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Enhanced chemical etch rate of borosilicate glass via spatially 

resolved laser-generated color centers  

A. A. Serkov, H. V. Snelling 

Department of Physics and Mathematics, Faculty of Science and Engineering, University of 

Hull, HU6 7RX, Hull, United Kingdom 

Abstract 

In this work, it is shown that controllable increases in chemical reactivity of borosilicate glass 

can be induced through spatially resolved femtosecond laser irradiation at fluence values 

significantly lower than the damage threshold. The hydrofluoric acid etch rate has been found 

to be closely correlated to the reduction in optical transmission of the glass at 488nm, which 

is, in turn, governed by the production of boron-oxygen hole centers. The combination of 

laser irradiation below the ablation threshold followed by chemical etching is shown to yield 

surfaces that have a roughness lower than those achieved by either laser or chemical etching 

alone. Application of this effect to the manufacture of freeform Laplacian optics is 

demonstrated. 

1. Introduction 

Developments in freeform optical science has led to investigations into new manufacturing 

techniques. Conventional machining methods, such as precise CNC milling or cutting with 

the attendant need for polishing [1] are typically rather expensive and time consuming. One 

of the possible ways to overcome this problem is to employ laser micromachining. The most 

straightforward way to do that is direct laser ablation of glasses. Excimer laser machining 

utilising the large intrinsic optical absorption in the UV has shown promise [2,3] as well as 

laser-induced non-linear absorption via ultrashort pulses [4–7]. The longer irradiation time-

scale of carbon dioxide lasers have allowed melt flow to occur and a degree of polishing to be 

accomplished [8,9]. 

An elegant way to induce laser absorption in glass while still using nanosecond laser pulses 

of relatively low photon energies was proposed in [10]. The main idea of the method consists 

in irradiation of the glass sample whilst it is situated in contact with an organic liquid that has 

a high absorption coefficient at the wavelength of incident laser radiation. The glass surface 

is thus indirectly processed either by plasma plume or by the cavitation bubbles forming in 

the liquid. This method has become quite popular since then, as it can be implemented using 

commercially available nanosecond laser sources of UV [11–14], visible [15,16], or even 

NIR [17] wavelengths. However, because of the low repetition rate of most excimer lasers 

(typically 10-200 Hz, and up to 2kHz in specialist devices), this method cannot be easily 

scaled in the UV. Furthermore, the method is sensitive to the laser parameters, and thus, for 

precise micromachining, additional feedback control of the laser output would be required. 

The most promising candidate to fabricate the freeform optics among the laser-assisted 

techniques is the so-called “femtosecond laser-assisted chemical etching” (FLICE), which 

was first proposed in [18] to create microchannels in fused silica. This method requires 

femtosecond laser irradiation of sufficient intensity to alter the chemical properties of the 

glass. It should be noted that the main application of this method is for microfluidics [19–21], 
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where optical quality of the final surface is not normally required. The initial femtosecond 

irradiation is thus typically carried out at fluence values exceeding the damage threshold, 

which provides higher etching rates accompanied by increased roughness. However, FLICE 

has been used for optical applications, such as for micro-lens [22] and prism array fabrication 

[23]. 

A variation of the FLICE method was proposed for silver ion-exchanged glasses [24,25], and 

later for cerium ion-exchanged glass (Foturan) [26]. In these works, due to the intrinsic 

properties of the glasses used, the authors could use laser sources of relatively low power to 

change the etching rate. For instance, in [24,25] the authors used a CW laser with an average 

power of less than 5 mW, which is comparable to that of a commercially available laser 

pointer. Even though both examples seem promising for freeform optics fabrication, their 

main disadvantage is either the cost (in case of Foturan), or the availability (in case of HEBS) 

of the material used. 

In the case of ion-exchanged glasses, the mechanism of the reactivity change is quite clear as 

selective crystallization of the target material occurs. However, similar effects were observed 

for other types of glass [27–29] not having any additional ions in their structure that might 

serve as crystallization centers. The authors of [27] found the change in reactivity to be 

dependent on the presence of boron in the glass composition and in [28] showed the 

correlation between the etching depth and the electron spin resonance peak intensity of 

boron-related color centers. 

