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ABSTRACT

A new algorithm called Lagrangian Simulation (LSIM) has been developed that enables the interpolation

uncertainty present in Lagrangian satellite rainfall algorithms such as the Climate Prediction Center (CPC)

morphing technique (CMORPH) to be characterized using an ensemble product. The new algorithm gen-

erates ensemble sequences of rainfall fields conditioned on multiplatform multisensor microwave satellite

data, demonstrating a conditional simulation approach that overcomes the problem of discontinuous un-

certainty fields inherent in this type of product. Each ensemble member is consistent with the information

present in the satellite data, while variation between members is indicative of uncertainty in the rainfall

retrievals. LSIM is based on the combination of a Markov weather generator, conditioned on both previous

and subsequentmicrowavemeasurements, and a global optimization procedure that uses simulated annealing

to constrain the generated rainfall fields to display appropriate spatial structures. The new algorithm has been

validated over a region of the continental United States and has been shown to provide reliable estimates of

both point uncertainty distributions and wider spatiotemporal structures.

1. Introduction

Current high-resolution satellite precipitation prod-

ucts combine information frommultiple satellite sensors

carried on a range of different satellite platforms (Adler

et al. 2000; Behrangi et al. 2010; Bellerby et al. 2009;

Huffman et al. 2007; Joyce et al. 2004; Kidd et al.

2003; Marzano et al. 2004; Nicholson et al. 2003a,b;

Sorooshian et al. 2000; Tapiador et al. 2004; Todd et al.

2001; Turk and Miller 2005; Ushio et al. 2009; Xu et al.

1999). By integrating diverse datasets, these techniques

aim to exploit the strengths andminimize the limitations

of individual sensors, satellite platforms, and their as-

sociated orbits. However, sampling limitations, retrieval

uncertainties, and heterogeneities in input data combine

to create complex error characteristics in the resulting

precipitation estimates. These uncertainties are corre-

lated in both space and time (Bellerby and Sun 2005;

Hossain and Anagnostou 2006; Teo 2006; Zeweldi and

Gebremichael 2009). The significance of such corre-

lations is demonstrated by Nijssen and Lettenmaier

(2004), who employed Monte Carlo simulations of

spatially correlated and uncorrelated satellite rainfall

errors to estimate the impact of spatial and temporal

sampling on hydrological responses, concluding that

spatial correlation had a noticeable impact on the re-

lationship between error and basin size, although this

effect was relatively less for streamflow and evapo-

transpiration than for precipitation.

Numerous studies have attempted to quantify the

magnitudes of various components of the uncertainty

present in satellite rainfall estimates. However, the

representation of rainfall uncertainty in satellite prod-

ucts has received less attention. Perhaps the most obvi-

ous way of representing this uncertainty is through an

additive and/or multiplicative error model:

Robs(x, t)5 «m(x, t)Rest[S(x, t)]1 «a(x, t) , (1)

where Robs(x, t) is the true (observed) rainfall field at

location x and time t; Rest is the estimated rainfall based

on satellite inputs S; and «a and «m are additive and

multiplicative errors, respectively. However, this for-

mulation is relatively ineffective at handling the in-

termittent nature of the rainfall field where many errors

rest on rain/no-rain misidentification. In addition, it is

quite possible for different satellite inputs to produce

the same rain-rate estimates but to be associated with

very different error structures, causing both «a and «m to
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become highly dependent on the input data S. An

alternative approach is to consider the conditional dis-

tribution of observed rainfall with respect to the satel-

lite inputs (Bellerby and Sun 2005; Bellerby 2007;

Gebremichael and Krajewski 2005; Gebremichael et al.

2011):

Pu(R; x, t)5P[Robs(x, t) j S(x, t)] . (2)

This uncertainty representation incorporates both rain-

fall intermittency and dependencies on satellite inputs in

a straightforward manner. It is also independent of the

precise retrieval algorithm employed; it is simply char-

acterized by the input data used. Of course, any practical

implementation of Eq. (2) will have to model Pu(R),

and this modeling process may incorporate its own as-

sumptions. While useful for many applications, point

conditional distributions do not characterize spatio-

temporal correlations in rainfall uncertainty. However,

these spatial and temporal dependencies may be in-

corporated into an uncertainty model by using the point

conditional distributions as the basis of an ensemble

approach.

Ensemble approaches use stochastic weather gener-

ators to derive multiple precipitation fields from the

same satellite inputs. Each field represents an equi-

probable realization of the time series of the rainfall

fields, consistent with the available input data while

containing a random element commensurate with the

associated uncertainty. Geostatistical models are used

to ensure that each ensemble member displays a re-

alistic spatiotemporal structure. These representations

effectively incorporate spatiotemporal correlations in

rainfall uncertainty and integrate readily with deter-

ministic hydrological models (Bowler et al. 2006; Hossain

et al. 2004; Hossain and Anagnostou 2006; Nijssen and

Lettenmaier 2004; Nikolopoulos et al. 2010.). Ensemble

rainfall products have been developed for a range of

technologies, including rain gauge networks (Clark and

Slater 2006) and terrestrial radar (McMillan et al. 2011).

AghaKouchak et al. (2009) generated ensemble simu-

lations conditioned on the Tropical Rainfall Measuring

Mission (TRMM)Multi-Satellite Precipitation Analysis

(TMPA) product using spatiotemporally uncorrelated

additive and multiplicative and additive error fields.

