAR records from lakes in the area provide insight into time periods where 

627 our calibrated models will be able to capture past conditions. Comparable taxa-specific PAR 

628 values from lake sites in the region were only available for Pinus, and they suggest time periods 

629 of agreement with our Pinus PAR measurements and our total Pinus PAR-AGL model, which 

630 covers a range between 1,500 and 11,000 grains cm-2 yr-1. For example, Briles et al. (2008) 

631 reported Pinus PAR between 2,000 and 8,000 grains cm-2 yr-1 at Sanger Lake in the western 

632 Klamath Mountains over 15,000 years BP. Likewise, a 3,000-year PAR record from Fish Lake (a 

633 lake also examined in this study) shows agreement with our total Pinus PAR range during some 

634 time periods. Fish Lake’s record shows temporal variability intotal Pinus PAR values between 

635 2,000 to 9,000 grains cm-2 yr-1 during the last two hundred years (Crawford et al. 2015), which 

636 falls within our calibration. Lastly, total PAR values measured at eight lakes in the Klamath area 

637 since 15,000 BP range from 2,000 to 15,000 grains cm-2 yr-1 (Briles et al. 2011) and are similar 

638 in size to lakes in this study and have a dense surrounding forest, although they are located in the 

639 white-fir vegetation zone. 

640 In addition to selecting a range of forest conditions, researchers undertaking similar 

641 efforts will need to consider the number of lakes needed for statistical soundness for the 
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642 calibration. The seven lakes presented here appear to have been sufficient to build robust models 

643 in terms of low coefficient of variation (Table 23), but it may be difficult in other locations to 

644 find enough suitable lakes using consistent selection criteria. If reconstructions of continuous 

645 Holocene-length biomass records are sought, using a high number of lakes has the downside of 

646 great expense (from isotopic dating) and labor (from pollen counting), unless accurate automatic 

647 classification systems become widespread (Sevillano et al. 2020). 

648 The calibration step we undertook required modern biomass data, which may be difficult 

649 to obtain empirically for a large number of lakes or in settings with challenging topography. For 

650 example, transects in this study ran 750 m from the shoreline, but steep topography and scree 

651 slopes occasionally prevented a complete survey. Because we studied small lakes and needed 

652 finely resolved biomass data, sparse inventory data with large geographic extent (e.g., FIA data) 

653 were not an appropriate substitute for field surveys. However, FIA data provided essential 

654 information regarding the basal area to biomass relationships for the common tree species in the 

655 region (Table S8). 

656 5.3  Limitations of PAR and PVMs 

657 Our results show the utility of calibrated PAR-AGL models for this study, and we have provided 

658 a robust process for including uncertainty in PAR-AGL models. However, PAR itself may vary 

659 in ways that reduce its value for pollen-based reconstructions in all landscapes. For instance, net 

660 pollen deposition can vary spatially and temporally if sediment focusing or pollen redeposition 

661 occurs. While studies investigating PAR from modern sedimentary records did not find that 

662 redeposition and sediment focusing affected PAR (Seppä and Hicks, 2006; Giesecke and 

663 Fontana, 2008), other studies have documented the influence of these factors on PAR (Davis et 

664 al. 1984, Odgaard 1993, Matthias and Giesecke 2014). Additionally, between-lake differences in 
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665 PAR values can arise from differences in pollen taphonomy due to basin size or stream inflow 

666 (Davis 1967b). Pollen monitoring studies have illustrated another known issue with PAR: the 

667 amount of pollen produced can change year to year and is related to the weather conditions of the 

668 preceding year (Hicks 2006). Lastly, one study has implied that PAR may depend on the net 

669 primary production of the pollen-producing taxa as well as overall plant biomass (Matthias and 

670 Giesecke 2014). Without long-term pollen monitoring studies across different biomes and 

671 accompanying detailed biomass data, true data validation will not be possible.

672 Pollen transport in mountain environments has been studied in Europe through the European 

673 Pollen Monitoring Programme, but, to our knowledge, has not been studied in the mountains of 

674 western North America outside of the present work. Several pollen monitoring studies with 

675 transects running through multiple vegetation zones in mountainous areas tend to show that 

676 pollen from lower forest zones is quite abundant in upper zones, and this effect appears more 

677 pronounced when high altitude zones have lower productivity (e.g., the Rila Mountains in 

678 Bulgaria, Tonkov et al. 2001). Unlike mountain transect studies, our sites are all within one 

679 vegetation zone, therefore reducing the significance of these effects, and we are not studying tree 

680 line position. The Douglas-fir dominated conifer forest in the Klamath Mountain is a relatively 

681 high productivity zone, and such zones typically show less of an “uphill” effect that impacts tree-

682 line pollen assemblages (e.g., Swiss Alps tree line study, Sjögren et al. 2008).” 