In this work, the interaction of femtosecond laser pulses with borosilicate glass (Schott 

Borofloat 33 [30]) is investigated. The effect of laser irradiation below the damage threshold 

of the glass is found to darken the material (an increase in optical density) and is attributed to 

the formation of boron-oxygen hole centers. Such defects in glasses are often referred to as 

color centers due to the changes in the optical transmission spectrum associated with them 

(historically see [31–33]).  It is found that this darkening correlates to an increase in acid 

reactivity and so anisotropic chemical etching can be induced in a controlled manner.  An 

application of this process to the fabrication of freeform optics is demonstrated. 

2. Experimental setup 

In all the color center generation experiments a Ti:Sapphire (Spectra-Physics Hurricane) laser 

was used as the radiation source. The parameters were as follows: wavelength of 800 nm, 

repetition rate of 1 kHz, maximum average power of 600 mW, and a typical pulse duration of 

140 fs. A fused silica plano-convex lens with a diameter of 25.4 mm and a 100 mm focal 

length was used to focus the laser beam. Aerotech ALS-130 translation stages were used to 

move the sample during the irradiation process. The scanning speed was adjusted to achieve 

the desired number of pulses per point. 

Borofloat 33 glass with the thickness values of 1, 2, 3, and 5 mm was used as a target 

material in all the HF etching experiments. 

The etching process was carried out using a 10% HF solution and lasted for 1 hour in an 

ultrasonic bath at room temperature. The surfaces of the samples were measured and analysed 

by stylus profilometry (Bruker Dektak XT), and white-light interferometry (Wyko NT1100). 

A Zeiss Evo 60 scanning electron microscope was also used to visualise the surface of the 

etched samples. 
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Various techniques have been utilised to study color centers in glass, for example Electron 

Paramagnetic Resonance (EPR) and Electron Spin Resonance (ESR) [34,35]. In this work, 

spatially resolved studies were required and so optical techniques were favoured. In 

particular, optical absorption measurements were implemented. Initially, spatially averaged 

transmission spectra were recorded using a Horiba Fluoromax spectrometer to find the main 

absorption features so as to choose an appropriate wavelength probe for spatially resolved 

scanning. Samples were prepared by femtosecond laser irradiation incident on the narrow 

side of a 25×25×3 mm Borofloat 33 flat plate. The irradiation geometry is schematically 

shown in Fig.1. 

  
a b 

Figure 1. Two geometries were utilised in the laser exposure experiments. In (a) the irradiation 

scheme to generate color centers for subsequent optical density mapping is shown.  Samples that were 

chemically etched were thinner (b) and so the beam exit surface could be observed to show an 

increase in etch rate. Key: (1) Laser beam, (2) focussing lens, (3) borosilicate glass sample, (4) 

geometric focus location, (f) focal length of the lens, (d) distance between the front surface of the 

sample and the geometric focus, (h) sample thickness 

The cross-section of the color centers formed in this way could then be visualized by 

observing the darkening of the glass when viewed through the 25×25 mm face. Point-by-

point mapping of the transmission change was performed by measuring the transmission 

cross-sections at different values of propagation depth (step size of 50 μm) and concatenating 

the resulting data. Light from a Thorlabs OSL-2 lamp, spectrally narrowed using a Thorlabs 

FL488-10 bandpass filter (center wavelength of 488 nm, with 10 nm FWHM), was focused 

by a cylindrical lens onto the sample. The resulting transmitted intensity distribution was 

acquired using a Thorlabs MVL6X3Z microscope (maximum magnification of 18X) 

projecting the image onto a DCC1545M CMOS camera. A typical view of a sample slice 

with the corresponding transmission cross-section is presented in Fig.2. 
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a b 

