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Abstract

We propose new Unconditional, Independence and Conditional Coverage VaR-forecast backtests for

the case of annuity pricing under a Bayesian framework that significantly minimise the direct and

indirect effects of p-hacking or other biased outcomes in decision-making, in general. As a consequence

of the global financial crisis during 2007–09, regulatory demands arising from Solvency II has required

a stricter assessment setting for the internal financial risk models of insurance companies. To put

our newly proposed backtesting technique into practice we employ linear and nonlinear Bayesianised

variants of two typically used mortality models in the context of annuity pricing. In this regard,

we explore whether the stressed longevity scenarios are enough to capture the experienced liability

over the forecasted time horizon. Most importantly, we conclude that our Bayesian decision theoretic

framework quantitatively produce a strength of evidence favouring one decision over the other.
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1. Introduction

After the global financial crisis of 2007–09, regulatory demands arising from Solvency II have

required a very strict assessment for internal financial risk models for insurance companies. In practice,

the idea of backtesting implies identifying whether risk measurement models are able to accurately

determine the risk exposures experienced (e.g., Drenovak et al., 2017). The Unconditional Coverage

(UC) test was the first Value-at-Risk (VaR) backtest developed by Kupiec (1995) to determine whether

the risk-measure forecast is able to capture the realized returns at the q-quantile. Several other key

innovations include the works of Christoffersen (1998) and Ziggel et al. (2014) who try to relax

assumptions in the UC test or to improve the statistical power of the test itself. More specifically,

Christoffersen (1998) introduces the idea of the Independence test which determines whether sequences

of one’s and zero’s occur independently or clustered together, and the Conditional Coverage (CC)

test which combines both the Independence and UC tests to establish whether or not sequences of

ones and zero’s occur at the specified coverage and occur independent to each other.

However, one significant drawback of these backtests is commonly known as the null hypothesis

significance testing (NHST). As stated and convincingly discussed at the American Finance Associ-

ation president’s address by Harvey (2017), the issue with NHST is that hypothesis testing, which is

a significant tool used extensively in the finance literature, and its testing procedures are based on

the critical assumption that the null hypothesis is true, and the alternative hypothesis is indirectly

inferred. Furthermore, data dredging (known also as data snooping or p-hacking) might exist, and

thus dramatically increase the risk of false positive rates. This, in turn, necessitates the development

of a backtest under a Bayesian setting, where decision making is based on a measure of strength

rather than on a conditioned false positive rate, which as of yet, has not received much attention in

the literature.1

With the recent developments of Bayesian statistical techniques, there is an increasing motion

towards the use of a Bayesian decision framework in hypothesis testing. Bayesian testing began

when Berger and Sellke (1987) developed the idea of Bayes Factor (BF) to determine a ratio of

evidence, and recently, this idea has been extensively applied in different scientific fields. Another

method which we consider is the Bayesian Likelihood Ratio test developed by Li et al. (2014), who

introduce the idea of averaging the likelihood function over the posterior distribution, as opposed to

1For a review of the objectivity that Bayesians have to NHST (see, Harvey, 2017, pp. 1421–1422, and references
therein).
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the BF which averages over the prior distribution.2 These two methods are applied to the UC test

to facilitate testing under the Bayesian framework. Additionally, for completeness, we show how the

BF can be extended to the Independence and CC backtests.3 We then use the idea of backtesting in

annuity liabilities, and since our focus is on the long term longevity trend risk, a longevity stress test

scenario is developed accordingly. Under this setting, it is crucial that a suitable backtesting method

is identified to determine if the underlying longevity risks associated with a pricing instrument are in

fact captured by a mortality model. In essence, the backtesting procedure hinges on the outcome of

whether the specified mortality model will be able to produce forecasts such that obligated payments

from an annuity can be met with a probability of 99.5%.4

The paper is organised as follows. Section 2 presents the related literature in detail. Three dis-

tinctive contributions in the corresponding literature are presented in Section 3, and correspondingly,