683 All PVMs, including PAR-biomass transfer functions, are based on assumptions that may not 

684 hold in a changing landscape. It must be assumed, for example, that taphonomic processes 

685 filtering pollen in lake sediments are constant over time and among lakes, unless taphonomic 

686 biases are precisely quantified (Allison and Bottjer 2011). Using our method, quantitative 

687 biomass reconstruction would also assume that the relevant source area of pollen is constant over 

Commented [MOU5]: Added discussion of mountain pollen 
transport for Reviewer 2.
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688 time. We estimated the aRSAP of our seven sites as well as the tRSAP of abundant taxa, but 

689 these may apply to a landscape arrangement which is unique in the last 3,000 years. The present-

690 day high PAR values of Pseudotsuga are not replicated in the fossil pollen record at any other 

691 time in three millennia (Crawford et al. 2015), suggesting that the dominance of shade tolerant 

692 Pseudotsuga is also not found elsewhere in this time period. Deep-time reconstructions from 

693 lakes in this study have shown large changes in vegetation composition due to climate, Native 

694 land-use, fire disturbances, and, in the last century, fire suppression. In response, we anticipate 

695 that the relevant source areas of pollen will expand and contract over time. Because the spatial 

696 patterns of past vegetation are usually unknown, it is difficult to estimate past relevant pollen 

697 sources areas. However, the Multiple Scenario Approach (MSA, Bunting and Middleton 2009) 

698 offers insight on this issue. Under MSA, hypothetical landscapes are created via rules for plant 

699 placement and environmental parameters, and then pollen assemblages are simulated and 

700 compared to known pollen signals to identify probable past vegetation mosaics. Another 

701 experimental method to estimate past relevant pollen source area has been explored through 

702 modeling (Hellman et al. 2009) where regional vegetation composition and available pollen 

703 productivity estimates are available for multiple sites (Sugita 2007b). Hellman et al.’s (2009) 

704 simulations suggest relatively robust aRSAP estimates of 1,000 to 2,500 m for small lakes under 

705 hypothetical landscapes from southern Sweden where natural and anthropogenic disturbances 

706 have occurred during the Holocene. Such simulations provide a means to test the potential 

707 robustness of aRSAP in the Klamath area. 

708

709 5. Conclusion
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710 Although methodologically challenging, calibrating PAR-biomass models is an important step 

711 towards quantitative reconstruction of past vegetation. Our calibration steps included estimating 

712 the spatial extent represented by the pollen system, comparing two estimates of the 

713 pollenshedRSAP, and evaluating PAR-AGL models. We found comparable aRSAP and tRSAP 

714 estimates that aligned with expectations given the modern forest’s dense, closed conditions. We 

715 also demonstrated that PARs of major tree taxa derived from lake sediments are linearly related 

716 to distance-weighted AGL, and our PAR-AGLdw models accurately reconstruct modern lake-

717 surrounding biomass. According to PAR values from local and regional lakes sites, our modern 

718 models are broad enough to capture a range of forest structures over the last 15,000 years BP. 

719 We therefore conclude that our results prove the utility of calibrated PAR-AGL models for 

720 quantitative reconstruction of past vegetation.
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Figure 1. Map shows study sites (blue squares) in northwestern California: Blue Lake (BLU), 
Fish Lake (FSH), North Twin Lake (NTW), Lake Ogaromtoc (OGA), Onion Lake (ONO), Red 
Mountain Lake (RED), and South Twin Lake (STW). Note that Lake Ogaromtoc and Fish Lake 
were described in Crawford et al. (2015) and North and South Twin Lake were described in 
Wanket (2002) but were also studied in this project. Map also shows Holocene-era pollen 
records from other parts of the region (yellow circles): Bluff (BLF) and Crater (CRA) Lakes 
(Mohr et al. 2000); Sanger (SAN) and Bolan (BOL) Lakes (Briles et al. 2008); Upper Squaw 
Lake (USL; Colombaroli and Gavin 2010); Mumbo (MUM) Lake (Daniels et al. 2005); and 
Campbell (CAM), Taylor (TAY), and Cedar (CED) Lakes (Briles et al. 2011).
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Figure 2. Flowchart of methodological steps leading to a calibrated PAR-biomass model.
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Figure 3. A schematic of the vegetation survey design (not 
to scale), following Han et al. (2017), that included eight 

transect lines along the cardinal and sub-cardinal directions 
where sampling occurred at the mid-point of each concentric 
ring (the schematic shows an example with only four rings). 
Sample locations (squares) are shown on the north transect 

for illustration.
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Figure 4. Example of Pb-210 age model construction. The age-to-depth results of the Plum 
modeling for Blue Lake. The grey lines are simulation from Plum and the dashed red lines 
represent the mean age and the 95% interval. The small panels at the top show the prior (green) 
and posterior (grey) distributions for (a) the memory (ω), which describes the coherence in 
sedimentation rates along the core (b) the sedimentation rate (α), (c) the supported 210Pb (PS), 
which is the background level of 210Pb already present in the sediment, and (d) and the supply of 
210Pb (). For other sites, see Supplementary Information.
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Figure 5. Pollen accumulation rates (grains cm-2 yr-1) for the most 
important wind-pollinated taxa in 2018 in the Klamath Mountains. 

Lake sites are abbreviated: Ogaromtoc lake (OGA), Fish lake (FSH), 
South Twin Lake (STW), North Twin lake (NTW), Onion lake 

(ONO), Red Mountain lake (RED), and Blue lake (BLU). For the 
data’s tabular form, see Table S10.
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Figure 6. PolERV model 3 results of maximum likelihood scores compared to 
distance (m). Arrow indicates the aRSAP value (625m). 
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Figure 7. R2 for regressions between AGLdw and PAR at increasing distance from the lake shore to the 
furthest vegetation survey site. tRSAP is shown by the arrow: a) Pseudotsuga (625m), b) Pinus (225m), c) 