Figure 2. (a) Typical view of the darkening observed at a propagation depth of about 1 mm. The 

direction of laser beam propagation is denoted by the arrow. A cross-section of the transmission data 

along the dotted line is shown in (b) for a wavelength of 488nm. Generation of the color centers was 

performed using the Ti:Sapphire laser, wavelength of 800 nm, pulse duration of 140 fs, average power 

of 540 mW, 180 pulses per point (repetition rate of 1 kHz), 125 μm laser spot diameter. The 

geometric focus was located at a depth of 3.7 mm 

As one can see, this method allowed spatial mapping of the color centers over relatively large 

distances (up to the sample size) with resolution sufficient to observe the fine features inside 

of the beam area that appeared due to the multiple filamentation [36]. Two-dimensional 

transmission maps resulting from the concatenation of the cross-sections acquired in this way 

are presented in the Results and Discussion section of this work. 

3. Results and Discussion 

3.1. Optical properties 

There exists a wide range of experimental parameters that lead to the color center generation 

in borosilicate glass. Most of them lie below the damage threshold of the glass, as higher 

laser intensities result in plasma shielding, which prevents the laser radiation from being 

efficiently absorbed by the medium [37,38]. 

Typical transmission spectra produced as a result of femtosecond laser irradiation of a 

Borofloat 33 glass sample are shown in Fig. 3. The laser average power values were varied 

from the one corresponding to threshold for color center generation to damage point of the 

glass. 
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Figure 3. Transmission spectra of color centers produced at different laser average power values. The 

dashed line denotes the peak absorption wavelength of boron-oxygen hole centers (BOHC) at 

approximately 490 nm.  

As one can see, laser irradiation over a wide range of the average power values results in a 

decrease in transmission for the UV part of spectrum (wavelengths of around 300-400 nm). 

Moreover, a distinct transmission minimum can be observed at a wavelength of around 490 

nm. The former feature is typically ascribed to silicon- and oxygen-related color centers [34]. 

It should be mentioned here that similar silicon-related color centers (including the ones 

caused by electron and hole traps) were also observed in other types of glasses, e.g. soda-lime 

and other sodium-silicate glasses [38–40]. The 490 nm minimum, in turn, is a distinctive 

feature of boron-containing glasses, as it is usually ascribed to boron-oxygen hole centers 

(BOHC) [34,35,41]. The loss of blue light in transmission gave the laser irradiated volume a 

brown color when observed by the naked eye. 

In the following part of this work, close attention will be paid to the BOHC color centers due 

to the fact that the investigated phenomena are characteristic for the borosilicate glass and 

were not observed for other glass types [27]. 

3.2. Relation between optical properties and HF reactivity 

Using the setup described in the Experimental section, two-dimensional maps of the change 

in transmission of the sample at a wavelength of 488 nm were measured. The characteristic 

absorption wavelength of the BOHC color centers is approximately 490 nm, so the 

transmission change close to this wavelength was studied as 488 nm bandpass filters are 

readily available for applications involving the argon ion laser. A typical result of such a 

study is presented in Fig. 4a. 
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a b 

Figure 4. (a) Two-dimensional transmission map (at the wavelength of 488 nm) of a sample irradiated 

at an average power of 90 mW. A z-value of 0 mm corresponds to the front surface of the sample, 

where the converging laser beam entered. The dashed line denotes the depth at which the transmission 

cross-section shown in (b) was recorded. An HF-etched profile of the back surface of a 3 mm thick 

sample irradiated at similar conditions (black line) is also shown in (b).  

It can be seen from Fig.4a that the distribution of the transmission change due to the color 

centers inside of glass is quite complicated. This is interpreted to be defined by the laser 

beam propagation, which in turn is governed by three main processes: Kerr self-focusing, 

plasma defocusing, and multiple filamentation of the beam caused by the medium 

inhomogeneities [36]. The interplay of these phenomena can lead to the self-channelling 

observed between the depths of 1 and 3.5 mm. As well as the non-linear processes the initial 

curvature of the wavefront due to the presence of the focussing lens results in the beam 

converging to a minimum size at around its geometric focus (depth of 5 mm). Here, the 

irradiance was at a maximum and the color centers formed have a corresponding minimum 

optical transmission. 