Bellerby and Sun (2005) and Teo and Grimes (2007)

independently developed conditional ensemble prod-

ucts using local conditional distributions, as per Eq. (2),

derived for single-sensor satellite data. These techniques

incorporated spatial and temporal dependencies in un-

certainty but assumed that these dependencies are spa-

tially and temporally continuous. This assumption does

not hold for general multisensor, multiplatform satellite

products where the uncertainty field, Pu(R; x, t), is typi-

cally discontinuous in both space and time. There is

therefore a need to develop a more generalized ap-

proach capable of dealing with current satellite algo-

rithms and datasets.

Most current satellite precipitation products are pri-

marily dependent on passive and active microwave

(MW) data. These sensors are sensitive to precipitation-

related hydrometeors but are restricted to low Earth

orbiting (LEO) platforms necessarily associated with

low temporal sampling. Most operational LEO plat-

forms visit a given location twice a day, although data

from multiple platforms may be aggregated to yield

higher effective sampling frequencies. The forthcoming

Global Precipitation Measurement (GPM) mission

plans to coordinate a cluster of LEO satellites to provide

a maximum 3-h return time across the globe (Hou et al.

2008). Given the sparse and intermittent sampling pro-

vided by LEO MW satellite sensors, there has been

considerable effort invested in combining these data

with other inputs, predominantly infrared (IR) imagery

from geostationary Earth orbiting (GEO) satellites, to

generate products with higher temporal resolutions and

reduced sampling errors. GEO IR data are available

every 30-min or better. However, they only show the

presence of clouds and are not directly sensitive to

precipitation processes. Lagrangian or ‘‘morphing’’ al-

gorithms use GEO or other data to estimate the pre-

cipitation advection field and then move, and possibly

modify, rainfall patterns between LEO satellite over-

passes, effectively interpolating rainfall between suc-

cessiveMWmeasurements along advection streamlines.

The longest standing Lagrangian satellite rainfall esti-

mation technique is the operational Climate Prediction

Center (CPC) morphing technique (CMORPH; Joyce

et al. 2004). CMORPH operates by linearly inter-

polating rainfall rates between MW overpasses along

advection streamlines derived from cloud-tracking GEO

IR imagery. Since rainfall advection does not always

move in lockstep with cloud motion, an empirical ad-

justment is employed to derive the former from the

latter. Recent variations of CMORPH employ other

types of advection information, including model winds

(Joyce et al. 2010), and further developments of the

concept modify precipitation rates along the streamlines

through reference to GEO IR brightness temperatures

(Joyce and Xie 2011; Kubota et al. 2007; Ushio et al.

2009) or classified cloud types [Rain Estimation Using

Forward-Adjusted Advection of Microwave Estimates

(REFAME); Behrangi et al. 2010]. The Lagrangian

Model algorithm (LMODEL; Bellerby et al. 2009; Hsu

et al. 2009) runs a simplified storm mass balance model

along advection streamlines, forced using GEO cloud
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development information and corrected against MW

overpass data.

A range of studies have considered the implications of

LEO sampling on averaged or accumulated products

(Astin 1997; Bell and Kundu 1996; Chang and Chiu

2001; Chelton and Schlax 1991; Hong et al. 2006; Roca

et al. 2010; Steiner et al. 2003; Zeng and Levy 1995).

Uncertainty in the CMORPH algorithm has been

studied at a range of spatial and temporal scales and

compared to other operational approaches (Anagnostou

et al. 2010; Dinku et al. 2008; Ebert et al. 2007; Sapiano

and Arkin 2009; Tian et al. 2007; Zeweldi and

Gebremichael 2009). Gebremichael et al. (2011) derive

conditional distributions of observed rainfall with re-

spect to 3-h, 0.258 CMORPH estimates using a com-

bination of discrete rain/no rain probabilities and a

gamma distribution for positive rainfall. This approach

proved effective in quantifying a homogenous relation-

ship between satellite estimates and observations.

However, the authors note that CMORPH rainfall re-

trieval uncertainties are dependent on factors other than

the precipitation estimate itself, including local satellite

sampling. Zeweldi and Gebremichael (2009) found that

errors in 1–6-h CMORPH products averaged over a

small (;602 km2) watershed demonstrated significant

temporal correlations.

Given the presence of varying sampling uncertainties

and significant spatiotemporal correlations, there is a

clear case for developing an ensemble approach to

represent the uncertainty in high-resolution Lagrangian

satellite rainfall algorithms. It is important to note that

such an algorithm should quantify retrieval uncertainty

within the satellite product itself using only data avail-

able to the algorithm. This differs from investigative

studies of satellite rainfall uncertainty that employ high-

resolution data, such as terrestrial radar to generate

rainfall ensembles (e.g., Hossain et al. 2004; Hossain and

Anagnostou 2006; Nikolopoulos et al. 2010). Lagrangian

ensemble rainfall simulations conditioned on MW data

present some significant difficulties, primarily as a result

of discontinuous uncertainty fields. As MW overpasses

are morphed along advection streamlines, they combine

to form a complex mosaic. Different regions within this

mosaic will be computed with reference to differentMW

overpasses associated with different temporal lags and

significantly different error characteristics.