Notholithocarpus (525m), and d) TCT (225m).
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 Figure 8a. The relationship between distance-weighted aboveground live biomass (AGLDW) and 
pollen accumulation rate (PAR) for five of the pollen taxa present at the seven lake sites in the 
Klamath Mountains. Lines represent linear regressions forced through the origin. The relevant 
source area of pollen (aRSAP) was defined as a circle with a radius of 625 m from the centroid of 
the lake. Note that the scales change for each pollen taxa. For summaries of the linear models, see 
Table S11. (Note: Although biomass “predicts” pollen accumulation rates in a functional sense, 
our aim is to eventually apply calibrated transfer functions to predict biomass in the past; thus, we 
fitted regression lines with PAR values as the independent variable.)
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Figure 8b. The relationship between distance-weighted aboveground live biomass (AGLdw) and pollen accumulation rate (PAR) for 
Quercus and Alnus at the seven lake sites in the Klamath Mountains. The line represents the intercept of the null model. The relevant 
source area of pollen was defined as a circle with a radius of 625 m from the centroid of the lake. For details on the linear model, see 
Table S11.

Page 55 of 85

http://mc.manuscriptcentral.com/holocene

HOLOCENE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

10

Table 1. Lake site characteristics and overstory vegetation at each site. 

Lake site 
and code

Lat and long 
(dec. degrees)

Elevation 
(m)

Depth at 
deepest 

point/sample 
location (m)

Surface 
area (ha)

Mature overstory 
vegetation

Blue 
(BLU)

-123.69, 41.24 822 4.6 1.4 C. lawsoniana, P. menziesii, C. chrysaphylla, N. 
densiflora, A. menziesii, A. rhombifolia, P. 

lambertiana, T. brevifolia

Fish 
(FSH)

-123.68, 41.26 541 13 9.6 C. lawsoniana, P. menziesii, P. lambertiana, 
N. densiflora, A. menziesii, A. rhombifolia, C. 

chrysaphylla
North Twin 

(NTW)
-123.67, 41.32 1142 0.5 3.4

South Twin 
(STW)

-123.67, 41.31 1137 1.2 3.5

P. menziesii, P. lambertiana, C. lawsoniana, C. 
chrysaphylla, P. jeffreyi, T. heterophylla, C. 

decurrens, N. densiflora, A. menziesii

Onion 
(ONO)

-123.75, 41.38 1356 1.5 0.66 P. ponderosa, P. menziesii, A. magnifica, C. 
decurrens, A. concour, P. lambertiana, T. brevifolia

Ogaromtoc 
(OGA)

-123.54, 41.49 600 6.3 1.74 P. menziesii, N. densiflora, P. lambertiana, A. 
macrophylla, A. rhombifolia, A. menziesii, U. 

californica, C. decurrens, Q. kelloggii, Q. garryana

Red Mountain 
(RED)

-123.69, 41.25 768 1.6 1.2 C. lawsoniana, P. menziesii, P. lambertiana, 
N.densiflora, A. menziesii, A. rhombifolia, C. 

chrysaphylla
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Table 2. Definitions of RSAP, aRSAP, and tRSAP. 

Term Definitional basis and relevant literature

RSAP

Originally described by Sugita (1994) as the “smallest area within which reliable 
estimates of parameter values and asymptotic r2 or likelihood function scores can 

be obtained.” The definition was refined as the “distance from a pollen 
deposition point beyond which the relationship between vegetation composition 

and pollen assemblage does not improve” (Bunting et al. 2004, with Sugita). 
Estimates are derived for the overall assemblage from extended R-value analysis 
(Parsons and Prentice 1981) through inspection of the likelihood function score 
plot.  RSAP varies depending on which taxa and which sites are included in the 

analysis, thus is dependent on the assemblage chosen for analysis.

aRSAP Identical to the standard RSAP, but with the addition of an “a” to denote that it is 
an assemblage-specific metric, in contrast to the tRSAP.

tRSAP

The RSAP concept can be extended to single taxa where pollen taxa are 
measured independently (e.g., PAR values rather than percentage values).  In 
this situation, we define a taxon-specific Relevant Source Area of Pollen, the 
tRSAP, as the distance beyond which the correlation between PAR (Y) and 
distance-weighted plant abundance () summed to that distance for a single 

taxon does not improve (Jackson 1990). 
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Table 3. A comparison of observed to predicted distance-weighted aboveground live biomass 
(AGLdw) for each lake site using the assemblage-level relevant source area pollen (aRSAP) 
estimates. Predicted AGLdw is the mean from 10,000 resampling iterations; Standard Error is the 
standard deviation of the 10,000 samples; COV is the coefficient of variation (Standard 
Error/Predicted AGLdw); Bias is the percent difference between predicted and observed AGLDW.

Lake
Observed AGLdw

(Mg ha-1)

Predicted AGLdw

(Mg ha-1)

Standard Error

(Mg ha-1)

COV

(%)

Bias

(%)

Blue 205 189 31.5 17 -7.8
Fish 197 195 31.8 16 -1.1
North Twin 242 251 32.0 13 3.7
Ogaromtoc 127 134 31.6 24 5.7
Onion 215 212 32.1 15 -1.1
Red Mountain 197 218 31.4 14 10.5
South Twin 180 217 31.6 15 20.5

Table 4. A comparison of observed to predicted distance-weighted aboveground live biomass 
(AGLdw) for each lake site using taxon-specific source area pollen estimates (tRSAP). Predicted 
AGLdw is the mean from 10,000 resampling iterations; Standard Error is the standard deviation of 
the 10,000 samples; COV is the coefficient of variation (Standard Error/Predicted AGLDW); Bias 
is the percent difference between predicted and observed AGLdw.