According to the results shown in Fig. 4b, there exists a certain correlation between the 

change in transmission at the color center wavelength and change in HF etching rate of the 

glass sample. As one can see, the cross-section of the transmission map taken at the depth of 

3 mm closely follows the etched profile of the back surface of a 3 mm thick sample irradiated 

under similar experimental conditions. Smaller features in the transmission cross-section 

arising from the multiple filamentation, however, seem to be smoothed out by the 

intrinsically isotropic character of HF etching process [42] despite the laser-induced 

anisotropy.  By varying the average power of the laser, it is possible to see the effect on the 

chemical etch depth (Fig 5).  There is a soft threshold for the process at around 100mW 

followed by a steep increase in etch rate that correlates with average power as well as number 

of pulses that each area is exposed to.  This effect begins to saturate with increasing power 

until damage occurs at >500mW and the chemical etch rate is dominated by the surface area 

presented by microcracks.  The average power used in subsequent studies was limited to 

<350mW to ensure laser-induced damage was avoided.  
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Figure 5. Dependence of chemical etch depth on incident laser average power for three different pulse 

overlap regimes set by the sample translation velocity. 

In order to quantitatively analyze the relationship between the presence of color centers and 

change in sample HF reactivity, transmission cross-section widths (measured as the width 

where the optical transmission had halved ) were compared to corresponding widths of 

etched profiles in a wide range of experimental parameters. Namely, the average power was 

varied from 10 to 310 mW for different geometric focus positions. In each case, four values 

of the propagation depth/sample thickness were studied: 1, 2, 3, and 5 mm. Typical data 

resulting from the average power variation for fixed thickness and focus position is shown in 

Fig.6a. These values were used to calculate a correlation coefficient of  0.997 between 

optical transmission and chemical etch profiles. Similar correlation coefficients calculated for 

different focus positions and sample thicknesses are plotted in Fig.6b. 

  

a b 

Figure 6. (a) Comparison of the HF-etched profile and transmission cross-section widths (measured as 

the full width where the transmission had halved) on laser average power. The etched profiles were 

obtained by measuring the back surface of 1 mm thick samples. The transmission cross-sections were 

taken from two-dimensional maps at a propagation depth of 1 mm. (b) Correlation coefficients 

calculated using data similar to those one shown in (a) for different experimental parameters 

According to the results shown in Fig. 6b, the correlation coefficients between the FWHM 

values of transmission cross-sections and etched profiles remain relatively high (greater than 
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0.98) for a wide range of experimental parameters. The values are observed to decrease with 

the shift of the geometric focus position further away from the sample surface. This fact can 

be explained by the appearance of laser-induced breakdown in air, which in turn can affect 

the back-surface properties of the sample. The low correlation value of approximately 0.38 

observed for the focus position of 3.7 mm at the depth of 5 mm can be accounted for by the 

beam waist proximity to the back surface of the sample. 

The correlation observed here between the appearance of color centers and changes in the HF 

reactivity of the glass samples is consistent with reports describing the effect to be 

characteristic for boron-containing-glasses [27,29] and be dependent on the electric charge 

distribution [28]. In this way, measurement of the laser-induced optical absorption provides a 

way to predict the resultant acid etch profile. This then allows for a process whereby a “latent 

image” is written into the glass below the damage threshold which is then revealed as surface 

relief once “developed” in the acid bath. 

One should mention, however, that the exact processes responsible for the accelerated etching 

provided by color centers are not revealed by these experiments. The preliminary EDX and 

Raman analyses carried out as a part of this work showed no change in surface properties 

after laser irradiation. Measuring the optical transmission of the samples during heating 

showed annealing behaviour similar to that observed in [28]. Based on these observations, 

one can exclude possible changes in chemical composition and mechanical strain as possible 

explanations of the altered etching rate. It also demonstrates that the color centers can be 

removed resulting in a reversible process prior to chemical etching. 

 

3.3. Surface characterization of the HF etched samples 

The distribution of the color centers within the bulk of the material and, consequently, those 

at the rear surface, is a complex function of incident laser parameters and the effect that the 

non-linear response of the material has on the beam propagation. This is not the case for the 

front surface of the glass where the irradiance pattern is more readily obtained from the linear 

beam propagation approximation in air with a low level of spherical aberration from the lens. 