Section 4 is then divided into three main parts. Specifically, in Section 4.1 and Appendix A, we

explain the estimation procedure of the Bayesian mortality models under a state-space representation

setting. We pay particular interest to the nonlinear dynamics when modelling death counts rather

than the crude mortality estimates. Further, Appendices A, B and C (see also, the extensive SI

provided) contain the empirical results of fitted LC and CBD models alongside the Bayesian forecast

with credible intervals used in the paper. In Section 4.2, and Appendices D and E, we focus on devel-

oping the VaR Bayesian backtesting framework for the novel UC, Independent and CC tests. Then, in

Section 4.3, we provide the Bayesian backtesting framework developed for longevity stressed scenarios

under an annuity calculation. In Section 5 and Appendix F, we determine clearly which mortality

model produces the most favourable results under a 99.5% longevity stressed scenario implementing

the Solvency II regulation. Finally, Section 6 concludes the paper.

2. Related Literature

Over the past few decades, the popularity of VaR has increased significantly among the financial

services industry for setting capital requirements for market risk measure. However, a risk measure

is only as good as it is able to accurately predict future risks accordingly, and thus, to measure the

accuracy needed when developing effective backtest procedures. These procedures should allow for

2Li et al. (2014) also show that this method has the advantage of being less sensitive across varying prior distributions.
3However, these tests will not be considered on the annuity pricing aspect, and a sequel paper will follow to assess

mortality models and their connection with longevity risks.
4Our focus is on the annuity with contingent payments based on the policyholders lifespan, however we should

emphasise here that the backtesting framework we develop can also be extended to measure accuracy of any type of
risk measures.
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the possibility to validate a risk measure given its out-of-sample forecasts and actual realized results

(Christoffersen and Pelletier, 2004), such as those found using VaR.5 By definition, the VaR is the q-

quantile of a Profit/Loss distribution, and a backtesting mechanism is used to determine whether the

required coverage q is indeed achieved. Although there has been a large emphasis on VaR forecasting

in the literature (e.g., Berkowitz and O’Brien, 2002, Glasserman et al., 2002, Christoffersen, 2009,

Nieto and Ruiz, 2016), the backtesting literature has since gained traction after the development

of the UC backtest by Kupiec (1995). In practice, the idea of backtesting as explained by Kupiec

(1995) is a type of “reality check” to identify whether risk measurement models are able to accurately

determine the risk exposures experienced. Also noteworthy are the extensions to the Kupiec (1995)

test, such as those from Christoffersen and Pelletier (2004) which aim at testing Independence of VaR

violations, a CC test which combines both the UC and Independence test jointly, a duration approach

in Christoffersen (2009), and consequently, Ziggel et al. (2014) and Wied et al. (2016) who aim to

improve these tests by applying a new procedure that hinges on Monte Carlo simulations.

Bayesian statistics allows for a rigorous framework in which one can incorporate parameter uncer-

tainty by choosing a prior for the parameter of interest. While many different methods can be used

to capture parameter uncertainty, the Bayesian estimation method comes naturally via the Bayes

theorem. In particular, with the inclusion of a prior and the combined data (or evidence), a pos-

terior distribution for the parameters can be produced. Recently, with the advancements of Bayesian

econometrics, the simulation of the posterior distribution can be obtained efficiently through Monte-

Carlo Markov-Chain (MCMC) type algorithms. In addition, by combining these algorithms with

the Extended Kalman Filter (EKF), we can efficiently sample the latent variables in block under

a state-space framework. For this reason, we employ a Bayesian state-space framework that treats

stochastic mortality models as state-space models (see Wang et al. (2020)). One major downfall with

using crude mortality rates as the measured variable is that it is itself estimated from observed death

counts and the total population (e.g., Pedroza, 2006, Kogure and Kurachi, 2010). Czado et al. (2005)

focus on modelling death counts using Bayesian estimation but not a state-space framework.