Lake
Observed AGLdw

(Mg ha-1)

Predicted AGLdw

(Mg ha-1)

Standard Error

(Mg ha-1)

COV

(%)

Bias

(%)

Blue 196 189 31.5 17 -3.7
Fish 185 195 31.8 16 5.2
North Twin 239 251 32.0 13 4.9
Ogaromtoc 121 134 31.6 24 10.6
Onion 193 212 32.1 15 10.3
Red 184 218 31.4 14 18.4
South Twin 173 217 31.6 15 24.9
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Supplemental Information

Title: Linking modern pollen accumulation rates to biomass: Quantitative vegetation 
reconstruction in the western Klamath Mountains 

Authors: Clarke A. Knight, Mark Baskaran, M. Jane Bunting, Marie Champagne, Matthew D. 
Potts, David Wahl, James Wanket, John J. Battles
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Figure S1. TCT pollen counts corrected to the same base sum plotted against unscaled distance 
weighted plant abundance at 750m to determine the reference taxon for the PolERV model. 
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Sediment dating and age-depth model

We used lead-210 (210Pb; 22.3 yr half-life) to assign ages to sediment deposited in the last 150 

years. Surface bulk sediments from 0 cm to a maximum of 45 cm were taken from each core and 

dried to 105C (see Tables S1-S7). 210Pb activity was determined by alpha spectrometry, via 

210Po. An aliquot of 0.2 to 1.0 g of dried and pulverized sample was digested using concentrated 

HF, HNO3, and HCl and a known amount of 209Po spike in an oven at 90°C for ~ 24 hours. The 

digested solution was dried, and the residue was mixed with 1 M HCl until the pH was ~2. Auto-

plating of Po was cold-plated onto an Ag disk for 24 hours at room temperature (Jweda and 

Baskaran 2011). The plated disk was assayed for Po using Octete PC ORTEC alpha 

spectrometer. The reagent blanks were run simultaneously with each batch of eight samples and 

were subtracted. Certified reference materials were periodically run. For the determination of 

parent-supported (i.e., background) 210Pb, several samples were run for the activity of 226Ra 

(using 352 and 609 keV) along with 137Cs (661.6 keV) by Ge-well detector (Baskaran et al. 

2015). Small sample sizes prevented reliable 137Cs from being obtained.

We used the Bayesian-based Plum software to develop age models from excess 

(unsupported) 210Pb data (Aquino-López et al. 2018). The Plum model is related to the constant 

rate of supply (CRS) method (Appleby and Oldfield 1978) and retains two of the basic 

assumptions of CRS: the rate of supply of 210Pb is constant and there is no vertical mixing of 

radionuclides. Testing these assumptions requires independent validation using another marker, 

which is outside of this paper’s scope. The Plum model is formulated within a robust statistical 

framework to quantify uncertainty (Aquino-López et al. 2018). Plum uses a self-adjusting 

Markov Chain Monte Carlo (MCMC) algorithm called the t-walk (Christen and Fox 2010). Plum 

uses millions of MCMC iterations to model the accumulation of sediment, using a gamma 

Commented [MOU1]:  Moved from MS, as requested by 
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autoregressive semiparametric age-depth function (Blaauw and Christen 2011). This algorithm 

results in a probability envelope around the mean age model. The envelope allows the precision 

at any depth to be estimated explicitly. Plum makes use of prior information to determine the 

datable horizon, which is affected by two factors: the precision of methodology (alpha versus 

gamma counting) and the initial amount of excess lead. In Plum, the chronology limit is 

determined by the rate of supply of 210Pb to the site and the equipment error, usually ~3 Bq/kg 

for a sample size of 1 g by alpha spectrometry for research laboratories. Supported 210Pb 

activities were determined from the direct measurements of 226Ra by gamma-ray spectrometry. 
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Figure S2. The age-to-depth results of the Plum model for Fish, Ogaromtoc, Onion, North 
Twin, Red Mountain, and South Twin Lakes. The grey lines are simulation from Plum and the 
dashed red lines represent the mean age and the 95% interval. The small panels at the top show 
the prior (green) and posterior (grey) distributions for (a) the memory (ω), (b) the sedimentation 
rate (α), (c) the supported 210Pb (PS), which is the background level of 210Pb already present in 
the sediment, and (d) and the supply of 210Pb ().
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Lithology

Cores were split lengthwise and measured for magnetic susceptibility at every half 

centimeter using a calibrated MS2E surface scanning point sensor (MS Bartsoft). Changes in 

lithology were described and documented. The water content and dry bulk density were 

determined for each core in 1 or 2 cm intervals (Tables S14-S20), matching the sampling pattern 

for radioisotopic analysis (Table S1-S7). 

Cores were composed of unlaminated gyttja. Occasional diatomaceous lenses (<1 cm 

thick) were present in Blue and Ogaromtoc lakes. For the Onion lake core, pine needles were 

visible in the top 3 cm, but needles were not seen in the other cores. Magnetic susceptibility was 

near zero for Blue, North Twin, Red Mountain, and South Twin lakes, and although magnetic 

susceptibility in Ogaromtoc lake was also generally low, Ogaromtoc had two distinct peaks (Fig. 

S3). Fish and Onion lakes showed higher overall magnetic susceptibility than the other lakes, as 

well as more variation across depths (Fig. S4). Peaks in magnetic susceptibility generally 

corresponded to increases in dry bulk density (g cm-3) for Ogaromtoc, Fish, and Onion lakes 

(Tables S19, S17, S16, respectively). For example, two peaks at 14-15cm and 22-23cm in 

Ogaromtoc matched the depths where dry bulk density tripled and doubled, respectively. 