Consequently, this section discusses the roughness of the front surface of the laser irradiated 

glass where the expectation is that surface structures caused by inhomogeneity of the beam 

are at a minimum. 

According to the results presented above, femtosecond laser irradiation under certain 

experimental conditions leads to a change in the HF reactivity of glass. It should be noted that 

such irradiation affects both etching rate and surface roughness. A typical SEM view of the 

border between the irradiated and unirradiated areas that have both been subjected to HF 

etching is shown in Fig. 7. 
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Figure 7. SEM view of a border between the irradiated (left half) and unirradiated (right half) sample 

areas following HF etching in 10% solution for 1 hour of the whole area. The laser irradiation 

conditions were: Ti:Sapphire laser, wavelength of 800 nm, pulse duration of 140 fs, 180 pulses per 

point (repetition rate of 1 kHz), 125 μm laser spot diameter, average power of 230 mW 

The irradiated area displays an increased amount of removed material (lower overall surface 

level), as well as lower roughness as compared to the acid etched unirradiated glass. Further 

analysis was carried out to quantitatively assess the roughness parameter. The resulting data 

obtained using a white-light interferometer (WLI) are presented in Fig. 8. 

  
a b 

Figure 8. (a) Typical view of the irradiated glass surface after HF etching obtained using a white-light 

interferometer (WLI). (b) Dependence of the front surface average roughness (Ra, calculated using the 

WLI data) on laser average power. Dashed line denotes the surface roughness of a typical unirradiated 

area after etching; dotted line denotes the surface roughness of the glass in as-received condition prior 

to HF etching. The same conditions (except for the average power) as in figure 5 were used 

It can be seen from both figure 6 (right) and figure 7b that unirradiated Borofloat 33 that has 

been subjected to HF etching becomes rough (Ra ~ 100nm) and scatters light making in 

unsuitable for optical applications. However, increasing the density of color centers through 

applying larger average power decreases the surface roughness to levels that are “glossy” to 

the unaided eye with low degrees of scattering. This effect saturates after ~ 230 mW at a 

value of Ra ~ 20nm which is acceptable for certain types of optical elements albeit higher 

than the as-received surface. 
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3.4. Possible applications 

By obtaining the dependence of the etching depth on laser parameters, it is possible to create 

a surface with the desired relief profile. However, there exist certain restrictions to the 

topography that can be realised. First of all, the maximum etching depth that can be achieved 

by this method typically does not exceed several micrometres. Secondly, the resolution in the 

surface plane is limited by the finite laser spot size on the surface and the fact that HF is an 

inherently isotropic process [42]. Namely, even if one creates anisotropy by laser irradiation, 

the etching process will still happen, although more slowly, in all the other directions not 

defined by it. 

Taking into account these restrictions, the fabrication of relatively shallow surfaces with 

slowly varying relief has been investigated. One of the examples of such a surface is a so-

called Laplacian window [43]. Such an optical element has a freeform surface, whose effect 

on the light passing thorough it is defined by the value of the Laplace operator of its surface 

relief. In order to calculate the surface relief reproducing the desired intensity distribution one 

thus needs to solve the Poisson’s equation [43–45]. 

The relatively simple intensity pattern of a ring was chosen for a test window. By solving the 

Poisson’s equation in the manner given in [43–45], one can calculate the corresponding 

surface relief (Fig. 9a). It should be noted here that the absolute values of the surface depth 

do not play an important role; it is the aspect ratio of X-Y size to depth that defines the local 

radius of curvature and hence whether the Laplacian condition is fulfilled [43,44]. Here, if the 

etching depth that can be achieved by this method is of the order of several micrometres, the 

linear dimensions of the window will be of several millimetres. The comparison of the cross-

sections of the theoretical relief and experimentally fabricated window is shown in Fig. 9b. 

  
a b 

Figure 9. (a) Theoretical profile of a test Laplacian window. (b) Comparison of the theoretical cross-

section taken along the dashed line in (a) with the experimental profile. Note that the real size of the 

test Laplacian window was of 2.5×2.5 mm with the maximum depth of ~ 1 μm 

As it can be seen, the method results in good reproduction of the theoretical relief with an 

average deviation with respect to the total depth of ~3%. It should be noted that the absolute 

value of the depth is of about 1 µm, so the discrepancy with the theoretical profile is typically 

of the order of tens of nanometres. 
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The performance of the resulting window was assessed by illuminating it with a collimated 

light source and recording the projected intensity using a CCD camera. The resulting 

intensity distributions are shown in Fig. 10. 