In 2016, Solvency II was established with the aim of ensuring that insurance companies meet

their obligatory payments. This regulation contains three pillars, and our focus in this paper is on

pillar 2, where it contains the risk based solvency requirements. Pillar 2 allows room for internal

5While VaR is a widely used risk measure in finance (Jorion, 2000), and in several decision-making processes in
general, other risk measures such as Stressed-trends, Expected Shortfalls, Conditional VaR, and an Extreme value
approach by Longin (2000) can also be backtested. The results presented in this study can be extended in several other
directions, however we will address them in our future research.
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models in terms of assessing the financial stability of the insurance company, they have the choice to

either use the capital requirements laid out by the supervisory regulators or to keep capital reserves

based on their own risk-based models (Hari et al., 2008). There has been a vast amount of research

undertaken in various aspects of the Solvency Capital Requirements (SCR) under the Solvency II

regulation6. However, since the SCR hinges on a VaR measure, there currently exists a void in

literature for backtesting VaR models under varying longevity stressed scenarios in tandem with

Article 101 of Solvency II. Little preliminary work has been conducted testing VaR measures with

longevity stressed scenarios. For example, Plat (2011) investigates whether or not longevity shock

based models used in Solvency II were able to capture the 99.5% VaR in an annuity portfolio. While

Plat (2011) utilizes the VaR measure, they neglect to tackle the issue of backtesting the actual risk

measure itself.

3. Contributions

Our paper contributes to the literature in three distinctive ways. Firstly, as of 2016, Solvency II

was established with the aim of ensuring that insurance companies meet their obligations to policy-

holders (e.g., Eckert and Gatzert, 2018).7 The idea behind this notion is that the company is required

to meet its obligation payments with a probability of 99.5% over 12 months (Hari et al., 2008). The

supervisory regulator uses a mortality shock based model which has been criticized, see for instance,

Plat (2011), for its over-estimation of longevity trend risk. Moreover, they apply risk measures such

as VaR and also longevity-trend stress test scenarios in order to evaluate the solvency capital require-

ment.8 In the present paper, we develop a Bayesian estimation method for modelling death counts

under a nonlinear state-space framework for the Lee and Carter (1992) (LC) and the Cairns et al.

(2006) (CBD) model, which are two commonly used mortality models in the corresponding literature,

by utilizing the EKF and MCMC techniques.

Secondly, we propose a new Bayesian framework for the VaR backtest. The Bayesian VaR backtest

contains many advantages in the realm of testing, it allows a measure of evidence towards one hypo-

thesis in comparison to another using direct inference, and there is no arbitrary type I error cut-off

6European Insurance and Occupational Pensions Authority (2014) Technical specification for the preparatory phase
(part I). https://eiopa.europa.eu/Publications/. Accessed 23 November 2020.

7This regulation contains three pillars, and our focus in this paper is on pillar 2, where it contains the risk based
solvency capital requirements.

8p. 122 of EIOPA (2014): Technical specification for the preparatory phase (part I): “The SCR should correspond
to the Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking subject to a confidence level
of 99.5% over a one-year period. The parameters and assumptions used for the calculation of the SCR reflect this
calibration objective.”
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point. Most importantly, using Bayes rule, we can obtain the probability of a hypothesis being correct

given the dataset. In this regard, we first state the assumptions used by the UC test, then develop

the Bayesian decision theoretic framework surrounding these assumptions. Most importantly, our

Bayesian VaR backtesting framework developed in this study is highly flexible and easy to implement

due to the Bayesian conjugacy property which allows a closed-form expression of the posterior. In

addition, in the case where Bayesian conjugacy does not exist, we employ recent econometric ad-

vancements in Bayesian estimation which also allows for numerical approximations such as MCMC

methods. Furthermore, as a robustness test, varying non-informative prior distributions were used to

ensure the decision is coherent. In addition we show how the Bayes Factor can be extended to the

Independence and CC backtest.9

Finally, we develop the idea of backtesting in annuity liabilities which has two main advantages

(Leung et al., 2018). Firstly, the backtesting framework allows us to measure the ability for mortality

models to capture longevity risk associated with the annuity itself. Secondly, it allows for the ability

to determine models most suitable for longevity risk applications.10 Our focus is on the long term

longevity trend risk, and in this case a longevity stress test scenarios would be most suitable. This

mainly stems from the fact that longevity trend risk exacerbates over a longer period, and as such

a one-year VaR would most likely be unsuitable. Thus, under a longevity stress trend scenario, it is

crucial that a suitable backtesting method is developed to determine if the underlying longevity risks

associated with a pricing instrument are actually captured by the mortality model used. Although

our focus is on the annuity with contingent payments based on the policyholders lifespan, we should

emphasise here that the backtesting framework we develop can also be extended to measure accuracy

of any type of risk measures.