Ogaromtoc also had two light blue clay bands at 14-15cm and 22-23cm. Other cores did not 

contain clear stratigraphic markers. 
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Figure S3. Magnetic susceptibility for the five study sites. The magnetic susceptibility was near zero with some variability 
for five lakes (note different x-axis for Ogaromtoc) – Blue, North Twin, Red Mountain, South Twin and Ogaromtoc Lakes.
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Figure S4. Magnetic susceptibility for the two study sites. Fish and Onion lakes (same 
x-axis) displayed higher overall magnetic susceptibility than the other five lake sites.
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Table S1. 210Pb dates used to create the Blue Lake age model.

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

210Pb_1 0.5 3 0.3 210Pb_12 13.0 38 2
210Pb_2 1.5 6 0.5 210Pb_13 15.0 45 3
210Pb_3 2.5 9 0.6 210Pb_14 17.0 50 3
210Pb_4 3.5 12 0.7 210Pb_15 19.0 57 4
210Pb_5 4.5 15 0.9 210Pb_16 20.5 69 5
210Pb_6 5.5 19 1 210Pb_17 22.5 87 9
210Pb_7 6.5 23 1 210Pb_18 24.5 103 13
210Pb_8 7.5 27 2 210Pb_19 26.5 125 21
210Pb_9 8.5 31 2 210Pb_20 28.5 146 27
210Pb_10 9.5 34 2 210Pb_21 30.5 175 57
210Pb_11 11.0 37 2

Table S2. 210Pb dates used to create the Fish Lake age model.

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

210Pb_1 0.5 2 0.2 210Pb_12 12.5 58 2
210Pb_2 1.5 5 0.4 210Pb_13 14.5 70 3
210Pb_3 2.5 8 0.5 210Pb_14 16.5 82 4
210Pb_4 3.5 12 0.6 210Pb_15 18.5 90 6
210Pb_5 4.5 15 0.7 210Pb_16 20.5 110 7
210Pb_6 5.5 20 0.8 210Pb_17 22.5 175 25
210Pb_7 6.5 25 1 210Pb_18 24.5 197 32
210Pb_8 7.5 30 1 210Pb_19 26.5 224 40
210Pb_9 8.5 36 1 210Pb_20 28.5 244 51
210Pb_10 9.5 44 2 210Pb_21 30.5 277 60
210Pb_11 10.5 49 2
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Table S3. 210Pb dates used to create the Ogaromtoc Lake age model. An outlier point at 6.5cm 
was excluded from the model.

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

210Pb_1 0.5 3 0.2 210Pb_9 9.5 47 3
210Pb_2 1.5 7 0.4 210Pb_10 10.5 55 4
210Pb_3 2.5 11 0.6 210Pb_11 12.5 71 5
210Pb_4 3.5 15 0.8 210Pb_12 14.5 86 5
210Pb_5 4.5 19 1 210Pb_13 16.5 103 6
210Pb_6 5.5 24 1 210Pb_14 18.5 124 7
210Pb_7 7.5 34 2 210Pb_15 20.5 153 12
210Pb_8 8.5 40 2 210Pb_16 22.5 197 34

Table S4. 210Pb dates used to create the Onion Lake age model.

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

210Pb_1 0.5 8 0.6 210Pb_10 9.5 83 3
210Pb_2 1.5 15 0.7 210Pb_11 11.0 88 4
210Pb_3 2.5 24 0.9 210Pb_12 13.0 94 4
210Pb_4 3.5 32 1 210Pb_13 15.0 104 5
210Pb_5 4.5 44 1 210Pb_14 17.0 113 5
210Pb_6 5.5 54 2 210Pb_15 19.0 123 7
210Pb_7 6.5 63 2 210Pb_16 20.5 201 32
210Pb_8 7.5 68 2 210Pb_17 22.5 244 29
210Pb_9 8.5 77 2 210Pb_18 24.5 263 29

Table S5. 210Pb dates used to create the North Twin Lake age model.

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

210Pb_1 0.5 2 0.4 210Pb_7 6.5 112 4
210Pb_2 1.5 24 0.8 210Pb_8 7.5 128 5
210Pb_3 2.5 39 1 210Pb_9 8.5 147 6
210Pb_4 3.5 55 1 210Pb_10 9.5 173 10
210Pb_5 4.5 71 2 210Pb_11 11.0 197 18
210Pb_6 5.5 94 3 210Pb_12 13.0 229 30
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Table S6. 210Pb dates used to create the Red Mountain Lake age model.

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

210Pb_1 0.5 5 0.3 210Pb_10 9.5 71 5
210Pb_2 1.5 10 0.2 210Pb_11 11.0 75 6
210Pb_3 2.5 16 0.8 210Pb_12 13.0 79 7
210Pb_4 3.5 23 1 210Pb_13 15.0 87 8
210Pb_5 4.5 30 2 210Pb_14 17.0 91 9
210Pb_6 5.5 37 2 210Pb_15 19.0 96 12
210Pb_7 6.5 45 2 210Pb_16 20.5 104 12
210Pb_8 7.5 53 3 210Pb_17 22.5 146 37
210Pb_9 8.5 62 4

Table S7. 210Pb dates used to create the South Twin Lake age model.