This paper describes the development of a new con-

ditional precipitation simulation algorithm, the La-

grangian Simulation (LSIM), designed to quantify the

interpolation uncertainty in an MW-morphing satellite

rainfall product. A stochastic rainfall generator is run

along GEO-derived advection streamlines conditioned

on both previous and subsequent MW measurements.

Spatial structures aremaintained by imposing stationary

covariance functions on the rainfall fields generated at

each time step. The following sections detail the struc-

ture of the new algorithm and report its validation using

MW and surface radar data over a region of the conti-

nental United States.

2. Methodology

a. Dataset

The LSIM algorithm was developed using two data-

sets obtained from the CPC: the 4-km composite global

GEO IR dataset and the combined 8-km microwave

dataset (MWCOMB). The former is a 30-min composite

of available geostationary TIR (;11mm) imagery, with

individual satellite contributions corrected for zenith

angle dependence to reduce interplatform discontinu-

ities (Janowiak et al. 2001). MWCOMB is a composite

dataset incorporating data from the Defense Meteo-

rological Satellite Program (DMSP) Special Sensor

Microwave Imager (SSM/I), the Polar Operational En-

vironmental Satellite (POES) Advanced Microwave

Sounding Unit B (AMSU-B), the Aqua Advanced

Scanning Microwave Radiometer for Earth Observing

System (AMSR-E), and the Tropical Rainfall Measur-

ing Mission (TRMM) Microwave Imager (TMI) in-

struments. The MWCOMB product is interpolated to

a common 8-km spatial resolution and 30-min tem-

poral resolution (Ferraro 1997; Ferraro et al. 2000;

Kummerow et al. 2001; Weng et al. 2003). This spatial

resolution is finer than that provided by some of the

sensors used to generate the composite. To avoid

interpolation artifacts complicating the analysis, the

MWCOMB data were aggregated to a 0.248 (approxi-
mately 24 km) spatial resolution. Data were extracted

for a window covering 80.098–1108W, 20.078–558N, the

largest box show in Fig. 1. All dataset times were pro-

cessed in UTC.

An additional dataset was constructed from 0.018,
2.5-min Q2 radar rainfall data obtained from the Na-

tionalOceanic andAtmosphericAdministration (NOAA)

National Severe Storms Laboratory (NSSL; Amitai et al.

2012; Lakshmanan et al. 2007; Vasiloff et al. 2007). These

data were aggregated to a 24-km, 30-min spatiotemporal

resolution consistent with the aggregated MW data.

b. Algorithm overview

The LSIM algorithm is designed to provide a condi-

tional simulation of the interpolation uncertainty present

in a Lagrangian satellite rainfall estimate. Lagrangian

techniques temporally interpolate rainfall along esti-

mated advection streamlines. Thus, if microwave sensor

estimates Rmw are available at times t1 and t2, then the
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estimated rainfall Rmorp(x, t) for location x at an in-

termediate time t, t1 , t , t2, is given by

Rmorp(x, t)

5 f [Rmw(xt/t
1
, t1),Rmw(xt/t

2
, t2), t2 t1, t22 t] , (3)

where f is the interpolation function used by the algo-

rithm and xt/t0 is the location that would be reached by

moving from location x at time t along the estimated

advection field to a corresponding location at previous

or subsequent time t 0. It should be noted that these al-

gorithms necessarily operate a few hours behind real

time since they cannot compute the rainfall for any given

point until a subsequent microwave observation is

available. Real-time implementations extrapolate for-

ward from the final microwave overpass but update es-

timates once they are bracketed by both a previous and

subsequent observation.

For the general Lagrangian algorithm described by

Eq. (3), the conditional distribution Pu(R; x, t) of ob-

served rainfall with respect to the satellite information

used to derive the estimate is given by

Pu(R; x, t)

5P[Robs jRmw(xt/t
1
, t1),Rmw(xt/t

2
, t2), t2 t1, t22 t] .

(4)

Here P(R j . . .) is a conditional distribution of rainfall

characterized only by the previous and subsequent

microwave rain-rate observations and their respective

lags t2 t1 and t22 t. It is important to clarify themeaning

of ‘‘observed rainfall’’ when discussing this conditional

distribution. In LSIM, observations are equated with

microwave satellite measurements, meaning that the

algorithm is assessed with respect to its ability to in-

terpolate between satellite overpasses to derive in-

termediate values as if they had been measured by

a microwave sensor. Inaccuracies in the individual mi-

crowave measurements themselves are thus not mod-

eled. This enables LSIM products to be both calibrated

and generated using satellite data alone. Microwave

retrieval errors and their possible incorporation into

LSIM are further discussed in section 4.

