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BACKGROUND: Microplastics (MPs) have contaminated all compartments of the marine environment including biota such as seafood; ingestion from
such sources is one of the two major uptake routes identified for human exposure.
OBJECTIVES: The objectives were to conduct a systematic review and meta-analysis of the levels of MP contamination in seafood and to subsequently
estimate the annual human uptake.
METHODS: MEDLINE, EMBASE, and Web of Science were searched from launch (1947, 1974, and 1900, respectively) up to October 2020 for all
studies reporting MP content in seafood species. Mean, standard deviations, and ranges of MPs found were collated. Studies were appraised system-
atically using a bespoke risk of bias (RoB) assessment tool.

RESULTS: Fifty studies were included in the systematic review and 19 in the meta-analysis. Evidence was available on four phyla: mollusks, crusta-
ceans, fish, and echinodermata. The majority of studies identified MP contamination in seafood and reported MP content <1MP=g, with 26% of stud-
ies rated as having a high RoB, mainly due to analysis or reporting weaknesses. Mollusks collected off the coasts of Asia were the most heavily
contaminated, coinciding with reported trends of MP contamination in the sea. According to the statistical summary, MP content was 0–10:5MPs=g
in mollusks, 0:1–8:6MPs=g in crustaceans, 0–2:9MPs=g in fish, and 1MP=g in echinodermata. Maximum annual human MP uptake was estimated to
be close to 55,000 MP particles. Statistical, sample, and methodological heterogeneity was high.
DISCUSSION: This is the first systematic review, to our knowledge, to assess and quantify MP contamination of seafood and human uptake from its
consumption, suggesting that action must be considered in order to reduce human exposure via such consumption. Further high-quality research using
standardized methods is needed to cement the scientific evidence on MP contamination and human exposures. https://doi.org/10.1289/EHP7171

Introduction
Microplastics (MPs) are broadly defined as synthetic polymeric
particles <5 mm in diameter (Frias and Nash 2019; GESAMP
2015, 2016), often also including nanoplastics, which are <100 nm
in diameter (Lusher et al. 2017a). They can be classified into two
categories according to their origin: primary (intermediate feed-
stock, pellets/resin, by-products), and secondary (formed through
fragmentation and degradation) (Carbery et al. 2018;Karlsson et al.
2018). MPs are diverse, originating from the wide variety of plas-
tics produced for household products, construction material, and
industrial applications. Human exposure is suggested to be princi-
pally via ingestion and inhalation (Abbasi et al. 2019; Wright and
Kelly 2017). MPs are ubiquitous in the environment, with marine
environments especially affected owing to the amount of plastic
waste they receive (Burns and Boxall 2018; Gourmelon 2015; J Li
et al. 2016). The degradation of plastic waste in the sea is the major
source of MP contamination (Eriksen et al. 2014). The generation
of plastic waste and mismanagement of its disposal is expected to
triple by 2060, reaching 155–265million metric tons per year
(Lebreton and Andrady 2019). MPs are extremely persistent par-
ticles; over time they have contaminated all compartments of ma-
rine ecosystems, including the food web and biota across different
trophic levels, such as bivalves (SY Zhao et al. 2018), crustaceans

(F Zhang et al. 2019), fish, and mammals (Lusher et al. 2015;
Nelms et al. 2018). MPs have been found in various parts of organ-
isms such as the gastrointestinal (GI) tract (Sun et al. 2019), liver
(Collard et al. 2017a), gills (Feng et al. 2019), and flesh (Akoueson
et al. 2020; Karami et al. 2017b). Commercial seafood species are
either consumed whole, such as bivalves, some crustaceans, and
some small fish, or just parts of them, such as larger fish and mam-
mals. Therefore, understanding the MP contamination of specific
body parts, and their consumption by humans, is key.

Food safety is managed in terms of hazards and risk analysis,
where hazards are classified into three categories according to their
potential to cause a health effect: biological, chemical, and physical
(EC 2002). TheMP health effects that are currently under consider-
ation include all three categories (Smith et al. 2018; Wright and
Kelly 2017).MPs contain various chemicals with differing concen-
tration (Hartmann et al. 2019), and their effects can come from the
plastics’ primary components (polymers), the additives that are
used to enhance their attributes (plasticizers), the chemical contam-
inants absorbedwhile in the environment [e.g., polycyclic aromatic
hydrocarbons (Hartmann et al. 2017; Ziccardi et al. 2016) and pol-
ychlorinated biphenyls (Engler 2012), or themicroorganisms colo-
nizing their surfaces (Vir�sek et al. 2017)]. MPs can thus be
considered either the primary hazard or a pathway for a hazard,
both linked to human health. The contamination of food intended
for human consumption, with this emerging risk and the possible
effects on health, has raised concern in the scientific community
(Barboza et al. 2018; Diepens and Koelmans 2018; Santillo et al.
2017; Waring et al. 2018) as well as among stakeholders
(GESAMP 2015, 2016) and policy makers globally (EFSA Panel
on Contaminants in the Food Chain 2016). There is a growing
body of evidence regarding effects in aquatic animals, but health
effects on humans are still unclear (Karbalaei et al. 2018; Sharma
and Chatterjee 2017; Smith et al. 2018). There is a clear need to
address this emerging risk and promptly implement mitigation
strategies for the protection of the environment and human health.

This systematic review focuses on seafood intended for human
consumption. The aim is to map the existing evidence, appraise
study quality using a standardized approach, identify knowledge
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gaps, and ultimately collate the data in order to quantify human
exposures. Predicted human exposures calculated using modeling
could consequently be used in a risk assessment framework to
characterize the risk coming from MPs through the ingestion
uptake route.

Methods
This review is based on a protocol published in PROSPERO
(Danopoulos et al. 2019). The protocol was created in order to
standardize the methods and protect against the inclusion of bias,
according to the guidelines set by the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses protocols (PRISMA-P)
(Moher et al. 2015; Shamseer et al. 2015). In brief, only primary,
peer-reviewed studies with descriptive and analytic observational
study designs were eligible for inclusion. There were no publica-
tion date limits. Only studies that sampled commercially relevant
seafood species were included, regardless of the species of
the organism (e.g., fish, mollusks, crustaceans) or the part of the
body that MPs were reported to be found in, for example, the
gills, GI tract, liver, and flesh. If a study focused on the GI tract
of a type of seafood, it was included only if the species of the
seafood was small and it was reasonable to assume that it is usu-
ally eaten whole with the GI tract intact (e.g., anchovies,
shrimps). Studies reporting on samples that were not collected as
food, but are regularly consumed as such (e.g., mussels), were
included. Studies must have used one of the four currently vali-
dated procedures for the identification of the chemical composi-
tion of particles: namely, Fourier-transform infrared spectroscopy
(FT-IR), Raman spectroscopy (RM), pyrolysis gas chromatogra-
phy/mass spectrometry, and scanning electron microscopy (SEM)
plus energy-dispersive X-ray spectroscopy. All included studies
must have reported the use of procedural control samples to avoid
post-sampling contamination.

The following online databases/sources were searched from
launch date: MEDLINE (OVID interface, 1946 onward), EMBASE
(OVID interface, 1974 onward), andWeb of Science core collection
(Web of Science, 1900 onward). The initial search was executed on
10 July 2019. The searches were repeated on 5 October 2020 to
include the most recently published papers. Search terms included:
microplastic, nanoplastic, plastic/, micro*, fiber*, food contamina-
tion, and seafood. The full search strategy can be found in Tables S1
and S2. Study screening was completed by two independent
reviewers (E.D. and L.J. for the original searches; E.D. andM.T. for
the rerun of the searches) at two levels, initially reviewing titles and
abstracts. Screening results were compared and disagreements dis-
cussed. Inter-rater agreement at the first level was 90%, Cohen’s j:
0.34, for the original searches, and 97%, Cohen’s j: 0.65, for the
rerun. This was followed by a full paper review for potentially eligi-
ble papers. A third-party arbitrator (J.M.R.) resolved the discrepan-
cies between the two reviewers (for both searches). Inter-rater
agreement at this level was 100%, Cohen’s j: 1 for both searches.
Corresponding authors were contacted when more information was
required with a maximum of three emails sent. Data was extracted
as sample characteristics, sampling and analysis methods, MP con-
tent in any quantified unit, composition analysis results, and proce-
dural samples results.

Synthesis of Results
The primary outcome was reported as MP content in terms of par-
ticles per unit mass or individual organism expressed as the mean
value [and standard deviation (SD) or standard error] or the range.
Effort was made to convert all the data into the same unit of mea-
surement of particles/g (wet weight) when it was appropriate, and
the necessary raw data was available. The MP contents for species

of the same family in the same study were pooled using the formu-
lae for combining groups proposed by Higgins and Green (2011,
Table 7.7a) (Table S3). When needed, the conversion of the five-
number summary (sampleminimum andmaximum,median, lower
and upper quartile) to the quantities needed for this review, was
made using the methods and calculator developed by Shi et al.
(2020). The calculator draws on the methods developed by Luo
et al. (2018) for the estimation of the mean of the sample and the
methods byWan et al. (2014) for the estimation of the SD.

The results of the studies were weighted using the inverse of
the variance method (Chen and Peace 2013). In order to collate
and quantify the data, random-effects meta-analysis models were
used (Higgins et al. 2019). Random-effects models were pre-
ferred over fixed-effects models because it was assumed that the
samples did not share one common true effect size that was influ-
enced equally by the same factors but, rather, a distribution of
true effect sizes (Chen and Peace 2013; Harrer et al. 2019b;
Veroniki et al. 2016). The DerSimonian-Laird t2 estimator was
used for all the random-effects models (DerSimonian and Laird
1986, 2015) because this accounts for variations both within and
between studies. The Higgins I2 test and the chi-squared
Cochran’s Q statistic were used to assess statistical heterogeneity
(Higgins and Thompson 2002; Higgins et al. 2003). The I2 test is
the percentage of variability in the effect size that is not produced
by sampling error. The Cochran’s Q statistic refers to the null hy-
pothesis of homogeneity and is expressed in the chi-square and
p-values (Higgins et al. 2003).