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

Sample Depth 
(cm)

Age (yr) Uncertainty 
(yr)

210Pb_1 0.5 3 0.3 210Pb_11 10.5 44 3
210Pb_2 1.5 7 0.4 210Pb_12 12.5 55 3
210Pb_3 2.5 12 0.6 210Pb_13 14.5 68 4
210Pb_4 3.5 17 0.8 210Pb_14 16.5 80 4
210Pb_5 4.5 22 1 210Pb_15 18.5 90 4
210Pb_6 5.5 26 1 210Pb_16 20.5 95 5
210Pb_7 6.5 29 1 210Pb_17 22.5 114 7
210Pb_8 7.5 33 2 210Pb_18 24.5 135 9
210Pb_9 8.5 36 2 210Pb_19 26.5 166 16
210Pb_10 9.5 40 2 210Pb_20 28.5 186 38
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Assumptions of the Prentice-Sugita-Sutton PVM

As noted in section 2.2, the Prentice-Sugita-Sutton model has certain assumptions (Sugita 1994, 

Gaillard et al. 2008), which we describe in full here:

1) that there is a comprehendible and spatially and temporally consistent relationship 

between pollen loading and distance-weighted plant abundance

2) the vegetation surface where the pollen is derived from is flat

3) the sampling basin is a circular opening in the canopy

4) pollen productivity (the amount of pollen produced per vegetation cover unit) is a 

constant for a given pollen taxon

5) pollen is dispersed as single grains

6) pollen dispersal is largely via wind above the canopy and gravity beneath the canopy, 

and pollen transport into a basin (canopy opening) can be modelled by considering 

the canopy component only

7) wind is uniform in every direction therefore pollen dispersal is evenly distributed 

around the source

8) most pollen deposition takes place via sedimentation due to gravity and deposition by 

interception is negligible

9) the deposition of pollen at a specified distance from a plant can be approximated 

using a diffusion model of the dispersal of small particles from a ground level source 

(Sutton 1953)

10) inter-taxon pollen grain differences (e.g., grain size, weight, and density) affect pollen 

dispersal and can be quantitatively estimated, and use of a single value to represent 

each taxon is sufficient to capture 
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11) atmospheric conditions during pollen deposition can be modelled as “stable” which 

affects parameters Cz and n (Eq.3,3a)

12)  all lake sites experience the same conditions

 PAR calculation

After grains were counted, pollen concentrations and PAR were determined. Using the 

Lycopodium marker grains, pollen concentrations (Ci, grains cm-3) were calculated for each 

pollen type i using the following equation:

                                           (6)𝐶𝑖 =  
𝐴𝑖 ×  𝐿𝑎

𝐿𝑐 ×  𝑉𝑖

Where Ai is the number of pollen grains counted for the taxon i, La is the number of added 

marker grains, Lc is the number of counted marker grains in each slide, and Vi is the volume of 

the pollen sample (e.g., 0.63 cm3) (Stockmarr 1971). Concentrations were used for PAR 

calculations by multiplying the concentration values by the sediment accumulate rate, which 

differed by lake site and was determined by the Plum age model in increments of 0.5cm. The 

equation used was:

                                               (7)𝑃𝐴𝑅𝑖 =  𝐶𝑖 ×  𝑆

Where PARi is the pollen accumulation rate for taxon i, Ci is the pollen concentration (grains cm-

3) for taxon i, and S is the sedimentation rate (cm yr-1) (Davis and Deevey 1964). 
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Table S8. Coefficients for the predicted aboveground live biomass (Mg ha-1) of trees as a 
function of basal area (m2 ha-1) using a linear log-log (natural) equation. Results for all 
species encountered in the forest inventory conducted for the seven lakes in the Klamath 
Mountains. The p-value of the regression was < 0.0001 in all cases except for white alder 
where p = 0.034. B0 is the intercept; B1 is the slope coefficient; SEE = standard error of the 
estimate.

Genus Species Common name Bo B1 R2
adj

SEE
(Mg ha-1)

Abies concolor white fir 1.65 1.07 0.95 0.40
Abies magnifica California red fir 1.47 1.19 0.92 0.46
Acer macrophyllum bigleaf maple 1.30 1.11 0.94 0.24
Alnus rhombifolia white alder 1.26 1.30 1.00 0.07
Arbutus menziesii Pacific madrone 1.55 1.12 0.94 0.29
Calocedrus decurrens incense-cedar 1.08 1.18 0.90 0.52
Chamaecyparis lawsoniana Port-Orford-cedar 1.16 1.19 0.97 0.37
Chrysolepis chrysophylla golden chinquapin 1.19 1.18 0.96 0.34
Cornus nuttallii Pacific dogwood 1.07 0.92 0.85 0.37
Notholithocarpus densiflorus tanoak 1.08 1.17 0.96 0.35
Pinus attenuata knobcone pine 1.18 1.06 0.96 0.21
Pinus jeffreyi Jeffrey pine 1.09 1.11 0.88 0.58
Pinus lambertiana sugar pine 1.67 1.22 0.85 0.59
Pinus ponderosa ponderosa pine 1.36 1.23 0.89 0.50
Pseudotsuga menziesii Douglas-fir 1.15 1.23 0.96 0.30
Quercus chrysolepis canyon live oak 1.47 1.12 0.92 0.43
Quercus kelloggii California black oak 1.62 1.11 0.96 0.27
Taxus brevifolia Pacific yew 0.83 0.82 0.94 0.21
Umbellularia californica California-laurel 0.95 1.30 0.95 0.38
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Table S9. Fall speed (m/sec) for major taxa 
used in the simulation runs of this study.