To derive an ensemble precipitation product, it is

necessary to randomly sample points from the condi-

tional distributions in Eq. (4) while generating rainfall

fields that have the correct spatial and temporal struc-

tures. Temporal structure is imposed by building up

each ensemblemember time step by time step, with each

field directly conditioned on its predecessor. Spatial

structure is imposed by imposing geostatistical con-

straints on the fields generated at each time step. This is

implemented by minimizing a cost function using an

optimization procedure based on simulated annealing.

c. Determining precipitation advection

The current LSIM implementation derives precipi-

tation advection from high-resolution (4 km) GEO IR

imagery using the multiresolution deformed-mesh

tracking algorithm of Bellerby (2006). This algorithm

associates each cloudy pixel in an IR image with a cor-

responding pixel in a previous image to a demonstrated

accuracy of ;2–3 pixels. The algorithm forms the basis

of a number of published Lagrangian satellite pre-

cipitation algorithms (Behrangi et al. 2010; Bellerby

et al. 2009). The algorithm was applied at full GEO

image resolution and then subsampled to the 24-km

product resolution.

d. Determining temporal dependencies

Conditional rainfall probabilities are initially deter-

mined for discrete rainfall categories and then inter-

polated to yield a continuous conditional distribution

function (cdf). LSIM defines N 1 1 rainfall categories

Rk 5 fR jLk # R , Lk11g, k 5 0. . . N, with respective

lower boundsLk;R0 is the zero-rainfall category; andRN

has no upper bound. This formulation enables a transi-

tion between rainfall states over a single time step to be

modeled using a stationary N 3 N transition matrix:

Tk,j 5P[R(x, t) 2 Rk jR(xt/t2dt, t2 dt) 2 Rj] , (5)

FIG. 1. Location of the study area. The largest box shows the

extent of the dataset used to drive the algorithm. The smaller

dashed box shows the extent of the data displayed in Fig. 2, and the

smallest box shows the window shown in Fig. 4. The point shows

the location associated with the plots in Fig. 7.
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where dt is the time step. Working along the streamline,

probabilities at each time step must be conditioned on

both the simulation for the previous time step and the

subsequent microwave observation at time t2. This gives

rise to the following equation for category conditional

probabilities (Sherlaw-Johnson et al. 1995):

P[R 2 Rk jR(xt/t2dt, t2 dt) 2 Ri,Rmw(xt/t
2
, t2) 2 Rj]

5
Tk,i(T

m)j,k

(Tm11)i,j
.

(6)

Once the category probabilities have been derived for

a given location and time, the complete conditional

probability function, covering the full continuous range

of rainfall rates, is estimated using

Pu(R; x, t)5P(R jR 2 Rk)

3P[R 2 Rk jR(xt/t2dt, t2 dt),Rmw(xt/t
2
, t2)] . (7)

The Markov transition matrix Tj,k must be obtained

from the available satellite data. These data are in-

termittent, with a varying number of time steps between

satellite overpasses. Transition matrices may be ob-

tained from data with nonuniform time intervals using

an expectation maximization (EM) approach (Sherlaw-

Johnson et al. 1995). This EM algorithm proceeds as

follows:

Step 1—Initialization: The transition matrix Tj,k is

given an initial value. This may be derived from

MW data separated by a single time step, although

in the absence of any such data Tj,kmay be assigned

an arbitrary nonzero value.

Step 2—The E step: Assume that two MW measure-

ments arem time steps apart and lie within rain-rate

categories Ri and Rj. The probability Pk,l that

a rainfall category transition from Rk to Rl will

occur between time step n and time step n 1 1

within this interval is given by

Pl,k 5
(Tn)k,iTl,k(T

m2n21)j,l

(Tn)j,i
. (8)

This equation may be used to interpolate multistep

data to single time steps to build up a cross histogram

of single-step transitions. Note that counts in this

histogram will not necessarily be whole numbers since

Eq. (8) assigns transition probabilities rather than

identifying actual transitions.

Step 3—TheM step:Once the transition histogram has

been determined from all available measurements,

it is used to compute a new transition matrix Tj,k. If

this matrix differs significantly from the former

value of Tj,k (with a maximum absolute difference

greater than 1028 for any element) the algorithm

repeats from Step 2. Otherwise, it terminates.

Note that the EM algorithm is applied along advection

streamlines, which means that the transition matrix Tj,k

depends on the choice of advection scheme. The

strength of the temporal dependence represented byTj,k

could be used to compare different schemes; a more

effective scheme will be associated with a stronger

temporal relationship.

Table 1 shows the rainfall categories employed by the

prototype implementation of LSIM. These categories

were chosen as a compromise between covering the

range of rain rates to a sufficient resolution and ensuring

that all categories had sufficient membership to enable

the transition matrix to be determined. These categories

are used to derive full continuous probability distribu-

tions via Eq. (7). Table 2 shows the derived transition

matrix Tj,k, which is assumed to apply across the study

area and period. Note that some cross probabilities are

as low as 1024. It is thus essential to use a large dataset to

derive Tj,k.

e. Spatial structure

At each time step the LSIM algorithm must generate

a random spatial field that simultaneously satisfies the

point conditional distributions given by Eq. (7) and

displays the required spatial structure. This is achieved

byminimizing a cost function using simulated annealing.

Simulated annealing is a global optimization technique

that may be used as the basis of effective conditional

simulation algorithms in a range of contexts (Goovaerts

1997), including precipitation simulation (Bardossy

1998; Haberlandt and Gattke 2004). The LSIM im-

plementation is based on the approach of Dafflon et al.

(2009). An initial rainfall field is constructed by in-

dependently drawing each pixel rainfall rate from its

TABLE 1. Rain-rate categories used by the LSIM algorithm.