The source of between-study statistical heterogeneity was
investigated by examining statistical outliers and an influence
analysis of studies. Statistical outliers were defined as studies
where the 95% confidence interval (CI) of their effect size esti-
mate, as calculated by the random-effects model, did not overlap
with the 95% CI of the pooled effect size estimate (Harrer et al.
2019b). Statistical outliers of extremely large effects were specifi-
cally targeted to account for and avoid overestimations (where
the lower bound of the 95% CI of the study was higher than that
of the upper bound of the 95% CI of the pooled effect). To test
the influence of individual studies, the models were rerun without
these outliers, and the two pooled effect size estimates compared.
To further test the influence of every study, the models were
rerun excluding one study each time to assess each study’s influ-
ence on the pooled effect size (Harrer et al. 2019b). Influence
diagnostics included the I2 and Q values (Baujat et al. 2002) and
the contribution to the pooled effect size (Viechtbauer and
Cheung 2010). The results of the influence analysis were exam-
ined numerically and graphically.

Methodological and sample heterogeneity were explored using
subgroup analysis employing a fixed-effects (plural) model
(mixed-effects model) (Harrer et al. 2019b). R (version 3.6.0; R
Development Core Team) was used for all calculations andmodels
executing all analysis via RStudio (version 1.2.1335; RStudio),
using the additional packages meta (version 4.9-7; Schwarzer
2019), metaphor (version 2.1-0; Viechtbauer 2010), dmetar
(Harrer et al. 2019a), robvis (McGuinness and Kothe 2019), and
ggplot2 (Wickham et al. 2016). The code is provided in the
Supplemental Material, “Code for R used in the meta-analysis.”
Each data set was assessed separately in order to determine its suit-
ability for meta-analysis in terms of heterogeneity. The results of
the meta-analysis are presented as the MP content (in MPs per
gram) with a 95% CI and p-value. Maps were created in ArcGIS
Desktop (version 10.8; Esri).

Risk of Bias/Quality Assessment
A bespoke risk of bias (RoB) assessment tool was created, rating
the studies across four domains: study design, sampling, analysis,
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and reporting with a final overall assessment (Table S4). The tool
comprises a checklist with questions covering all aspects of ex-
perimental protocol development, execution, and reporting. The
rating of the studies was as follows: high, low, or unclear RoB,
supported by a justification for each of the entries.

The construction of the RoB tool was based on up-to-date sci-
entifically robust methodology by the Cochrane organization,
which is the leading scientific body in the field of systematic
reviews (Higgins et al. 2011, 2019). According to the guidance,
the use of scales and scores (numerical) for the assessment was
avoided. Instead, for each of the entries, a question was formu-
lated in order to prompt a response that was used as the support
for the judgment (Table S4). For each item in the tool, there were
two entries: the answer, with additional notes when needed, and
the rating. In the answer entry, a copy of the text from the study
on which the decision was made is provided, allowing transpar-
ency on how the decision was made. The rating of the studies for
each entry, domain, and overall study was as follows: high, low,
or unclear RoB. RoB assessment was done both on the study and
on the specific outcome level. This allowed for the direct compar-
ison of the RoB rating of a specific domain of the study against a
specific outcome. For example, when reviewing the sampling
methodology, the sampling domain RoB rating is more relevant
than that of the overall RoB rating. For the majority of the items
in the tool, the rating of high or low was based on a yes/no an-
swer or a numerical value. The rating unclear was assigned when
the study did not report sufficient information to make a judgment
or when the associated risk was unknown. In order to achieve
maximum transparency, all items are discussed in the section
“RoB tool additional explanation” in the Supplemental Material.

Weighting of Domains and Questions
A rating was given to each of the 21 items of the RoB tool; subse-
quently, a rating was given to each of the four domains on the basis
of the rating of the individual items in it; and, finally, the overall
rating was given according to the domains’ rating. In order to
decide the weighting of the individual entries in the checklist, three
experts in the field were contacted and asked to provide their top
three entries/questions of the table as the most important factors to
judge the studies’ RoB. All three experts concentrated on four
questions: 4, 8, 13, and 15 (see “RoB tool additional explanation”
in the Supplemental Material). The questions focused on two
topics. First, the prevention of sample contamination and its valida-
tion by the use of procedural blank samples. Second, the use of a
validated method for identifying the composition of the particles
and how a spectra library would be employed to do so. This expert
opinion on the importance of individual entries of the RoB tool was
taken into consideration for the rating of the domain as well as the
overall rating of the studies.

Publication bias was explored using the Egger’s test (Egger
et al. 1997) visualized in funnel plots and the precision of the effect
estimate (Liberati et al. 2009). Overall assessment of the certainty
of the evidence was based on the Grading of Recommendations,
Assessment, Development, and Evaluation (GRADE) framework
(Higgins et al. 2019) and the Environmental-GRADE (Bilotta et al.
2014) across five domains, categorized into four certainty ratings:
high,moderate, low, and very low.

Results

Study Selection
The initial searches led to 2,467 publications, following the re-
moval of duplicates. In the first level screening, 2,307 citations
were excluded on the basis of their title and abstract. For the

second level screening, the full text of the remaining 160 studies
were evaluated, and a total of 34 studies that analyzed seafood
samples met the eligibility criteria set for this review (see
PRISMA flow diagram, Figure S1). The update of the searches
identified 16 more studies eligible for the review, bringing the
total number of included studies to 50 (Figure S1).

Study Characteristics
All the studies included are environmental field studies employ-
ing descriptive and analytic observational study designs, sam-
pling and analyzing four phyla: mollusks, crustaceans, fish, and
ehcinodermata (Table 1). Eight studies analyzed organisms com-
ing from more than one phylum. Twenty-three studies sampled
only mollusks, 15 only fish, 3 only crustaceans, and 1 only echi-
nodermata. Five studies sampled both mollusks and crustaceans,
2 mollusks and fish, and 1 mollusks, crustaceans, and fish. The
study characteristics are presented in Table 1. Twenty-eight stud-
ies used samples from Asia, 13 from Europe, 4 from the
Americas, 2 from Africa, 1 from Australia/Oceania, and 2 from
more than one continent (and their coasts). The overall sample
size for fresh fish was n=1,269 (n=665 anchovies, n=274 sar-
dines, n=240 painted comber, n=20 sand lance, n=19 bogue,
n=19 seabass, n=12 haddock, n=10 plaice, n=10 mackerel);
for dried fish, n=120 (n=30 mackerel, n=30 croaker, n=30
mullet, n=30 anchovies); and for canned fish, n=842 (n=608
sprat, n=184 sardines, n=45 tuna, n=5 mackerel). For the rest
of the seafood, the overall sample size was n=4,543 [mollusks
n=3,882 (n=1,728 mussels, n=1,015 oysters, n=702 clams,
n=171 sea snails, n=166 scallops, n=100 cockles), crustaceans
n=451 (n=262 shrimps, n=139 crabs, and n=50 barnacles),
and echinodermata n=210]. Two studies did not provide the
exact sample size: Qu et al. (2018) reported n∼ 760 mussels and
Wu et al. (2020) reported 10–20 samples for each species, and
Teng et al. (2020) did not report sample sizes at all. Species for
all samples are presented in Table 1. An additional phylogenetic
tree is provided for the molluskan species in Figure S2 to facili-
tate reference to nomenclature. Sample size fluctuated between
the studies. Although we are not aware of a gold standard as yet
for the number of samples for such environmental studies, many
studies used n≥ 5 per species, whereas others used n≥ 30. Only
three studies in the review used <5 organisms per species (Abidli
et al. 2019; Collard et al. 2017a; F Zhang et al. 2019).

FT-IR was used by 72% (n=36) of the studies as the preferred
method for identifying the chemical composition of the particles,
followed by RM, which was used by 20% (n=10) (Table 1). One
study used both methods, and the other 3 combined the use of FT-
IR and SEM. Twenty-three different particle-extraction processes
were used (Table 1; Table S5). The most common method was that
developed by Li et al. (2015), used by 11 studies. The method uses
a 30% hydrogen peroxide (H2O2) treatment for the digestion of the
samples, followed by a density-separation step using a sodium chlo-
ride (saline) solution and filtration.

RoBWithin Studies
The summary of the results of the RoB assessment is illustrated
in Figure 1 and in Table S6. The individual rating for each study
across all domains is presented in Table S7; 13 studies (26%)
were rated as having a high RoB, 26 (52%) a low RoB, and the
remaining 11 (22%) an unclear RoB. The domain most often
rated as of high RoB was reporting (20 studies; 47%), and the do-
main that was most rated as unclear RoB was analysis (20 stud-
ies; 47%). The most common issues were failure to report the
results of the procedural blank samples (e.g., Hossain et al. 2020;
HX Li et al. 2018; Thushari et al. 2017; J Wang et al. 2019; Wu
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et al. 2020) and the specifications of the chemical composition
analysis (e.g., Collard et al. 2017a; Renzi et al. 2019). The do-
main of study design was rated as of low RoB across all studies.
Lack of space often precludes careful description of the sampling
design development, and this was not reported in any of the stud-
ies, but the description of sampling activities was adequate to
infer it. Further details of the RoB assessment are discussed in
the narrative analysis and the results were used to inform both
qualitative and quantitative analyses.

Results on MP Contamination Levels within Seafood
The MP content results are presented in three tables, one for each
phylum to facilitate comparison (Tables 2–4). The results for the
echinodermata phylum (Feng et al. 2020) are presented in Table 2
along with the molluskan phylum. Studies appear in more than one
table if their samples included more than one phylum of organisms.
The MP content is expressed as the number of MP particles per
gram of sample or per individual organism. Studies provided either
the mean content (with or without the SD) or the range of content or
both. Lopes et al. (2020) reported only themedian and the interquar-
tile range; the methods and calculator developed by Shi et al. (2020)
were used to estimate the mean and SD. A minority of the studies
reported only the frequency of samples being positive for MP con-
tamination andwere excluded from the statistical summary.