Taxa Fall-speed (vs) 

estimates (m s-1)

Abies 0.120 a

Alnus 0.021b

Pinus 0.031a

Pseudotsuga 0.126a

Quercus 0.035a

TCT 0.016c

a Eisenhut (1961); b Schober (1975);

 c Calculated from empirical measurements using Stoke’s Law 

with Falck’s (1927) correction

Table S10. PAR values of main taxa from 2018 (a modeled age) at each lake site.

Lake Site Pinus Pseudotsuga Quercus TCT Notholithocarpus Alnus Abies

Blue 1760 5461 758 4490 1031 1183 789

Red Mt. 3672 5068 672 3051 2844 1034 569

Onion 10797 2014 1063 1622 559 951 4811

North Twin 1749 6808 1686 2311 2935 812 1999

South Twin 2384 7152 1463 2005 2059 1300 325

Fish 1479 4606 840 1782 3741 2858 34

Ogaromtoc 3376 4609 1558 844 454 1753 260
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Table S11. Results from the linear regressions predicting distance-weighted aboveground live 
biomass (AGLdw) as a function of pollen accumulation rate (PAR) for the pollen taxa present at 
the seven lake sites in the Klamath Mountains. The assemblage-level relevant source area of 
pollen (aRSAP) was defined as a circle with a radius of 625 m from centroid of the lake. 
Parameters provided the linear regression: AGLDW = B0 + B1 * PAR where AGLdw is measured 
in Mg ha-1; PAR in grains cm-2 yr-1; SEE = standard error of the estimate; ΔAICc = the 
difference in the Akaike Information Criterion for small samples between the top ranked model 
and the second ranked model.

Pollen Taxa ΔAICc B0 B1
SEE

(Mg ha-1) R2
adj P

Pseudotsuga 6.6 0 0.0180 19.1 0.96 < 0.001
Pinus 5.4 0 0.00740 8.42 0.94 <0.001
Notholithocarpus 4.2 0 0.0211 16.5 0.89 <0.001
TCT 4.0 0 0.00954 9.43 0.87 <0.001
Quercus1 -- -- -- -- --
Alnus 3.0 3.8 0.00341 1.05 0.84 0.002
Abies 4.2 0 0.0138 13.8 0.80 0.0018

1There was no evidence of a significant linear relationship for Quercus. For predicting AGLdw, a 
null model was used with the intercept = 1.54 and the standard error = 1.46.

Table S12. Results from the linear regressions predicting distance-weighted aboveground live 
biomass (AGLdw) as a function of pollen accumulation rate (PAR) for the pollen taxa present at 
the seven lake sites in the Klamath Mountains. The taxon-specific source area of pollen (tRSAP) 
was defined as a circle with a radius determined by the strength of correlation (R2) between plant 
abundance and PAR. Parameters provided the linear regression: AGLdw = B0 + B1 * PAR where 
AGLDW is measured in Mg ha-1; PAR in grains cm-2 yr-1; SEE = standard error of the estimate. 

Pollen Taxa B0 B1
SEE

(Mg ha-1) R2
adj P

Pseudotsuga 0 0.0180 19.1 0.96 < 0.001
Pinus 0 0.00558 6.78 0.95 <0.001
Notholithocarpus 0 0.0205 16.2 0.91 <0.001
TCT 0 0.00849 8.97 0.87 <0.001
Quercus1 -- -- -- -- --
Alnus -3.8 0.00341 1.05 0.84 0.002
Abies 0 0.0138 13.8 0.83 0.0018

1There was no evidence of a significant linear relationship for Quercus. For predicting AGLdw, a 
null model was used with the intercept = 1.54 and the standard error = 1.46.
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Table S13. Results from the linear regressions predicting distance-weighted aboveground live 
biomass (AGLdw) as a function of pollen accumulation rate (PAR) for the pollen taxa present 
at the seven lake sites in the Klamath Mountains. These equations all include an intercept and 
slope term even if they were not the best fit. The relevant source area of pollen (aRSAP) was 
defined as a circle with a radius of 625 m from centroid of the lake. Parameters provided the 
linear regression: AGLDW = B0 + B1 * PAR where AGLdw is measured in Mg ha-1; PAR in 
grains cm-2 yr-1; SEE = standard error of the estimate. 

Pollen Taxa B0 B1
SEE

(Mg ha-1) R2
adj P

Pseudotsuga -14.7 0.0206 20.3 0.74 0.008
Pinus -5.5 0.00829 8.23 0.92 <0.001
Notholithocarpus 16.8 0.0149 14.7 0.61 0.02
TCT -12.1 0.0138 8.33 0.78 0.005
Quercus -2.9 0.00386 3.84 0.0083 0.4
Alnus -3.8 0.00341 1.05 0.84 0.002
Abies -9.4 0.0168 12.35 0.84 0.002
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Table S14. Dry bulk density (g cm-3) for Blue Lake.

Lake
Depth 
(cm)

Dry Bulk 
Density (g cm-3)

Blue 0-1 0.102
Blue 1-2 0.093
Blue 2-3 0.085
Blue 3-4 0.095
Blue 4-5 0.088
Blue 5-6 0.087
Blue 6-7 0.089
Blue 7-8 0.085
Blue 8-9 0.084
Blue 9-10 0.078
Blue 10-12 0.087
Blue 12-14 0.096
Blue 14-16 0.102
Blue 16-18 0.093
Blue 18-20 0.095
Blue 20-21 0.095
Blue 22-23 0.104
Blue 24-25 0.089
Blue 26-27 0.090
Blue 28-29 0.090
Blue 30-31 0.093
Blue 40-42 0.124
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Table S15. Dry bulk density (g cm-3) for Red Mountain Lake.