R0 R 5 0mmh21

R1 0mmh21 , R # 0.5mmh21

R2 0.5mmh21 , R # 1.0mmh21

R3 1.0mmh21 , R # 2.0mmh21

R4 2.0mmh21 , R # 5.0mmh21

R5 5.0mmh21 , R # 10.0mmh21

R6 10.0mmh21 , R # 20.0mmh21

R7 R . 20.0mmh21
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local conditional distribution given by Eq. (7). Pixels are

then selected at random and a potential replacement

rainfall value is randomly selected from the conditional

distribution for that pixel. The replacement is accepted

if it reduces an objective functionO, which quantifies the

deviation from the required spatial structure. If the new

value would increase O, the replacement is randomly

accepted or rejected, with an acceptance probability Pa

given by

Pa 5 e[2(O
NEW

2O
OLD

)]/T , (9)

whereT is the annealing temperature. In the early stages

of the algorithm T is given a relatively large value as-

sociated with a high probability for accepting positive

changes to O (determined by examining a sample of

possible replacements). As the algorithm progresses, T

is steadily reduced. Thus, in the early stages of the

algorithm, there is a significant chance of the state

‘‘jumping’’ out of local minima, while in later stages the

algorithm is allowed to converge to a globally optimal

state. Convergence is determined by a failure to improve

the objective bymore than a set convergence criterion in

a given number of time steps (respectively set in the

prototype implementation to 0.001 and 10 times the

number of pixels in the window being simulated).

The objective function contains four elements, re-

spectively scaled by multipliers m1. . . m4:

O5m1O11m2O21m3O3 1m4O4 . (10)

The first two elements quantify the difference between

the simulated and observed (MW) covariance and rain/

no-rain indicator covariance functions, respectively:

O15 �
h

jCSIM(h)2CMW(h)j

O25 �
h

jCSIM
I (h)2CMW

I (h)j ,

C(h)5Cov[R(x),R(x1 dx) j kdxk5 h] ,

CI(h)5CovfI[R(x)], I[R(x1 dx)] j kdxk5 hg ,

I(R)5

�
0 R5 0

1 R. 0
. (11)

Observed variograms, calculated for 24-km increments

in distance, are employed directly rather than being

modeled, facilitating a fully automatic and rapid cali-

bration procedure. To avoid the long-range effects

present in empirical variograms, bothC(h) andCI(h) are

truncated when their values fall below 1% of that at

h 5 0. The scaling terms m1 and m2 are calculated to

give m1O1 and m2O2 unit initial values. The use of

empirical variograms enables LSIM calibration to be

fully automatic.

The combination of rainfall-rate and indicator co-

variance functions is generally effective at controlling

the wider structure of the rainfall field, but it does

permit some admixture of point, or very small area,

low-rainfall-rate noise. This effect is countered by in-

troducing a penalty term based on the number of

raining pixels N(x) immediately adjacent to the pixel

under consideration:

O3 5 �
x
Max

�
1

PfI[R(x)] jN(x)g2 2, 0

�
, (12)

where empirical conditional probabilities P[I(R) jN]

have been derived from the MW dataset. The penalty

term for an individual pixel is zero if its rain/no-rain state

is more likely than the alternative and increases toward

infinity as the conditional probability of the indicator

function I(R) tends toward zero. This penalty term can

interact problematically with O2 in the initial stages of

the simulated annealing process, preventing the neces-

sary introduction of intermediate rain/no-rain structures.

To prevent this, m3 is set to zero until the optimization

has converged. It is then scaled to give m3 O3 a small

positive value (0.1), and the optimization is allowed to

rapidly reconverge.

TABLE 2. Rainfall category transition matrix for one 30-min time step used by the Markov model.

Rainfall category at previous time step

R0 R1 R2 R3 R4 R5 R6 R7

Rainfall category at current time step R0 0.9778 0.0141 0.0035 0.0024 0.0016 0.0004 0.0001 0.0001

R1 0.6181 0.1636 0.0671 0.0660 0.0577 0.0195 0.0058 0.0021

R2 0.4335 0.1893 0.0932 0.1128 0.1088 0.0441 0.0129 0.0055

R3 0.3183 0.1871 0.0985 0.1436 0.1562 0.0653 0.0251 0.0058

R4 0.1832 0.1385 0.0887 0.1466 0.2451 0.1223 0.0590 0.0168

R5 0.0890 0.0908 0.0662 0.1057 0.2547 0.1973 0.1497 0.0465

R6 0.0367 0.0335 0.0382 0.0687 0.2416 0.2365 0.2096 0.1353

R7 0.0122 0.0180 0.0122 0.0376 0.1461 0.2097 0.2447 0.3194
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The final term of the objective function is designed to

maintain adherence to the conditional probabilities of

Eq. (7). The simulated annealing process already in-

corporates the conditional distributions when drawing

new random pixel values. However, the geostatistical

constraints may cause selective sampling, causing some

drift away from the expected category proportions. The

corresponding objective term is computed by noting that

if for a given rainfall category Rk, M pixels are associ-

ated with the conditional probabilityP, thenN5MP of

these pixels should have simulated rainfall rates in Rk.

To implement this as a cost function, conditional prob-

abilities for each category k are divided into discrete

bins p 5 1, 2. . . associated with respective mean condi-

tional probabilities Pp, giving

O45 �
k
�
p
jNp,k 2PpMp,kj . (13)

To cater for conditional probabilities that are small with

respect to the number of pixels in the image, a random

rounding scheme is applied to PpMp,k. This scheme will,

for example, round 5.2 to 5.0 for 80% of the time and to

6.0 for 20% of the time. The initial realization of the

simulated field will closely adhere to the required con-

ditional probabilities; m4 is therefore set to scale the

initial value of m4 O4 to one-half of the objective func-

tion convergence criterion. This permits convergence

providing the value of O4 does not become significantly

worse than its initial value.