In terms of procedural blank samples results, 18% of the stud-
ies (n=9 of 50) did not report their results, whereas a surprising
36% (n=18) reported that no MPs were found (Table S8). The
46% of the studies (n=23) that did report the discovery of spe-
cific MPs content in their blank samples used their results in dif-
ferent ways. Thirty-five percent of the studies (34.7%; n=8 of
23) corrected their final findings against the results of the proce-
dural blank samples, whereas an additional 8.6% (n=2) sub-
tracted the absolute number of discovered MPs from their results.
Twenty-six percent (n=6) considered the results to be negligible
without offering justification to that effect, whereas 4.3% (n=1)
did not make use of the results and did not provide an explana-
tion. On the other hand, 13% of the studies (n=3) tested the sig-
nificance of their results statistically, and 8.6% (n=2) used the
results to set detection limits. The remaining 4.3% (n=1) did not
report if or how the results were used.

Molluskan Studies
Statistical summary of effects and narrative analysis. Thirty-one
studies analyzed mollusks (Table 2), but only data from 27

studies (87%) were combined in a statistical summary. Four stud-
ies were excluded: Leslie et al. (2017) used a different approach
for the analysis and reported their results as MP per gram of dry
weight, two studies reported results per individual organism
(Birnstiel et al. 2019; Digka et al. 2018), and one reported fre-
quency of MP occurrence (Bour et al. 2018). The range of MP
content for mollusks was 0–10:5MPs=g of organism (wet
weight). The means and ranges reported by the included studies
were skewed toward the lower MP content. Sixteen studies
reported values <1MP=g, and the remaining 11 reported values
>1MP=g (Figure 2).

Seven studies were rated as having a high RoB because they did
not report the results for the analysis of their procedural blanks
(Hermabessiere et al. 2019; HX Li et al. 2018; Thushari et al. 2017;
J Wang et al. 2019; Webb et al. 2019; Wu et al. 2020; SY Zhao et al.
2018) (Table S7), an analysis step that was rated as one of the most
important questions in the RoB assessment tool. Five of these stud-
ies reported MP content >1MP=g and the rest, <1MP=g. The
study by Baechler et al. (2020) was also found to have high RoB in
the domains of analysis and reporting because the majority of the
analysis details were not reported. The study reporting the highest
MP mean content [6:9MPs=g; J Wang et al. (2019)] and the study
reporting the highest MP range of content [2–7:1MPs=g; HX Li
et al. (2018)] were both rated as having a high RoB in two domains:
sampling and reporting. J Wang et al. (2019) was additionally rated
as having an unclear RoB in the analysis domain. Omitting these
two studies from the statistical summary decreased the MP content
to 0–7:2MPs=g wet wt.

In terms of geographical spread, 59.2% (n=19 of 27) of the
studies sampled organisms off the coasts of Asia (52.6% of which
were from China; n=10 of 19), 18.5% (n=5) off the coasts of
Europe, 11.1% (n=3) from the Americas, 3.7% (n=1) from
Africa, 3.7% (n=1) from Australia/Oceania, and 3.7% (n=1)
from between the Americas and Asia (Table 2). Eighty-two per-
cent of the studies (n=9 of 11) that reported MP content
>1MP=g came from the coasts of Asia. In contrast, only 20% of
the studies (n=1 of 5) from Europe reported MP content
>1MP=g.

At least 15 different particle-extraction procedures were
reported. The procedures can be divided into three broad catego-
ries depending on the chemical compound used to digest the sam-
ples: H2O2, potassium hydroxide (KOH), and nitric acid (HNO3)
(Table S5). There are further differences between these three cat-
egories, such as time period and temperatures for digestion, the
use of a density-separation step and its specifications (physical/

Figure 1. Risk of bias (RoB) assessment seafood studies. The three ratings are illustrated by percentage. The numerical data for the figure is provided in Table
S6. Individual rating per study and per domain is provided in Table S7. Rating was executed according to the RoB tool (see Table S4 and the “RoB tool addi-
tional explanation” section in the Supplemental Material).
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chemical), the use of further chemicals, and the pore size of the
filters. Many studies poorly reported the procedure used, in some
cases, missing crucial details of the analysis protocol. In terms of
MP content, of the 12 studies that used H2O2 for digestion
(exclusively or not), 67% (n=8 of 12) reported MP content
>1MP=g. In most cases, the use of H2O2 was accompanied by a
subsequent density-separation step (88% of the studies; n=7 of
8), suggesting that process was more effective in extracting MPs
from biota than the methods using KOH and HNO3 for digestion.

Samples examined by the studies came either directly from
the environment or from markets, which opens up two associated
issues: post-collection MP contamination, and the effects follow-
ing any depuration period. It has been argued that depuration
might be effective in extracting MPs from bivalves, with two
studies testing this hypothesis (Birnstiel et al. 2019; Van
Cauwenberghe and Janssen 2014). Birnstiel et al. (2019) con-
cluded that depuration (over a 4-d period) significantly reduced
MP content in their samples (Perna perna). Similarly, Van
Cauwenberghe and Janssen (2014) found that a 3-d depuration
was effective in removing a large proportion of MP contamina-
tion (in Mytilus edulis and Crassostrea gigas). Although the
results of these two studies are promising in terms of the reduc-
tion of MP contamination, more research is needed to address a
number of issues mainly around the methodology of the depura-
tion procedure. For example, the time of depuration required may
vary between different species, and the use of seawater that has
already been filtered specifically to target MPs, is also key. The
effect of depuration cannot be assessed in this review because in
most cases, when bivalves have been acquired from markets, it is
not known whether they have undergone a depuration process or
not. Therefore, it is not clear whether MP contamination after the
collection of seafood has a significant effect, or if it is mitigated
by depuration. Five studies collected samples only from markets
(Cho et al. 2019; Ding et al. 2019, 2020; Li et al. 2015;

Akoueson et al. 2020), 3 from both the environment and markets
(Ding et al. 2018; J Li et al. 2018; Van Cauwenberghe and
Janssen 2014), and the other 23 from the environment (Table 1).
The samples collected directly from the environment had a
broader range of MP content (0:03–6:9MPs=g) than the samples
collected from a market (0:15–3:93MPs=g) (Table 2).

The importance of the source (farmed or wild) has been high-
lighted in previous research (Mathalon and Hill 2014). From the
studies that collected mollusks only from markets, only one
reported sampling both farmed and wild organisms. Li et al.
(2015) stated that MP content was significantly higher in farmed
samples but did not report separate data for the MPs contents of
the two groups. Ding et al. (2018) collected samples from mar-
kets and the environment but did not compare the two groups.
Instead, they tested wild vs. farmed organisms and reported
farmed mussels contained more MPs (3:17MPs=g) than wild
(2MPs=g). In contrast, J Li et al. (2018) reported higher anthro-
pogenic debris content in wild mussels per gram (1:6 items=g)
than farmed (1:1 items=g), but more in farmed mussels per indi-
vidual organism. The study by Van Cauwenberghe and Janssen
(2014) sampled only farmed organisms. The results of the 23
studies that collected only environmental samples were contra-
dictory. Four studies sampled both wild and farmed organisms of
the same species. J Li et al. (2016) found more MPs in wild mus-
sels (2:7MPs=g) than in farmed ones (1:6MPs=g). Phuong et al.
(2018a) reported higher detection rates for MPs in farmed sam-
ples (oysters 93%, mussels 90%) compared with the wild ones
(oysters 80%, mussels 65%). Digka et al. (2018) did not detect a
difference between the ingestion of MPs in wild (47.5%) and
farmed (45%) mussels. Birnstiel et al. (2019) also found the wild
mussels to be more contaminated than farmed, but this difference
was not significant (analysis of variance F1,36= 0:006, p=0:94).
Of the rest of the environmental studies, 1 analysed wild and
farmed organisms of different species (Baechler et al. 2020), 2

Table 3. Crustacean seafood microplastic content results.

References Geographic location Sample N Mean MPs/g ±SD Freq. Composition

Bour et al. 2018 Norway Crangon allmanni 20 65% PE 54%, PP 16.8%
Fang et al. 2018 Bering Sea and

Chukchi Sea
PA 46%, PE 23%, PET 18%, CP 13%

Chionoecetes opilio 59 0.14 0.08
Pandalus borealis 21 0.24 0.19

Hossain et al. 2020 Bangladesh PA, RY
Metapenaeus monocerous 20 3.87 1.05
Penaeus monodon 10 3.40 1.23

Leslie et al. 2017 Netherlands Carcinus maenas 9 0 Not specified
McGoran et al. 2018 UK C. crangon 116 1a 0 6% Polyester 33%, nylon 20%, PP 15%
Thushari et al. 2017 Gulf of Thailand 50 PA, PET, PS (no %)

Balanus amphitriteb NA 0.57 0.22
B. amphitritec NA 0.37 0.03
B. amphitrited NA 0.43 0.04

J Wang et al. 2019 South Yellow Sea,
Korea and China

Crangon affinis 10 8.6 2.6 Not specified

Wu et al. 2020 China Parapenaeopsis hardwickii 10–20 0.25 0.08 CE, PE
F Zhang et al. 2019 China 25% PET 65%, PP 10%

Oratosquilla oratoria 64
O. kempi 1
Portunus trituberculatus 30
Carcinoplax vestita 18
Charybdis bimaculata 15
C. variegate 4
P. gracilimanus 3
Charybdis japonica 1

Note: Studies reported MP content results either as the mean MP content (with or without the SD) or the frequency of samples positive for MP presence. MP content is expressed as
number of MP particles per gram of tissue (wet weight) unless otherwise stated. Freq., frequency of samples positive for MP presence; CP, cellophane; MPs, microplastics; N, sample
size expressed in number of organisms; PA, polyamide (nylon); PE, polyethylene; PET, polyethylene terephthalate; PP, polypropylene; RY, rayon; SD, standard deviation.
aMPs/individual organism.
bSampling site: Angsila.
cSampling site: Bangsaen.
dSampling site: Samaesarn.
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analyzed farmed organisms (Teng et al. 2019; Wu et al. 2020), and
the remaining 16 analyzed wild organisms. No pattern between
wild and farmed organisms emerged in a review of the data.