 

Figure 10. Comparison of the light intensity after the test Laplacian window with the theoretical data 

at different distances from the designed plane of observation: (a) at the image plane, (b) -5 mm, (c) -

15 mm, (d) -30 mm. The negative values of the distance account for the CCD camera being closer to 

the sample than the intended plane 

By reference to the images in Fig.10, it can be seen that the method of laser-induced 

reactivity change has allowed fabrication of a Laplacian window. The intensity distributions 

qualitatively follow those calculated from the analysis of the refraction through the surface 

relief. One should also note the residual roughness on the surface of the sample does not 

significantly affect its performance due to the Laplacian pre-focal brightening being located 

at a considerable distance from the conventional image plane. 

4. Conclusions 

It has been shown that femtosecond laser irradiation of borosilicate glass can induce the 

appearance of color centers and that these defects have a higher level of reactivity to 

hydrofluoric acid than the unirradiated material.  The optical transmission characteristics of 

the darkened glass have allowed the process to be ascribed to boron-oxygen hole centers 

(BOHC).  Thermal annealing can remove these hole traps and so the process is reversible.  

The optical density map closely correlates to the acid-revealed relief profile via the increase 

in reactivity.  In this way, the reversible laser-induced optical changes act as a tool to predict 

the final topography of the surface.  These findings have been used to demonstrate a process 

where a desired distribution of color centers can be programmatically laser generated, the 

pattern checked optically, erased by thermal annealing if required, and then made into a 

permanent surface relief by exposure to acid. This is a flexible route to fabricate freeform 

surfaces in borosilicate optical glasses. Utilising this technique, the production of a glass 

Laplacian window has been demonstrated for the first time. 

The spatial distribution of the laser-induced color centers in the bulk of the glass is defined by 

the propagation of the beam, which in turn is governed by Kerr self-focusing, plasma 

formation, and multiple filamentation. As the presence of color centers was found to correlate 
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with the change of the glass reactivity in HF over a wide range of experimental parameters, 

the roughness of the etch is influenced by the uniformity of the laser irradiance. However, at 

the front surface of the glass, where the laser beam profile has not been modulated by non-

linear effects, the surface arithmetic mean deviation (Ra value) was found to be lower for 

glass that had been laser irradiated below the ablation threshold than unirradiated regions: 

after 1 hour of etching in 10% HF solution, the areas with color centers had about 5 times 

lower Ra values than unirradiated ones (20 nm versus 100 nm). The reason for this is not 

readily apparent.  Structural studies using XRD and Raman spectroscopy have not revealed 

any large changes for the irradiated areas and EDX analysis has not shown any preferential 

loss of species.  It is known that the roughening of glass induced by HF etching is worse 

when insoluble by-products such as CaF2, MgF2 and AlF3 form [46] which affect the local 

etch rate.  In addition, in “wet” silica (i.e. SiO2 in the presence of OH groups), laser 

irradiation can affect the bonding configuration of SiOH [47] and hence its reactivity. The 

interplay of these processes is the subject of further study. 

Whilst the laser irradiation is serial in nature due to its point-by-point exposure of the glass, 

the acid etch is a parallel process; the anisotropy required to give the spatially varying depth 

comes from the laser-induced reactivity change and so the whole sample can be submerged. 

It may be possible to make the laser exposure also into a one-step method by utilising large 

format beams in the UV and a grey tone mask in a projection system (e.g. excimer laser 

systems). This will require verification that UV-induced color centers behave in the same 

manner as the near IR non-linear processes used here. 
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