3. Results

The LSIM algorithm was used to generate a 100-

member precipitation ensemble for July 2011. A simple

‘‘linear morphing’’ product was also generated for the

same period. This comparison product was generated by

linearly interpolating rainfall rates between MW satel-

lite overpasses along the same IR-derived streamlines.

The comparison product will be referred to LMORPH

in the discussion below. It should be noted that while this

product is structurally similar to CMORPH, it differs

from the operational algorithm in a number of respects,

including advection estimation. To provide a satellite-

based validation dataset, MW data for the specific times

of day, as follows, were excluded from the input data

used to generate both the LSIM and LMORPH prod-

ucts: 0115, 0315, 0745, 1045, 1445, 1745, 1915, and

2045 UTC (the remaining 30-min intervals in each day

were used as input to the LSIM algorithm). These times

were selected to provide a broad spread of temporal lags

between validation overpasses and both preceding and

subsequent MW measurements. While an exact time of

day tends to be associated with the same satellite over-

pass, this is not invariably the case and day to day vari-

ations serve to further vary the sampling.

As an example of the LSIM product, Fig. 2 shows the

development of a part of the rainfall field between two

MW overpasses spanning 1845–2015 UTC on 3 July

2011, as modeled by three arbitrarily selected ensemble

members. Each ensemble member is designed to be

commensurate with the input satellite data while varia-

tion between ensembles is indicative of the remaining

uncertainty. The broad structure of the rainfall field

remains the same in each member, while smaller-scale

details vary. This is commensurate with studies that note

that the LEO sampling characterizes larger rainfall

structures more effectively than smaller ones (Bellerby

2012), resulting from the longer persistence of larger

structures (Germann and Zawadzki 2002, 2004). This

effect is important. While the LSIM covariance model is

capable of describing precipitating structures at a range

of spatial scales, the generated precipitation fields are

conditioned only on local MW overpasses and this in-

cludes the size and complexity of simulated storm sys-

tems. In the absence of conditioning data, storm size and

complexity would be randomly sampled from the dis-

tribution observed over the complete study area and

period. Moreover, an isotropic model would not pref-

erentially generate linear structures such as frontal

systems. However, a manual review of LSIM outputs

suggests that larger-scale structures are effectively

constrained by the available MW data throughout test

dataset.

An ensemble product is reliable if the fractional oc-

currence of a given event across the ensemble matches

its frequency of occurrence in coincident observed data

(Toth et al. 2003). Within an M-member ensemble, it is

possible to identify all times and locations at which ex-

actlyNmembers simulate rainfall in a given category. If

the product is absolutely reliable, then an exact pro-

portion M/N of these times and locations will be asso-

ciated with observed rainfall in that category. Figure 3

compares simulated and coincident observed exceedence

probabilities for seven rainfall thresholds correspond-

ing to LSIM category boundaries and for the zero-

rainfall category. As simulated exceedence probabilities

increase (or as zero-rainfall probabilities decrease), the

chance of that probability occurring in the ensemble

product declines dramatically. To avoid low sampling

rates obscuring the comparison, a minimum cutoff of

500 observations was applied when generating the re-

liability plots. This process excluded different propor-

tions of points depending on the rainfall rate threshold

applied. Approximately 5% of observations were ex-

cluded from the .0mmh21 comparison, ranging down
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FIG. 2. Example ensemble product showing the development of a single storm between microwave satellite overpasses on 3 July 2011

within the region bounded by the smaller dashed box in Fig. 1. Ensemble members were arbitrarily selected. All times are UTC.
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FIG. 3. Reliability plots of the 24-km ensemble product compared against microwave

satellite data from the validation dataset. Each plot compares exceedence probabilities

determined from the LSIM ensemble to coincident observed probabilities in the valida-

tion dataset.
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to 0.9% of observations excluded from the .20mmh21

plot. The cutoff was not applied to the zero-rainfall

category plot, enabling the low-number sampling ef-

fects to be seen. There is generally a good match be-

tween simulated and observed probabilities, although

the rain/no-rain boundary proves the most difficult to

characterize.

Table 3 displays validation statistics based on a com-

parison of observed and simulated rainfall category

probabilities. Note that, as with Fig. 3, categories are

defined using single thresholds rather than rainfall rate

ranges, as used by the LSIMprobability model. Statistics

are provided for a range of ensemble sizes and also for

point probabilities produced through a direct applica-

tion of Eq. (7) without reference to the ensemble field

generation process. Correlations are a slightly unstable

metric to employ in this context, but they do demon-

strate the strength of the predicative relationship using

a familiar measure. Root-mean-square errors (RMSEs)

provide amore robust measure of the probability match.

These are clearly dependent on ensemble size, re-

ducing to ;3%–4% for a 100-member ensemble. The

100-member RMSEs are not significantly worse than

those provided by the underlying probability model,

suggesting that the choice of ensemble size is not in-

appropriate, particularly given the high computation

cost of generating very large ensembles. Biases are gen-

erally of the order of 0.1%–0.4%.