In terms of validating the chemical composition as actual
MPs, 10 studies (32%) did not report how many of the extracted
particles were analyzed for polymeric composition. The remain-
ing 21 studies (68%) reported percentages ranging from 0.9% to
100%. Eight studies (26%) analyzed 100% of the particles (Cho
et al. 2019; Ding et al. 2018, 2019, 2020; Nam et al. 2019;
Phuong et al. 2018a; Webb et al. 2019; Wu et al. 2020), one 80%
(Hermabessiere et al. 2019), and the rest 0.9–36% (Table S9).
Following on from this, it is noteworthy that 16 (52%) of the
studies, once these particles have been isolated, did not state the
percentage of similarity compared with the spectral library that
was used as the level of acceptance.

To investigate the relationship between all these variables, a se-
ries of statistical tests were executed. Only seven studies reported
all the variables needed for the analysis (Hermabessiere et al. 2019;
J Li et al. 2016, 2018; Phuong et al. 2018a; Su et al. 2018; Teng
et al. 2019; Zhu et al. 2019) (Table S9). Data was examined to
detect whether they were normally distributed by fitting a series of
Shapiro-Wilk’s tests (Ennos and Johnson 2018). Pearson correlation
analysis was used for the normally distributed data and Spearman
correlation analysis for the data not normally distributed (Ennos and
Johnson 2018). There was a significant negative correlation between
the MPs-per-gram content, the percentage of the particles that were
analyzed [p=0:024, correlation coefficient R= − 0:86 (Figure
S3A)] and the number of particles analyzed [p=0:0004, R= − 1
(Figure S3B)]. There was also a significant positive correlation
between the MP content and the similarity index of the spectral
library (p=0:054, R=0:75) (Figure 3).

No significant correlation (Spearman correlation analysis)
was found between the percentage of the verified MPs and the
percentage of the particles that were analyzed (p=0:1667), the
number of particles analyzed (p=0:2357), nor the similarity
index of the spectral library (p=0:356).

Ten percent of the studies (n=3 of 31) did not report any
results on the polymeric composition of the particles (Leslie et al.

2017; Van Cauwenberghe and Janssen 2014; J Wang et al. 2019)
(Table 2). A key difference between the rest of the studies is that
53.6% (n=15 of 28) reported finding either cellulose, cellophane
(CP), or rayon in their samples and reported them as part of the
plastic material, whereas the other half did not. It is unclear
whether this is because they were not considered plastic or
because they were not found. Looking at the percentages of com-
position attributed to these materials, it became clear that their
inclusion as MPs had a substantial effect on the MP content
results. Across the studies that did not report cellulose-related
material, polyethylene (PE) was the most abundantly discovered
polymer, followed closely by polypropylene (PP). In the rest of
the molluskan studies, CP was the most abundant material fol-
lowed by polyethylene terephthalate (PET), rayon, and polyester.

Meta-analysis of MP content results. Two molluskan classes
were included—bivalves and gastropods—constituting six mollus-
kan families: clams, cockles, mussels, oysters, scallops, and sea
snails (Table 1). The data for all the species of the same family per
study were combined, resulting in 32 different sample data sets
from 19 studies (Table S10). Sample heterogeneity between the
classes and families was assessed in subgroup analyses using
mixed-effects models that showed no significant difference between
the overall effect between the two classes (Q=0:82, p=0:37) but a
significant difference between the six families (Q=33:73, p<0:01)
(Figure 4). Subgroup analysis was also used to identify whether fur-
ther sample characteristics and methods variability might have
affected heterogeneity. A significant difference was also identified
between samples that were collected directly from the environment
(n=23) and those collected indirectly, that is, from a market (n=9)
(Q=29:33, p<0:01) (Table S11), coinciding with the findings of
the narrative analysis concerning this sample characteristic.
Significant differences were identified between the 16 different geo-
graphical origins of the samples, Q=698:52, p<0:01, and the
three different RoB ratings Q=15:42, p<0:01 (Table S11). In light
of these results, analyses using random-effects models were fitted
separately for each of the six families of mollusks. In doing so, the
heterogeneity between the different families of mollusks could be
addressed. Further characteristics were explored within each family
analysis separately. The effects that the habitat and feeding parame-
ters had in terms of farmed vs. wild organisms could not be mod-
eled owing to the lack of information because one study (Ding et al.
2019) did not report this characteristic and two studies (Phuong et al.
2018a; Li et al. 2015) collected both farmed and wild organisms
and did not provide differentiated results (Table S10).

Figure 2. The overall microplastics per gram (MPs/g) content for mollusks
illustrated in a log10 scale. Points represent mean MPs/g values for the stud-
ies, where reported. Whiskers represent the reported ranges of MPs/g.

Figure 3. Pearson correlation analysis between the amount of microplastics
per gram (MPs/g) in mussels and the percentage of similarity compared with
the spectral library that has been used as the level of acceptance. R is the
Pearson correlation coefficient with the corresponding p-value. The gray-
shaded area represents the 95% confidence belt.
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Clams. Seven studies that analyzed clams were included in the
meta-analysis (Figure 4). The model revealed high statistical hetero-
geneity of the pooled effect: I2 = 99:2% and chi-square= 790:29,
p<0:01. Two statistical outlier studies of extremely large effects
were detected: J Li et al. (2015) and J Wang et al. (2019); the overlap
between the 95% CIs between the individual studies and the pooled
results of the model are presented in the forest plot in Figure 4. An
influence analysis revealed that they were also the most influential

studies in terms of heterogeneity (I2) and overall effect (Figure
S4A,B) (Viechtbauer and Cheung 2010). Two studies were rated as
of high RoB (Baechler et al. 2020; J Wang et al. 2019). Fitting the
model without these studies increased the MP content from
1:1MPs=g to 1:25MPs=g [(95% CI: 0.70, 1.79), p<0:01] but did
not affect heterogeneity (Figure S5). Therefore, the results of the
statistical outlier test, the influence analysis and the RoB rating justi-
fied the exclusion of the Baechler et al. (2020) and the J Wang et al.

Figure 4. Forest plot for subgroup analysis between six molluskan families using a mixed-effects model (random-effects model for studies within each category
and fixed-effect model between family categories). Studies were weighted using the inverse of the variance method (Chen and Peace 2013). The x-axis represents
the standardized mean difference expressed in microplastics per gram (MPs/g). The vertical line is the line of null effect where MP content is 0. The gray boxes rep-
resent the pooled effect estimate and the lines the 95% confidence interval (CI). The size of the boxes is proportional to the study weight. The diamonds are the
combined point estimates and CI for each of the subgroups. The dotted line is the overall pooled effect for all subgroups with a corresponding diamond. The red
box is the 95% prediction interval. The a (superscript) samples collected form the environment; b (superscript) samples collected form the market (J Li et al. 2018).
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(2019) data from the meta-analysis. A subgroup analysis using a
random-effects model also revealed that there was a significant dif-
ference between the five countries/regions included in the meta-
analysis (Q=274:41, p<0:01), the use of FT-IR (n=6) and RM
(n=1) (Q=58:16, p<0:01), and the source of the samples [envi-
ronment, n=5; market, n=2 (Q=44:96, p<0:01)] (Table S11).

Mussels. Eleven studies reporting mussel MP content were
included in the meta-analysis. The analysis did not include the
results of the processedmussel samples coming from supermarkets
in the study by J Li et al. (2018) study nor the samples after depura-
tion in the Van Cauwenberghe and Janssen (2014) study in order to
improve the homogeneity of the data. The mean content was
0:57MPs=g [95% CI: (0.42, 0.72), p<0:01] with a high heteroge-
neity: I2 = 99:5%, chi-square= 2,373:34, p<0:01 (Figure 4). The
two studies by J Li et al. (2015, 2018) were determined to be statis-
tical outliers of extremely large effect (Figure 4). An influence
analysis also identified the same studies as the most influential
studies in terms of contribution to the effect size (Figure S6A),
whereas the study byWebb et al. (2019) was found to be the major
contributor to the heterogeneity I2 (Figure S6B) and a major influ-
ence on the pooled result (Figure S7). The geographical origin of
the samples was also found to be associated with significant differ-
ences in the MP content (Q=949:96, p<0:01), but no significant
differences of the source of the samples was found [environment,
n=9; market, n=3 (Q=0:38, p=0:54)] (Table S11). The influ-
ence in choice of FT-IR (n=8), RM (n=3), or both (n=1) also
revealed a significant difference (Q=12:21, p<0:01; Table S11),
where the use of FT-IR was associated with higher MP content.
The RoB rating analysis showed that there was a significant differ-
ence between the three ratings (Q=13:11, p<0:01). In light of
these results, in order to improve the quality of the data, we fitted a
model omitting the results of the three studies rated as of high RoB

(Hermabessiere et al. 2019; Webb et al. 2019; SY Zhao et al.
2018). The results of the model are shown in Figure 5, where MP
content was 0:71MPs=g [(95% CI: 0.50, 0.92), p<0:01], and het-
erogeneity was high (I2 = 99:3%, chi-square= 1,170:31, p<0:01).
Although J Li et al. (2015, 2018) were identified as statistical out-
liers and the major influencers of the effect size, they were not
omitted from the analysis because they were rated as having low
RoB. Therefore, it was assumed that the difference in their results
was due to variability in themeasurements rather thanmethodolog-
ical or experimental factors.