Lake Depth (cm)
Dry Bulk Density 

(g cm-3)
Red Mt. 0-1 0.080
Red Mt. 1-2 0.090
Red Mt. 2-3 0.074
Red Mt. 3-4 0.078
Red Mt. 4-5 0.068
Red Mt. 5-6 0.068
Red Mt. 6-7 0.071
Red Mt. 7-8 0.074
Red Mt. 8-9 0.079
Red Mt. 9-10 0.074
Red Mt. 10-12 0.081
Red Mt. 12-14 0.090
Red Mt. 14-16 0.112
Red Mt. 16-18 0.098
Red Mt. 18-20 0.110
Red Mt. 20-21 0.100
Red Mt. 22-23 0.121
Red Mt. 24-25 0.141
Red Mt. 26-27 0.146
Red Mt. 28-29 0.144
Red Mt. 30-31 0.150
Red Mt. 35-37 0.158
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Table S16. Dry bulk density (g cm-3) for Onion Lake.

Lake
Depth 
(cm)

Dry Bulk 
Density (g cm-3)

Onion 0-1 0.084
Onion 1-2 0.093
Onion 2-3 0.082
Onion 3-4 0.074
Onion 4-5 0.073
Onion 5-6 0.065
Onion 6-7 0.049
Onion 7-8 0.047
Onion 8-9 0.061
Onion 9-10 0.082
Onion 10-12 0.128
Onion 12-14 0.140
Onion 14-16 0.157
Onion 16-18 0.195
Onion 18-20 0.224
Onion 20-21 0.235
Onion 22-23 0.227
Onion 24-25 0.228
Onion 26-27 0.246
Onion 28-29 0.189
Onion 30-31 0.223
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Table S17. Dry bulk density (g cm-3) for Fish Lake.

Lake
Depth 
(cm)

Dry Bulk 
Density (g cm-3)

Fish 0-1 0.101
Fish 1-2 0.099
Fish 2-3 0.101
Fish 3-4 0.100
Fish 4-5 0.101
Fish 5-6 0.100
Fish 6-7 0.107
Fish 7-8 0.101
Fish 8-9 0.115
Fish 9-10 0.120
Fish 10-11 0.117
Fish 12-13 0.142
Fish 14-15 0.149
Fish 16-17 0.541
Fish 18-19 0.198
Fish 20-21 0.222
Fish 22-23 0.286
Fish 24-25 0.494
Fish 26-27 0.198
Fish 28-29 0.187
Fish 30-31 0.203
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Table S18. Dry bulk density (g cm-3) for South Twin Lake.

Lake Depth 
(cm)

Dry Bulk Density 
(g cm-3)

South Twin 0-1 0.076
South Twin 1-2 0.073
South Twin 2-3 0.067
South Twin 3-4 0.059
South Twin 4-5 0.054
South Twin 5-6 0.050
South Twin 6-7 0.045
South Twin 7-8 0.047
South Twin 8-9 0.047
South Twin 9-10 0.050
South Twin 10-11 0.051
South Twin 12-13 0.060
South Twin 14-15 0.064
South Twin 16-17 0.073
South Twin 18-19 0.067
South Twin 20-21 0.075
South Twin 22-23 0.083
South Twin 24-25 0.110
South Twin 26-27 0.130
South Twin 28-29 0.130
South Twin 30-31 0.154
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Table S19. Dry bulk density (g cm-3) for Ogaromtoc Lake.

Lake Depth (cm) Dry Bulk 
Density (g cm-3)

Ogaromtoc 0-1 0.086
Ogaromtoc 1-2 0.083
Ogaromtoc 2-3 0.064
Ogaromtoc 3-4 0.064
Ogaromtoc 4-5 0.065
Ogaromtoc 5-6 0.068
Ogaromtoc 6-7 0.072
Ogaromtoc 7-8 0.074
Ogaromtoc 8-9 0.071
Ogaromtoc 9-10 0.066
Ogaromtoc 10-11 0.068
Ogaromtoc 12-13 0.081
Ogaromtoc 14-15 0.366
Ogaromtoc 16-17 0.116
Ogaromtoc 18-19 0.072
Ogaromtoc 20-21 0.096
Ogaromtoc 22-23 0.268
Ogaromtoc 24-25 0.147
Ogaromtoc 26-27 0.066
Ogaromtoc 28-29 0.061
Ogaromtoc 30-31 0.064
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Table S20. Dry bulk density (g cm-3) for North Twin Lake.

Lake Depth (cm) Dry Bulk 
Density (g/cm^3)

North Twin 0-1 0.099
North Twin 1-2 0.097
North Twin 2-3 0.101
North Twin 3-4 0.107
North Twin 4-5 0.108
North Twin 5-6 0.106
North Twin 6-7 0.092
North Twin 7-8 0.076
North Twin 8-9 0.076
North Twin 9-10 0.088
North Twin 10-12 0.132
North Twin 12-14 0.143
North Twin 14-16 0.145
North Twin 16-18 0.145
North Twin 18-20 0.141
North Twin 20-21 0.122
North Twin 22-23 0.133
North Twin 24-25 0.127
North Twin 26-27 0.137
North Twin 28-29 0.135
North Twin 30-31 0.137
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