Figure 4 compares a small area of the rainfall field for

1515 UTC 15 July 2011 for two ensemble members, the

linear morphing product and the input MW satellite

data. There are some clear differences between the

LSIM and LMORPH outputs, particularly with respect

to rainfall rates in the feature to the top left of the win-

dow. It is also notable that the morphing product displays

a linear discontinuity corresponding to the edge of the

MW swath. Morphing products are not spatially in-

coherent; their skill at rainfall estimation gives their

outputs some reasonable spatial structure. However,

discontinuities in their underlying uncertainty struc-

ture can translate into spatial and temporal disconti-

nuities in the products themselves. By contrast, LSIM

rainfall fields are constrained to display consistent

spatial structures.

Figure 5 compares a range of quantitative structural

attributes for both LSIM and LMORPH products to the

MW satellite data. Figure 5a plots the temporal corre-

lation of rainfall rates along advection streamlines as

a function of time difference. There is a marked contrast

between the correlation curves for the LMORPH and

LSIM. Linear interpolation introduces significantly too

much autocorrelation along advection streamlines. The

LSIM outputs provide a closer match to the Lagrangian T
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temporal structure of the MW data. The remaining

discrepancies are attributable to the differences be-

tween a single-stepMarkov model of temporal structure

and a multistep (and thus multiscale) correlation model.

Figure 5b plots temporal correlation in a fixed, Eulerian

reference frame. Here the contrast between the LSIM

and LMORPH outputs is less significant, and there is

a much closer match between the LSIM and MW cor-

relation curves.

The performance of LSIM ensemble members as rain-

fall estimates was assessed though a validation against

30-min Q2 surface radar data. Table 4 shows validation

statistics for LSIM and LMORPH products, computed

at a range of spatial and temporal resolutions. LSIM

outputs display consistently lower correlations and

higher RMSE compared to the linear morphing product.

Each member of the LSIM ensemble introduces vari-

ability into the precipitation field in order to generate

FIG. 4. Example rainfall fields for 1515 UTC 15 Jul 2011 for two arbitrary members of the LSIM

ensemble, together with coincidentMW satellite data and a corresponding linear morphing product. The

area mapped corresponds to the smallest box in Fig. 1.
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a realistic spatiotemporal structure. Since this variability

is stochastically generated, it is unlikely to match the

true precipitation field on a point-by-point basis. Sta-

tistics are also provided for point-expected values, based

on Eq. (7). These may be regarded as the ‘‘best’’ rainfall

estimate at each point, based on the input data and the

assumptions of the probability model. These point esti-

mates outperform the LMORPH product slightly. This

suggests that linear interpolation is close to being the

optimal interpolation method in this context. However,

the very low 30-min rain/no-rain skill score for the ex-

pected values is notable. Attaining high point error

scores comes at the expense of losing a key structural

property: the probability of zero rainfall. Any significant

probability of nonzero rainfall will yield a positive ex-

pected rainfall value, and few combinations of satellite

inputs can guarantee that no rainfall will be present. This

emphasizes the observation that satellite rainfall esti-

mation cannot be about point error statistics alone—

rainfall structures are also important. Ensemble products

offer one way to reconcile these potentially conflicting

demands.

Figure 6 plots correlation with surface radar against

time to the nearest MW overpass along an advection

streamline. The linearly morphed estimates and en-

semble expected value match each other closely, with

the latter again giving the slightly better performance.

Correlations for ensemble members are lower but decay

in a similar pattern. These results further emphasize the

trade-off between point errors and acceptable precipi-

tation structures. The ensemble expected value opti-

mizes point estimates at the expense of spatial structure,

FIG. 5. A comparison of structural characteristics of the LSIM ensemble product to those of the input MW satellite data. Results for

a linear morphing product are also shown. (a) Temporal correlation along advection streamlines. (b) Temporal correlation for stationary

points. (c) Spatial covariance. (d) Spatial indicator (rain/no rain) covariance. (e) Rainfall-rate correlation across spatial scales. (f) Rainfall

rate frequency distribution.
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as noted above. Linear morphing closely produces a re-

sult close to this point-by-point optimum. Individual

ensemble members introduce realistic spatial variation

into the spatial field at the expense of a less optimal fit

at each point location.

Figure 7 plots the simulated conditional histograms of

3-h, 24-km rainfall totals for a single location throughout

3 July 2011. These histograms were created by dividing

ensemble outputs into eight bins, each covering an equal

range of rainfall rates. Note that the rainfall rates on the

category axis show the maximum value in each bin.

Simulated cdf’s vary considerably in form from time step

to time step. This wide variation in form and the pres-

ence of highly skewed uncertainty distributions are ob-

served throughout the dataset. The bins containing the

observed radar rainfall rate for each time step are also

indicated. These results suggest that the need to move

beyond simple error measures such as variance to a

more complete representation of retrieval uncertainty in

satellite rainfall products persists at the temporal reso-

lutions characteristic of GPM.

4. Conclusions

A new algorithm, LSIM, has been developed to sto-

chastically simulate sequences of rainfall fields con-

ditioned on MW satellite data within a Lagrangian

framework defined by GEO-derived advection stream-

lines. The LSIM algorithm simulates the rainfall field

directly rather than replacing the conditional simulation

of rainfall with the unconditional simulation of rainfall

uncertainty. It is thus able to cope with discontinuities in

the uncertainty field, such as those occurring at MW

swath boundaries, and is thus more generally applicable

than previous methodologies. LSIM simulations have

been shown to be reliable, with simulated exceedence

probabilities for interpolated rainfall rates matching

those encountered in coincident independent MW sat-

ellite data, with RMSEs of the order of 3%.