Oysters. Seven studies were included in the oysters’ meta-
analysis (Figure 4). The mean content was 0:57MPs=g [95% CI:
(0.20, 0.93), p<0:01]. Heterogeneity was high (I2 = 99:9%,
chi-square= 10,963:32, p<0:01). One study (Abidli et al. 2019)
was detected as a statistical outlier of extremely large effects (Figure
4) and which was also rated as having an unclear RoB. An influence
analysis identified the same study to be the primary influencer in
terms of I2 heterogeneity and effect size results (Figure S8A,B).
Excluding this study from themodel resulted in a reducedmean con-
tent of 0:41MPs=g (95% CI: 0.25, 0.57) with high heterogeneity
(I2 = 99:6%, chi-square= 1,308:55, p<0:01). One study was rated
as having a high RoB (Baechler et al. 2020). Excluding this study
from the model resulted in a higher content of 0:60MPs=g with a
broader CI [(95%CI:−0:06, 1.26),p=0:07] and high heterogeneity
(I2 = 99:9%, chi-square= 10,570, p<0:01). Excluding both studies
from the model in a further sensitivity analysis, justified by the pre-
vious findings, resulted in a mean content of 0.42 MPs [(95% CI:
0.19, 0.65), p<0:01] and high heterogeneity (I2 = 99:1%,
chi-square= 432:73, p<0:01) (Figure 6). Subgroup analysis
showed that there was a significant difference between the six differ-
ent countries/regions of origin of the samples (Q=10,866:76,
p<0:01). No significant difference was found between the use of

Figure 5. Forest plot for random-effects model results for mussels without the two high risk of bias (RoB) studies (Hermabessiere et al. 2019; SY Zhao et al.
2018). The x-axis represents the standardized mean difference (SMD) expressed in microplastics per gram (MPs/g). TE is the MP content reported by each
study, and seTE is the calculated standard error. The vertical line is the line of null effect where MP content is 0. The gray boxes represent the pooled effect
estimate and the whiskers, the 95% confidence interval (CI). The size of the boxes is proportional to the study weight. The diamond is the combined point esti-
mate and 95% CI, and the dotted line is the overall pooled effect. The black box represents the 95% prediction interval. The a (superscript) samples collected
form the environment; b (superscript) samples collected form the market (J Li et al. 2018).

Figure 6. Forest plot for random-effects model for oysters, sensitivity analysis results without the high-risk of bias study (Baechler et al. 2020), and the statisti-
cal outlier of extremely large effects (Abidli et al. 2019). The x-axis represents the standardized mean difference (SMD) expressed in microplastics per gram
(MPs/g). TE is the MP content reported by each study, and seTE is the calculated standard error. The vertical line is the line of null effect where MP content is
0. The gray boxes represent the pooled effect estimate and the whiskers the 95% confidence interval (CI). The size of the boxes is proportional to the study
weight. The diamond is the combined point estimate and 95% CI, and the dotted line is the overall pooled effect. The black box represents the 95% prediction
interval. Note: an., analysis.
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FT-IR (n=5) and RM (n=2) (Q=1:33 p=0:25) nor between the
origin of the sample [environment, n=5; market, n=2 (Q=1:78,
p=0:18)] (Table S11). The results of the subgroup analysis were
interpreted with caution owing to the low number of the studies, in a
similar manner to the clams’ family analysis.

Scallops/sea snails. Three studies were included in the scal-
lops’ meta-analysis and the mean content was 0:48MPs=g [95%
CI: (0.20, 0.77), p<0:01] with high heterogeneity (I2 = 97:8%,
chi-square= 89:28, p<0:01) (Figure 4). All studies were rated as
of low RoB. The study by J Li et al. (2015) was identified as a
statistical outlier of extremely large effects (Figure 4). Further
influence and subgroup analysis were not appropriate owing to
the limited number of studies.

The results of the two studies on sea snails were not found to
be appropriate for meta-analysis (Figure 4). The CIs for this fam-
ily included negative values (95% CI: −0:22, 0.99) and the statis-
tical heterogeneity was extremely high (I2 = 99:6%). Therefore,
the studies were only included in the statistical summary and the
narrative analysis.

After the completion of the separate analysis for each family of
mollusks, a random-effects model was fitted, again including stud-
ies for all families but excluding the five high-RoB studies
(Baechler et al. 2020; Hermabessiere et al. 2019; J Wang et al.
2019; Webb et al. 2019; SY Zhao et al. 2018) (Figure S9). The
mean content was 0:78MPs=g [(95% CI: 0.58, 0.97), p<0:01] and
heterogeneity was still high (I2 = 99:8%, chi-square= 14,491:45,
p<0:01). The results of this model represent the best estimation
forMP content of all molluskan families.

Publication bias. The RoB across studies was examined using
funnel plots (Borenstein et al. 2009), plotted separately for the
different families of mollusks (Figure S10A–D). The results of
the Egger’s test of the intercept show that the asymmetry was not
substantial for clams (p=0:07), oysters (p=0:58), and scallops
(p=0:09) but was substantial for mussels (p<0:01) (Egger et al.
1997). The power of the Egger’s test was lower for the clams,
oysters, and scallops because the number of the included studies
was <10. The robustness of the eligibility criteria of the review
might have excluded studies that would possibly have improved
the symmetry of the funnel plots. Regarding the crustacean and
the fish studies, their results were not expressed in a way that
they could be statistically appraised. Publication bias is addressed
in the statistical summary/narrative analysis.

Crustaceans studies. Nine studies sampled crustaceans
(Table 3), with three reporting the frequency of MP detection.
McGoran et al. (2018) reported that only 6% of their samples
tested positive for MP contamination, F Zhang et al. (2019)
reported the level to be 25%, and the study by Bour et al. (2018)
elevated the level to 65%. All three studies were rated as having
an unclear RoB in the domains of sampling, analysis, and report-
ing (Table S7). Regarding the remaining six studies, the study by
Leslie et al. (2017) could not be used for comparison owing to
methodological issues in the particle-extraction protocol (as men-
tioned above). Therefore, the statistical summary included the
other five studies (Fang et al. 2018; Hossain et al. 2020; Thushari
et al. 2017; J Wang et al. 2019; Wu et al. 2020). The range of MP
content was from 0:14± 0:08 to 8:6±2:6MPs=g (Figure 7). Four
of these studies were rated as having a high RoB (Table S7) and
could account for the major difference in these results. Three of
these studies have already been appraised in the molluskan analy-
sis previously (Thushari et al. 2017; J Wang et al. 2019; Wu et al.
2020). The study by Hossain et al. (2020) was found to have a
high RoB in the domain of sampling and an unclear RoB in the
domains of analysis and reporting (Table S7) because they did
not report vital information of their analysis, such as the results
of the procedural blank samples. Regarding the particle-

extraction process, McGoran et al. (2018) did not use any type of
digestion but, rather, dissected samples in 1-cm sections and
examined them under a dissection microscope. This approach
may have significantly affected the findings in that visual inspec-
tion in 1-cm dissections may not be adequate to discover and
identify particles that can be <1-cm long. Three chemicals were
used for digestion of the samples: H2O2 (37.5% of the studies;
n=3 of 8), KOH (25%; n=2), and HNO3 (25%; n=2), and a
combination of KOH and H2O2 (12.5%; n=1). Fifty percent of
the studies (n=4) followed the digestion with a density-
separation process (Table S5). Five studies (56%) sampled from
the broader area off the coasts of Asia (Hossain et al. 2020;
Thushari et al. 2017; J Wang et al. 2019; Wu et al. 2020;
F Zhang et al. 2019), one between Asia and America (Fang et al.
2018), and the rest from Europe (33%) (Bour et al. 2018; Leslie
et al. 2017; McGoran et al. 2018) (Table 3). All studies included
in the statistical summary came from Asia and the Americas. All
studies used samples collected directly from their habitat and all
samples were wild apart from one (Wu et al. 2020), and 89%
(n=8 of 9) used FT-IR for spectral analysis. In terms of poly-
meric composition, the most abundant were PE and polyamide
(nylon) (PA) followed by PP and PET (Table 1). Fifty-six percent
of the studies (n=5) (Fang et al. 2018; Leslie et al. 2017;
McGoran et al. 2018; Thushari et al. 2017; J Wang et al. 2019)
did not report the similarity index of the spectral library, and only
44% (n=4) (Fang et al. 2018; Leslie et al. 2017; McGoran et al.
2018; Wu et al. 2020) reported the proportion of extracted par-
ticles analyzed for composition. Therefore, executing correlation
analysis was not possible owing to the lack of data.

The statistical summary was based on five studies, four of
which were rated as having a high RoB; therefore, the confidence
in those results was deemed to be low. Sample heterogeneity
could not be assessed in depth owing to the small number of stud-
ies. However, variability was identified throughout the research
protocols as in the molluskan studies.

Figure 7. The overall microplastics per gram (MPs/g) content for crustacean
families of shrimps, barnacles, and crabs; illustrated in a log10 scale. Points
represent mean MPs/g values and whiskers represent the corresponding
standard deviations (SDs). The results of Hossain et al. (2020) and Thushari
et al. (2017) have been pooled per family and species, respectively. A,
shrimps; B, barnacles; C, crabs.
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The available data on crustaceans were not found to be appro-
priate for meta-analysis. There were only three studies (Fang et al.
2018; Hossain et al. 2020; J Wang et al. 2019) that provided the
necessary data (Table 3). These analyzed two different families
(shrimps and crabs), comprising five different species: shrimps:
Crangon affinis, Metapenaeus monocerous, Pandalus borealis,
Penaeus monodon; crabs: Chionoecetes opilio, making it unrea-
sonable to collate data with such sample heterogeneity.

Fish studies. Eighteen studies analyzed fish, with 4 reporting
the discovery of MPs in the samples or the rate of discovery
(Collard et al. 2017a; Karami et al. 2017b, 2018; Pozo et al.
2019) (Table 4). Two studies (Akhbarizadeh et al. 2020; Karami
et al. 2018) used canned samples (whole fish), and 1 (Karami
et al. 2017b) used dried fish (flesh and organs) (Table 1).
Akhbarizadeh et al. (2020) reported 1:28±0:04MPs=g in canned
tuna. Karami et al. (2017b, 2018) did not report MP content
(Table 4). These samples had undergone substantial processing;
therefore, it would not be reasonable to pool data including them
because the fish might have been exposed to airborne MP con-
tamination in some part of processing. From the remaining 13
studies, 7 reported MP content per mass, with a range of
0–11:9MPs=g (Figure S11), 6 reported MP content only per indi-
vidual organism, and 3 reported MP content expressed both per
mass and per individual organism, with a range of 0.23–22.21
MPs/individual (Figure S12). Only 3 of the studies reported the
weight of the samples used (Digka et al. 2018; Renzi et al. 2019;
Sun et al. 2019), allowing a conversion from MP content per indi-
vidual to MP content per mass (Table S12).