4. Main results

4.1. Bayesian mortality state-space models, estimation and forecasting

Government interventions such as the introduction of Solvency II regulation has required insurance

companies to strictly manage their reserves to reduce the risk of insolvency. Thus it becomes a crucial

aspect for insurance services companies to not over- or under-compensate the required reserves which

9While we do not emphasize on the application of both these tests, it is still crucial as it forms a stepping stone for
combining Bayesian Decision Theory and VaR backtesting.

10More discussion about life annuities can be found in the Supplementary Information (SI) Section 1.
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is contingent on the underlying mortality assumptions. This is particularly important to pension pro-

viders where management of pension payments are crucially dependent on many risk factors including

longevity risk (e.g., Konicz and Mulvey, 2015). In this Section, we develop the Bayesian modelling

estimation11 and forecasting procedures for applying the new backtesting technique developed in the

previous section for the annuity liability experience in the insurance industry.

One of the more prominent models in mortality modelling is the Lee and Carter (1992) model,

which is commonly used as tool for mortality estimation and forecasting due to its simplistic model

nature (Debon et al., 2008). Another widely accepted mortality model is the Cairns et al. (2009)

model which offers accuracy of mortality rates for higher ages and non-age specific parameters. A

possible downfall of the estimation procedure is that it requires a two step approach: firstly, a point

estimation stage is produced, secondly a fitting stage is then conducted on the latent dynamics.

In this paper, we focus on a Bayesian estimation of both a linear variant of the LC and CBD

models, see details in Appendix A, and a nonlinear variant based on Poisson and Binomial distributed

death counts, respectively. A Kalman Filter alongside a Metropolis-Within-Gibbs sampler embedded

in a MCMC algorithm will be used as the benefits are twofold. Firstly, the Kalman Filter is a one-step

procedure and is able to retain the state dynamics without the need for an extra fitting procedure, and

secondly, we are able to retain the MCMC draws for posterior inference and parameter risk analysis.

Let µx(t) denote the force of mortality for an individual aged x at time t. Under the piecewise

constant force of mortality assumption we have:

µx+s(t+ s) = mx,t for 0 ≤ s < 1 and x ∈ N,

with qx,t = 1− e−mx,t , where qx,t represents the 1-year death probability for an individual aged x at

time t. Let us denote the crude central death rate and crude death rate as

m̃x,t =
dx,t
Ex,t

, q̃x,t = 1− e−m̃x,t , (4.1)

where dx,t is the number of deaths recorded at age x during year t, and Ex,t is the total population

at age x during year t. The n-year survival rate of a person aged x at time t can be calculated as

Sx,t(n) =

n∏
i=1

(1− qx+i,t+i) = exp

(
−

n∑
i=1

mx+i,t+i

)
. (4.2)

11Arguments and some necessary details about the Bayesian state-space model estimation procedure can be found in
SI Section 1.1.
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Let us assume x ∈ {x1, . . . , xn} and t ∈ {t1, . . . , tT }, where x1 represents the initial age of the dataset,

xn represents the ultimate age of our dataset, t1 represents the initial year, and tT corresponds to the

final year used, for simplicity we will represent t1 = 1, ..., tT = T , where T is the time horizon.

In the next section we will introduce the idea of MCMC and Bayesian model estimation, for more

information regarding a general Bayesian modelling framework see SI Section 1.1.

4.1.1. The Lee-Carter model

Let yx,t := ln(mx,t)
12, then the LC model assumes that the central mortality rate is governed by

the following process,

yt = α+ βκt + εt, (4.3)

where yt := {yx,t : x ∈ (x1, ..., xn)}; α′ := {αx : x ∈ (x1, ..., xn)} and β′ := {βx : x ∈ (x1, ..., xn)} are

age dependent variables, κt captures the time dynamics of the population common through all ages,

and εt ∼ N(0, Inσ2
ε). Here, In represents the n × n identity matrix and a random walk with drift

process is used to model the latent state dynamics to facilitate the state-space formulation,