One of themain limitations of the LSIM approach lies

in its model of spatiotemporal rainfall structure, which

relies on stationary spatial covariance functions and a

stationary single-step Markov process. In reality, pre-

cipitation will display differing structures at a range of

temporal scales, and these structures will vary between

meteorological regimes and with forcing factors such as

time of day. While the covariance model represents

precipitation structures at a range of spatial scales, it

does not adopt the structures generated to the prevailing

meteorological regime. In the absence of conditioning

data, LSIM would generate precipitation structures

displaying a range of sizes and complexities according to

the broad geostatistics of the calibration region and

period. In practice, the satellite data tend to constrain

the spatial structures more tightly, as evidenced by the

variation between ensemble members in Fig. 2, which

is typical of LSIM output as a whole. More complex

representations are available, including copula-based

TABLE 4. Validation statistics against ground radar for LSIM ensemble members, a linear morphing product, and point-expected values

computed using the LSIM underlying probability model. Entries for LSIM show the minimum and maximum across the ensemble.

Resolution

Number of points

24 km, 30min

13 225 439

24 km, 180min

1 171 433

96 km, 180min

54 613

Product

Linear

morph

Expected

values

LSIM

ensemble

Linear

morph

Expected

values

LSIM

ensemble

Linear

morph

Expected

values

LSIM

ensemble

Correlation 0.43 0.42 0.24–0.33 0.63 0.65 0.38–0.51 0.76 0.79 0.51–0.65

RMSE (mmh21) 1.32 0.99 1.67–1.77 0.81 0.50 1.19–1.28 0.67 0.37 0.99–1.07

Bias (mmh21) 0.10 0.08 0.11–0.12 0.11 0.04 0.14–0.15 0.12 0.04 0.14–0.16

Skill (%) 90.3 19.3 89.5–90.9 93.3 94.0 91.5–93.4 93.7 94.8 91.3–93.6

FIG. 6. Comparison of temporal correlation along an advection

streamline as a function of time to the nearest microwave satellite

overpass for the LSIM ensemble, point-expected values, and a lin-

ear morphing product.
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approaches (AghaKouchak et al. 2010). However, if

satellite data alone are used to characterize product

uncertainty, data availability to calibrate more complex

models may be an issue.

LSIM is designed as a satellite-only product and

consequently does not incorporate uncertainty in the

satellite MW estimates themselves. If a suitably general

uncertainty model were available, through physical

FIG. 7. Conditional distributions of 3-h, 24-km rainfall rates at 90.088W, 37.968N (the point shown on Fig. 1) for

3 July 2011 derived from a 100-member LSIM ensemble product. The markers indicate the bin in which the cor-

responding surface radar rainfall total lies. All times are UTC.
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modeling or extensive ground validation studies, then

it could be incorporated into the algorithm. Definite

values for MW samples would be replaced by condi-

tional distributions determined by the retrieval error

model through a straightforward extension of Eq. (7).

It would also be necessary to ensure that both spatial

and temporal models were compatible with the new

definition of the ‘‘observed’’ rainfall field. However, it

should also be noted that MW satellite data are

available globally while high-quality ground data are

only available in limited areas. An approach that re-

lied on input from ground data may thus lack global

applicability.

The LSIM implementation described in this paper

uses the same GEO-based advection scheme as the

LMODEL and REFAME algorithms. However, other

advection schemes (including model reanalysis or LEO-

only-based schemes) could be directly substituted into

LSIM without modifying its structure. Advection esti-

mation in Lagrangian algorithms is an unresolved issue,

with no definitive scheme yet identified (Joyce et al.

2010). Precipitation advection has been shown to be

scale dependent (Bellerby 2012), which corresponds to

the general finding of Salby (1982a,b) that LEO satellite

sampling can only characterize larger Fourier compo-

nents of the field being monitored. The LSIM approach

may be used to evaluate advection schemes; the transi-

tion matrix T will become closer to the identity matrix

when based on an improved advection field. However, it

cannot necessarily be used to overcome fundamental

limitations implicit in the point advection approach.

LSIM uses geostationary IR data to derive advection

streamlines, but not to modify precipitation rates along

those streamlines. To extend LSIM to incorporate GEO

cloud development information, it would be necessary

to additionally condition simulated rainfall on the

geostationary image data. In some cases, this may be

achievable using a multivariate contingency table, es-

pecially if the GEO input is discrete, such as the cloud

categories used in the REFAME algorithm. However,

as the number of degrees of freedom increases, so does

the data requirement, and functional approaches such as

artificial neural networks (Bellerby 2007) may be more

appropriate for more complex data combinations.

The LSIM algorithm is computationally demanding,

but not impossibly so. The prototype implementation

completed a single image for a single ensemble member

in approximately 1.5min on one core of a 3-GHz pro-

cessor. Global application in real time would thus re-

quire the use of several hundred cores, either a small

part of a grid engine or a computational workstation

employing the 64 or 100 core processor chips now

available. Further development of the constrained

optimization algorithm would potentially yield signifi-

cant savings in this area.
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