All the studies apart from one (Akoueson et al. 2020) col-
lected organisms directly from the environment, and one study
did not report the origin of their samples (Pozo et al. 2019).
Sixty-one percent of the samples (n=11 of 18 studies) were wild
organisms (Table 1). Regarding the particle-extraction process,
39% used KOH (n=7 of 18), 22% used H2O2 (n=4), 17%
(n=3) a combination of KOH and H2O2, 11% (n=2) used a
combination of sodium hypochlorite and methanol, 5% (n=1)
used HNO3, and 5% (n=1) used the enzyme proteinase-K (Table
S5). Forty-four percent (n=8 of 18) combined the digestion with
a density-separation process. Sixty-seven percent (n=12) used
FT-IR, and 33% (n=6) used RM. Fifty percent of the samples
came from Asia (n=9), 33% from Europe (n=6), 5.6% (n=1)
from Africa, 5.6% (n=1) from South America, and 5.6% (n=1)
from multiple continents (Table 4).

There were seven studies that sampled anchovies (six species;
Table 1) reporting a range of 0.35–22.21 MPs/individual. The
highest MP content (22:21±1:7MPs=individual) was reported
by Feng et al. (2019). It was the only study that used the gut,
gills, and skin of the samples for analysis, reporting a significant
difference of MPs in the different tissues of gut and gill
(F=39:911, degrees of freedom=2, p=0:001). They did not
report the MP content per tissue per species; therefore, the direct
comparison with the rest of the studies would be inappropriate.
Feng et al. (2019) attributed the higher MP content to the highly
polluted sampling area of Haizhou Bay, the habitat, and to the
feeding habits of the species (Thryssa kammalensis). Excluding
this study brings the range to 0.35–2.3 MPs/individual. The study
reporting the second highest MP content was Tanaka and Takada
(2016), which was rated as having an unclear RoB owing to miss-
ing information regarding sampling and analysis (Table S7). The
higher amount of MP content could also be attributed to the fact
the samples came from Tokyo Bay, which is situated off the
highly urbanized and industrialized Tokyo metropolitan area.

Six studies sampled sardines (three species; Table 1), report-
ing a range of 0.23–4.63 MPs/individual. The relatively high
value of 4.63 MPs/individual was reported by the study by Renzi

et al. (2019), which was rated as having a high RoB. Information
was not reported regarding sampling and analysis, the most im-
portant being the use of replicate samples, and any details around
the composition identification process. Excluding this high-RoB
study brings the range to 0.23–3.71 MPs/individual. Of the four
studies that reported only MPs/individual, only two reported on
the size of them (i.e., weight). The study by Renzi et al. (2019)
used considerably larger samples (20:22 g± 4:2) than Digka et al.
(2018) (9:63 g± 1:46), which would account for the higher MP
content per individual. All the studies that sampled anchovies
and sardines used the stomach or whole GI tract of the organism
for the analysis.

Four studies sampled the flesh of larger fish. Two studies
reported the absence ofMP contamination in seabass (Lateolabrax
maculatus) (Su et al. 2019), in yellow croaker (Larimichthys cro-
cea) and dotted gizzard shad (Konosirus punctatus) (Wu et al.
2020), whereas Akoueson et al. (2020) did not discover MP con-
tent significantly different from the procedural blank samples
results. Only the study by Zitouni et al. (2020) reported a content of
2:9± 1:54MPs=g in painted comber (Serranus scriba). This study
was rated as having an unclear RoB in two domains of sampling
and analysis and a high RoB in the domain of reporting (Table S7),
resulting in an overall high RoB. The main factor was the unclear
reporting of the procedural samples results. Therefore, the results
of the study were excluded from the statistical summary. Wu et al.
(2020) was also rated as of high RoB owing to the lack of reporting
of the procedural blank samples results.

Regarding the MPs polymer composition, the most prevalent
polymers for fish were PE and PP, followed by PET and CP
(Table 4). Forty-four percent of the studies (n=8 of 18) did not
report on the accepted similarity index to the spectra library,
whereas 39% (n=7) did not report how many suspected MP par-
ticles they analyzed (Table S13).

Comparison between species, different body parts used for
analysis and the geographical origin of the samples was hindered
because not all studies reported the MP content per mass but only
MPs per individual organism. MP content was associated with the
part of the organism used for analysis and the RoB rating.
Methodological heterogeneity identified in sampling and analysis
was similar to the molluskan and crustacean studies. Five studies
(Akoueson et al. 2020; Feng et al. 2020; Su et al. 2019; Q Wang
et al. 2020; Zitouni et al. 2020) provided the necessary data for
meta-analysis of MP content per mass and five (Digka et al. 2018;
Feng et al. 2020; Lopes et al. 2020; Tanaka and Takada 2016;
Q Wang et al. 2020) per individual organism, but all of them
sampled different families/species of fish (Table 1), which pre-
vented comparison; therefore, meta-analysis was not attempted.
One study (Feng et al. 2020) sampled the phylum echinodermata
and reported a content of 0.82MPs/individual or 1MP=g in the edi-
ble part (gonad) of sea urchins (4 species; Table 2).

Summary of Evidence
The summary of evidence table (Table 5) presents the results of the
systematic review, integrating the meta-analysis results as well as
the results of the statistical summary and the narrative analysis. The
description of the certainty of the evidence aswell as the justification
for downgrading and upgrading evidence can be found in the cer-
tainty framework assessment in Table S14. In brief, RoB rating
downgraded the certainty of the evidence only in the case of the
crustacean studies because 80% of the studies included (n=4 of 5)
were rated as having a high RoB. Heterogeneity was high across all
the families of organisms and downgraded all the evidence by one
grade. Conversely, data were not downgraded regarding the three
domains of indirectness, imprecision, and publication bias because
the evidence was not found to be affected by these factors.
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Regarding the three upgrading domains, large effects and dose
response did not apply in these studies, whereas all studies were
upgraded by one grade owing to the lack of confounders.

Human Exposure to MPs through Seafood
According to the Food and Agriculture Organization of the United
Nations (FAO 2020a), global human consumption for fish and sea-
food in 2017 was 20:38 kg=capita per year; breaking down as fish
at 15:21 kg=capita per year, mollusks at 2:65 kg=capita per year,
crustaceans at 2:06 kg=capita per year, and cephalopods at
0:47 kg=capita per year (live-weight equivalent). The data by the
FAO cover 173 countries around the world (FAO 2020a) and indi-
cate significant variability in fish and seafood consumption by
country, ranging from 0:25 kg=capita per year in Afghanistan to
90:71 kg=capita per year in Iceland.

Combining the data for global human consumption of seafood
with the outcomes of the statistical summary in this review
results in an extrapolation of yearly MP uptake of 0–27,825 MPs
from mollusks, 206–17,716 MPs from crustaceans, and 31–8,323
MPs from fish (Table 6). The total maximum yearly MP uptake
from all seafood categories, based on FAO (2020a) data could be
as high as 53,864 MPs. Seafood consumption between countries
varies greatly and is predominantly connected to geography and
culture. For example, it is estimated that people in Angola

consume 0:01 kg of mollusks per year, whereas in Hong Kong
this rises to 15:32 kg per year (FAO 2020a). The variations of
projected maximum yearly MP uptake from global consumption
of mollusks is illustrated in Figure 8, for crustaceans in Figure
S13, and for fish in Figure S14. The numerical data for the maps
can be found in Table S15.

Discussion
Although this is not the first review on this topic, it represents the
first systematic review concerning MP contamination of seafood
intended for human consumption. Two recent reviews (Hantoro
et al. 2019; Toussaint et al. 2019) presented evidence of human
exposure to MP through the consumption of seafood but did not
critically collate evidence in order to quantify MP uptake. A
recent review by Cox et al. (2019) reported MP content of
1:48MPs=g for seafood, which is consistent with the higher end
of the results reported here. The review by Cox et al. (2019)
included studies that were rejected by the screening process for
this review. For instance, the studies by De Witte et al. (2014)
and Davidson and Dudas (2016) were rejected because a particle
composition identification process was not included. Using only
visual observation for the identification of MP particles can lead
to overestimations (Rocha-Santos and Duarte 2015; Strungaru
et al. 2019; S Zhang et al. 2019). The inclusion of such studies in
these reviews could explain this overestimation.

Fifty studies were systematically reviewed, and the overall qual-
ity of the evidence was assessed as low to moderate (Table 5). RoB
rating was correlated with fluctuations in the MP content results
across all phyla. This suggests that the bespoke quality assessment
tool was successful in detecting themost important parts of the stud-
ies’ protocol and execution, from formulating the rationale to report-
ing of results. According to the meta-analysis, the MP content in
mollusks was 0:78MPs=g (95% CI: 0.58, 0.97) (Figure S9). Meta-
analysis was executed primarily separately for the different mollus-
kan families to address sample and statistical heterogeneity. The
range of MP content was found to be 0–2:9MPs=g in fish,
0:1–8:6MPs=g in crustaceans, and 0–10:5MPs=g in mollusks
(Table 5), extrapolating to yearly consumptions of 31–8,323, 206–
17,716, and 0–27,825MPs, respectively (Table 6).

Seafood consumption between countries varies greatly.
Countries that are the highest producers of seafood are not

Table 5. Summary of effects.

Seafood category
Number
of studies Outcomes 95% CI

Certainty
of the

evidencea

Average MPs/g contentb

Mollusks Lowc

Clams 5 1.25 ± 0:55
Mussels 9 0.71 ± 0:21
Oysters 5 0.42 ± 0:23
Scallops 3 0.48 ± 0:29

Overall 14 0.78 ± 0:2
Range of MPs/g contentd

Mollusks 21 0–10.5 Moderate
Crustaceans 2 0.1–8.6 Low
Range of MPs/individual

contentd

Fish Moderate
Anchovies 6 0.35–2.3
Sardines 6 0.23–4.63
Lance 1 0.54
Bogue 1 0:34± 0:6 SD

Overall fish 9 0.23–4.63
Echinodermata Moderate
Sea urchins 1 0.82

Range of MPs/g content
Fish Moderate
Anchovies 3 0.01–0.09
Sardines 4 0.02–0.77
Lance 1 0.08
Comber 1 2:9± 1:54 SD
Croaker 1 0
Seabass 1 0

Overall fish 10 0–2.9
Echinodermata Moderate
Sea urchins 1 1

Note: Data represent MP content in global seafood samples (mollusks, crustaceans,
fish), meta-analysis results, and statistical analysis results. Certainty of the evidence was
rated according to Higgins et al. (2019). MP, microplastic; SD, standard deviation.
aAll studies were upgraded owing to the absence of confounders according to the results
of the assessment of the certainty of evidence. Details for the assessment are provided in
Table S11.
bMeta-analysis results.
cOwing to high heterogeneity (see assessment of the certainty of evidence in Table
S11).
dStatistical summary results.

Table 6. Yearly microplastic uptake from the consumption of seafood.

Yearly uptake MPs 95% CI

Mean yearly uptakea

Mollusks
Clams 3,312 ± 1,431
Mussels 1,881 ± 557
Oysters 1,113 ± 610
Scallops 1,272 ± 769
Overall 2,067 ± 503

Range of yearly uptakeb

Invertebrates
Mollusks 0–27,825
Crustaceans 206–17,716
Fish
Anchovies 31–279
Sardines 62–2,387
Lances 230
Combers 8,323
Overall fish 31–8,323

Note: The consumption has been calculated for each family and then pooled for each of
the three phyla; mollusks, crustaceans, and fish corresponding to the yearly global sea-
food consumption data (FAO 2020a). CI, confidence interval; MPs, microplastics.
aBased on the meta-analysis results.
bBased on the statistical summary results.
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necessarily the ones that consume it. According to FAO (2020b),
Spain is the leading producer of mussels for human consumption,
reaching 250,000metric tons per year, but it is not the highest
consumer (42:38 kg=capita per year) (FAO 2020a). China is also
a leader in mussel production (600,000metric tons), but a large
proportion is used as fish food. Other major producers are Chile,
Thailand, and New Zealand (Guillen et al. 2019). Corrections for
the calculation should include information on where the seafood
is produced/caught and where it is consumed. Unfortunately, in-
formation at this level of granularity is not readily available. A
recent study by Guillen et al. (2019) attempted to calculate the
global seafood production and consumption footprint using FAO
consumption data and modeling, reporting China to be the major
global producer and consumer and also as being self-sufficient
for the most part (Guillen et al. 2019).

Other media have also been identified as vectors of MPs via
the ingestion route with varying MP concentrations, such as sugar
(0:44MPs=g) (Cox et al. 2019), whereas in our previous work,
salt was found to have an MP content of 0–1,674MPs=kg
(Danopoulos et al. 2020a), tap water 0–628MPs=L, and bottled
water 0–4,889MPs=L (Danopoulos et al. 2020b). Further system-
atic reviews are needed to robustly assess MP contamination and
human exposures from all food categories.

In addition to food ingestion, atmospheric MP contamination
presents an additional pathway for MP human exposures (Chen
et al. 2020), related to direct exposures via inhalation (Wright et al.
2020) and indirect exposures via nondietary ingestion routes of
hand-to-mouth behavior (Gasperi et al. 2018), inadvertent inges-
tion (Abbasi et al. 2019), and occupational exposures (Gallagher
et al. 2015). Recent studies have started to quantify indoor and out-
door airMP levels, for example, Dris et al. (2017) reported concen-
trations of 1:0–60MPs=m3 (indoor) and 0:3–1:5MPs=m3

(outdoor) in air, whereas Liu et al. (2019) measured levels of
0–4:18MPs=m3 in outdoor air. A recent review has attempted to
extrapolate to human exposures, reporting annual inhalation of
1:9× 103–1:0× 105MPs (indoors) and 0–3:0× 107MPs (outdoors)
(Zhang et al. 2020). These additional pathwaysmust be included in
an aggregate human exposure scenario to account for multiple
pathways, routes, andmedia (U.S. EPA2019; IPCS 2009). A direct
comparison between the magnitude of exposure via different path-
ways is not advisable at this point given that the end point of the
exposures might be different and the internal doses of MPs are
likely to vary and depend on the physicochemical MP characteris-
tics (e.g., size, hydrophilicity) (Galloway 2015) and the responses
of the barrier organ, that is, the GI tract (Keshav and Bailey 2013;
Vancamelbeke andVermeire 2017) and the lower regions of the re-
spiratory tract (Timbrell 2009). The presence ofMPs has been con-
firmed in both human lung tissue (Pauly et al. 1998) and the GI
tract (Schwabl et al. 2019). There is evidence that occupational ex-
posure to high levels of airborne MPs can impact upon human
health (Donaldson and Tran 2004; Gallagher et al. 2015; Pauly
et al. 1998), but further research is needed to understand whether
dietary MPs exposures can have a detrimental effect on the human
GI system.

In terms of the most prevalent polymeric compositions in mol-
lusks, discounting the studies that did not report cellulose-related
material, PE was the most abundantly detected polymer, followed
closely by PP. In the rest of the studies, CP was the most abundant
material followed by PET, rayon, and polyester; their reported MP
levels might have been inflated by the inclusion of these materials.
In crustaceans, the more prevalent polymers were PE and PA, and
in fish PE and PP. Consensus is needed in the definition of MPs
because some studies included nonsynthetic or semisynthetic poly-
mers in their results. Across the families of organisms, PE and PP

Figure 8. Predicted global yearly maximum microplastic (MP) particles uptake through mollusk consumption. The data have been calculated using the FAO
(2020a) consumption data for the different mollusks’ families per country and the maximum MPs/g content of mollusks derived from the statistical summary
results herein. The numerical data is shown in Table S15. MP data were classified in 10 categories using quantile classification for illustration purposes. The
hatched areas illustrate countries for which data on mollusk consumption were not available.
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were the most dominant, corresponding to the global plastic pro-
duction trends (Plastics Europe 2019). According to the European
Plastics Industry Association, for the past 14 y, the plastics with the
highest demand and distribution by resin have been PE (combined
low- and high-density PE) followed by PP, polyvinyl chloride, pol-
yurethane, PET, and expanded polystyrene/polystyrene (Plastics
Europe 2008, 2017, 2018, 2019).

Narrative analysis showed that molluskan MP contamination
was skewed toward content of <1MP=g and that there seemed to
be a correlation of higher MP values in samples from Asia. A
geographical variation in MP content was observed whereby a
majority of studies (82%; n=9 of 11) reporting an MP content of
>1MP=g were from the coasts of Asia, in contrast to only one
study from Europe. It is important to note that this correlation
might be artificial owing to more research being conducted in
Asia. However, a recent report by the Ocean Conservancy and
McKinsey Center for Business and Environment (2015) argued
that more than 50% of the plastic pollution of the oceans, origi-
nating from land, comes from five Asian countries (Jambeck et al.
2015). The pattern of MPs contamination of the oceans (surface/
column water and sediments) has been the subject of intensive
recent research, but their results are contradictory (Li et al. 2019;
Olivatto et al. 2019; Pan et al. 2019; Yu et al. 2018; C Zhang et al.
2019; J Zhao et al. 2018). The systematic review on MP environ-
mental occurrence by Burns and Boxall (2018) point to higher
contamination close to urban and industrial coastal areas and riv-
ers for surface waters. In contrast, other research and reviews
report higher MP and plastic concentrations in the convergence
zones of the subtropical gyres and higher concentrations in the
open ocean than in coastal areas (Avio et al. 2017; Barrows et al.
2018; Cózar et al. 2014; Eriksen et al. 2014). Therefore, it is not
yet possible to draw conclusions on geographical patterns of MP
contamination, and further research is needed.

The contamination of organisms is likely to be affected by the
level of contamination of their environment, followed by their
feeding habits and physiology. The differences in the amount of
MPs between mollusks and the other two phyla can be attributed
to the fact that they are filter or bottom feeders. Their physiology
renders them a natural filtering system of the oceans, making
them vulnerable to MP contamination. In fish, apparent organs
for MPs aggregation include the GI tract and gills, which indeed
were the focus of many of the studies (Digka et al. 2018;
McGoran et al. 2018; Sun et al. 2019; Tanaka and Takada 2016).
On the other hand, MPs were not discovered in the studies that
analyzed the flesh of larger fish.

Sampling directly or indirectly from the environment and
whether the organisms were wild or farmed were recognized as
important factors for their contamination. Regarding wild vs.
farmed organisms, analysis was inconclusive. A controlled envi-
ronment might seem more protected against the contamination of
farmed organisms, but if the farm is situated in an MP-
contaminated area, the water quality will have an impact. In addi-
tion, Karbalaei et al. (2020) identified MP contamination in three
brands of commercial fishmeal; the use of such fishmeal could
have cumulative effects in farmed seafood (Karbalaei et al.
2020). A significant difference was found between the molluskan
families collected directly from the environment and those col-
lected indirectly (i.e., from markets), with the first found to be
more heavily contaminated with MPs. The depuration procedure
that some mollusks are subjected to before being commercially
available was proposed as one possible mitigating factor.

A wide range of methodological heterogeneity was detected
across the studies regarding sampling and analysis. The size of the
sampling regime has a direct effect on the power of the study in terms
of both internal and external validity, that is, whether the results can

be used to extrapolate to a general population (Higgins et al. 2019).
Sampling size is inherently connected to the overall sampling design
of the study and is a function of the project’s objective, sampling
approach, cost, environmental variability, and tolerable error (U.S.
EPA 2000, 2002; Zhang 2007). The European Commission, through
the Institute for Environment and Sustainability (EC 2013), pro-
duced guidelines that raised the minimum amount of sampled speci-
mens to 50 per species and age group, a level that was not reached by
many of the studies in this review. It should be noted that this recom-
mendation applies to monitoring the ingestion of litter by fish over
time or between different locations. These guidelines speak to the
need for more robust sampling. Furthermore, the majority of the
studies did not use a robust sampling design, such as a simple ran-
dom, stratified, or systematic design but, rather, used a judgmental
sampling design. However, a judgmental sampling design should be
avoided in environmental studies because it can affect the quality of
the study and introduce bias (Zhang 2007).

Results were associated with the different particle-extraction
procedures and the specifications of the composition identification
methods, highlighting the varying effectiveness of research proto-
cols. It has been argued in recent reviews (Miller et al. 2017;
Lusher et al. 2017b; Silva et al. 2018) and method papers
(Claessens et al. 2013; Collard et al. 2015; Dehaut et al. 2016) that
the use of different chemical and physical treatments for the extrac-
tion of particles can influence the effectiveness of the procedure or
even further degrade and damage the particles. Although the per-
formance of these procedures is not the focus of this review, it
highlights the methodological heterogeneity in the field and the
need for consensus. These variations in methods are likely to affect
results, under- or overrepresenting MP content. Major differences
were found in the processes that were implemented to extract pos-
sible MP particles from the tissue of the organisms, specifically in
the use of different chemicals for the digestion of the samples and
the use of a density-separation process.

Further important variations were identified in the composition
identification process in terms of the quantity of analyzed particles
and the specification of the analysis protocol. Following on from the
extraction step, there was a lack of consensus on the percentage of
particles isolated that need to be analyzed for composition in order
to extrapolate safely to the whole sample. In most cases, this would
be a function of available time and resources given that composition
analysis is time consuming, labor intensive, and expensive.
Nevertheless, it can be assumed that the larger the number/propor-
tion of the analyzed particles, the higher our confidence in the
results. The number/proportion of particles undergoing composition
analysis should also be considered in relation to the percentage of
particles confirmed as MPs, as well as the accepted percentage of
similarity compared with the spectral library. Correlation analysis
found that as the absolute number of particles and the proportion of
particles analyzed increased, the MPs/g content was reduced. This
leads to the logical assumption that as the numbers of particles tested
increase, the better the quality of the research protocol, and the less
they are detected in samples. A further finding was that the use of
higher spectral similarity indexes was found to be more robust. As
the similarity index rose from 60% to 70% and 80%, the MPs-per-
gram content also rose. This suggests that as inclusion criteria
becomemore stringent, higherMPs content is identified. Onewould
expect that the lower the similarity index, the more particles would
be confirmed asMPs, and thus the greater theMPs-per-gramcontent
would be observed. This is the opposite of what these results
showed. In order to explore this further, correlation analysiswas car-
ried out between the percentage of the verified MPs and the rest of
the variables (the percentage of particles that were analyzed, the
number of particles analyzed, the similarity index of the spectral
library), but no significant correlation was found. It should be noted
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that these results were based on the results of only seven studies, but
this analysis can be repeated in the future when more data are avail-
able to producemore robust results.

RoB assessment revealed a few focal areas as the source of
studies’weaknesses. Themost frequently recognized issue was the
use of procedural blank samples and the reporting, or not, of their
results. In some cases (8.6%; n=2 of 23; Table S8), studies that did
report the results, did not further clarify how the results were used,
whereas in many studies (26%, n=6 of 23), the authors reported
that the amount of MPs discovered in procedural samples was
inconsequential without offering any more evidence to their con-
clusion (e.g., statistical tests). The specifics around their use also
varied greatly in terms such as the number of samples used and
whether they tested the reagents used in the experiments.

Recent reviews by Hermsen et al. (2018) and Koelmans et al.
(2019) proposed quality assessment systems for MPs research
regarding biota samples andwater samples, respectively, similar to
the RoB tool used in the present meta-analysis. Both reviews iden-
tified high levels of variability in methods and recognized the need
for harmonization and transparency in methodology and reporting.
There is an evident need for harmonization and/or standardization
in all aspects of the research protocols in order to increase confi-
dence in the results (Hartmann et al. 2019). There is a subtle but
significant difference between the two terms. Although they both
refer to reducing the variations in the methodology, harmonization
is less stringent and allows some variation, whereas standardiza-
tion implies complete absence of variations. Standardization can-
not be achieved throughout all aspects of scientific experimental
protocols, but best practices for analytical procedures and quality
assurance and control tools can be set as the minimum standard for
designing, executing, and reporting experiments (Johnson et al.
2020). The lack of such harmonized methods hinders the acquisi-
tion of reliable and reproducible data. This need is also highlighted
by current interlaboratory efforts to achieve these goals by the Joint
Research Center (JRC 2019) of the European Commission, the
German Federal Institute for Materials Research and Testing, and
the Vrije Universiteit Microplastics Interlaboratory Study and
Workshops (https://science.vu.nl/en/research/environment-and-
health/projects/microplastics-ws-and-ils/index.aspx). Our find-
ings coincide with recent reviews by Hermsen et al. (2018) and
Koelmans et al. (2019), who in proposing quality assessment sys-
tems for MPs research also identified a high level of variability in
methods and the need for harmonization and transparency in
reporting.

Statistical heterogeneity, which is the quantified variability of
data, is the product of clinical and/or methodological variability
among the studies of the meta-analysis (Higgins et al. 2019;
Rücker et al. 2008). Clinical heterogeneity refers to the variability
of the sample characteristics, and methodological heterogeneity
refers to the variability of methods. Measuring the statistical heter-
ogeneity in meta-analysis can be used to evaluate whether all the
studies are measuring the same thing. In the present review, the
effect measure of interest (MP content) was a tangible physical
measure, and it is possible to be confident that the studies are
indeed measuring the same thing. Specifically, in order to
strengthen this confidence, the use of a chemical composition iden-
tification method was set as an inclusion criterion. Furthermore,
heterogeneity can inform whether it is appropriate to combine data
from different studies (Borenstein et al. 2009). The wide scope of
the present review predetermined that the diversity of the included
studies would be high. Diversity existed regarding both sample
characteristics (e.g., more than 40 species of mollusks; Figure S2)
and the studies’ methods (e.g., 23 different particle-extraction
processes; Table S5). Nevertheless, the studies were judged to be
homogeneous enough to produce a meaningful summary. This

decisionwas based on the similarity of the physiological character-
istics of the sample population as well as the intended use of the
organisms as seafood. Heterogeneity was recognized before the
execution of the meta-analysis and was partially addressed by
using random-effects models instead of fixed-effect models.
Throughout the meta-analysis applied to the molluskan families,
statistical heterogeneity given that measured by the I2 value was
found to be high. The confidence in the I2 valueswas limited owing
to the small number of studies. All attempts to decrease heteroge-
neity by excluding highly influential studies and statistical outliers
were unsuccessful. Subgroup analysis showed that significant dif-
ferences existed between the geographical origins of the samples
across all the different molluskan families. Therefore, there is a
high probability that the residual heterogeneity was caused by di-
versity in the geographical origin of the samples.

Human health effects related to MP exposures, and indeed the
levels of MPs in human subjects, are only recently being investi-
gated, but there is a growing body of literature to support evi-
dence of uptake (Abbasi et al. 2019; Gallagher et al. 2015;
Schwabl et al. 2019) and detrimental impacts (Dong et al. 2020;
Gallo et al. 2018; Stock et al. 2019). Recently reported potential
human effects include GI and liver toxicity (Chang et al. 2020;
W Wang et al. 2019) as well as neurotoxicity (Prüst et al. 2020).
The key identified exposure route is ingestion (along with inhala-
tion) (Chang et al. 2020; Hale et al. 2020), with seafood being a
major medium of exposure (van Raamsdonk et al. 2020;
YL Wang et al. 2020). Key toxic mechanisms include cytotoxic-
ity via oxidative stress (Chang et al. 2020), gene expression alter-
ation and genotoxicity (YL Wang et al. 2020) changes to the gut
microbiota (van Raamsdonk et al. 2020), metabolism disorders,
and inflammatory reactions (Chang et al. 2020). Evidence comes
from animal studies and human cell lines. Although the findings
are in some cases contradicting (van Raamsdonk et al. 2020) and
further research is undoubtedly needed, there is also no evidence
that MP human exposure is safe (Leslie and Depledge 2020).
Seafood is an important source of protein for populations around
the world, and it may be time to implement the precautionary
principle (Kriebel et al. 2001), based on the existing scientific
evidence, and take steps in policy, industry, and society to mini-
mize human exposures to foodborne MPs where possible.

Strengths and Limitations
This systematic review collates evidence from multiple studies and
estimates human MP exposures via seafood consumption. The
review used robust methodology and a bespoke RoB assessment
tool to appraise the quality of the studies. Although heterogeneity
was acknowledged throughout the review, the strategies used to
remediate it had limited success. Extrapolating to humanMP uptake
through seafood was based only on the species for which evidence
was available, thus affecting the external validity of the results.

Conclusions
Fundamentally, the vast majority of studies included in the present
review found MPs in the seafood samples. The data support the hy-
pothesis that seafood is a major verified vector for human exposure
toMPs. The levels ofMP contamination varied in different phyla of
organisms from fish (0–2:9MPs=g), to echinodermata (1MPs=g),
to crustaceans (0.1–8:6MPs=g) andmollusks (0–10:5MPs=g).

A key finding of this work is the need for harmonization and
standardization of methods and procedures throughout the
research process, starting from sampling design on through to
reporting. The bespoke RoB assessment tool used in the present
review and the narrative analysis along with the GRADE
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certainty framework identified the following areas that would
benefit from improvement, clarification, and further research:

• In order to reduce RoB, there is a need for overall methodo-
logical improvement in study design (sampling and analysis)
and execution.

• Sampling design must be linked to the aim of the study and
a rationale should be provided, particularly for sample size
and location.

• High standards of laboratory practices should be followed to
avoid post-sampling contamination.

• The use and detailed reporting of procedural blank samplesmust
be instituted to account for post-samplingMP contamination.

• There is a need for harmonization of the procedure that is
used to extract particles from the tissues of organisms
because varying effectiveness can significantly affect results
and hamper comparisons across studies.

• The use of a verified technique for the identification of the
composition of the particles is imperative to avoid under- or
overrepresentation. In particular, a consensus is needed in
the definition of MPs because some studies include nonsyn-
thetic and/or nonsynthetic polymers in their results.

• Consensus is needed for the protocol of the composition
identification process in the proportion of particles analyzed,
which spectra library is used, and what minimum accepted
similarity index to the spectra library is allowed.

• Consensus is needed on the definition of MPs in terms of
size, which is perhaps also related to body compartment ex-
posure/uptake characteristics.

• Reporting should include details of the organisms’ character-
istics, such as weight, to facilitate conversion to other units
and comparison between studies.

• Further research is needed on the effectiveness of depuration
on the mitigation of MP contamination of mollusks.
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