κt = κt−1 + δ + ωt, (4.4)

where ωt ∼ N(0, σ2
ω) and δ represents the drift term of the process, furthermore ωt and εt are assumed

to be independent. It is shown in Lee and Carter (1992) that the parametrization in Eq. (4.3) is not

unique, which means that for a particular likelihood maximization there is an indefinite number of

solutions to the maximum likelihood estimate. To rectify this situation Lee and Carter (1992) imposed

the constraints,
∑xn

x=x1
βx = 1, and

∑T
t=1 κt = 0. In our case we also follow these constraints.13

For the Poisson model estimation under a nonlinear Bayesian state-space framework, we use a

Gibbs sampler, the EKF and a MH, embedded in an MCMC algorithm. Let us first assume that the

number of deaths Dx,t follows a Poisson distribution with rate Ex,tmx,t, where log(mx,t) is assumed

to be the standard LC model. We have,

P (Dx,t = dx,t) =
exp−Ex,tmx,t(Ex,tmx,t)

dx,t

dx,t!
,

12As the central mortality rate cannot be observed, we can instead model the crude central mortality rate given by
Eq. (4.1).

13For more information regarding the LC model, we refer to SI Section 1.2.
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log(Ex,tmx,t) =
[
NLα+ log(Ex,t) NLβ

] 1

NLκt

 ,
NLκt =NLκt−1 +NL δ +NL ωt, NLωt ∼ N(0,NL σ

2
ω).

Let our static model parameter vector be defined as ΘPLC = {NLα, NLβ, NLδ, NLσ
2
ω, NLσ

2
β}, then our

MCMC algorithm is as follows:

1. Initialise with Θ
(0)
PLC and NLκ

(0).

2. For i = 1, . . . ,M ,

(a) Apply the EKF using the function EKF-LC κt(NLα
(i−1), NLβ

(i−1), NLδ
(i−1), NL(σ

2
ω)(i−1))

to obtain NLκ
∗.

(b) Using the function MH-LC κt(NLκ
∗, NLκ

(i−1), NLα
(i−1), NLβ

(i−1), NLδ
(i−1), NL(σ

2
ω)(i−1))

sample NLκ
(i) from π(NLκ|Θ(i−1)

PLC ,y1:T ).

(c) Using the function MH-LC β(NLκ
(i), NLα

(i−1), NLβ
((i−1), NLδ

(i−1), NL(σ
2
ω)(i−1), (NLσ

2
β)(i))

sample NLβ
(i) from π(β|Θ(i−1)

PLC , NLκ
(i),y1:T ).

(d) Sample Θ
(i)
PLC from π(ΘPLC|NLβ(i), NLκ

(i),y1:T ).

A sample of the conditional distribution π(NLκ|ΘPLC,y1:T ) is obtained via a combination of the EKF

and the MH algorithm. The full MCMC algorithm is shown in Appendix B. To draw samples from

π(ΘPLC|NLκ(i)
1:tT

,y1:tT ), we assume the following conjugate prior distributions:

π(NLδ) ∼ N(µδ, σ
2
δ ),

π(NLσ
2
ω) ∼ I.G(aω, bω), π(NLσ

2
β) ∼ I.G(aβ, bβ)

π(NLαx) ∼ LogGamma(aα, bα), π(NLβx) ∼ N(µβ, σ
2
β) for x ∈ {(x1, ..., xn).

Non-informative priors were chosen to ensure the posterior distribution is mainly data driven. The

conditional posterior distribution for ΘPLC are as follows14:

π(NLαx|y, NLβ, NLκ) ∼ LogGamma(aα +
∑T

t=1 dx,t, bα +
∑T

t=1 Ex,t exp(NLβx NLκt)),

π(NLσ
2
β|y, NLβ) ∼ I.G

(
aβ + N

2 , bβ + 1
2NL
βNLβ

′),
π(NLδ|y, NLκ, NLσ

2
ω) ∼ N

(
(µδ NLσ

2
ω + σ2

δ

T∑
t=1

(NLκt − NLκt−1))(σ2
δ NLσ

2
ω)−1, (σ2

δ NLσ
2
ω)(Tσ2

δ + NLσ
2
ω)−1

)
,

π(NLσ
2
ω|y, NLκ, NLδ) ∼ I.G(aω + T

2 , bω + (NLκt − (NLκt−1 + NLδ))
2),

14For a derivation of the posterior distributions see Lemmas 1.1-1.5 (with their proofs) in SI Section 1.3.
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the sampling procedure for π(NLβx|y,NL κ,ΘPLC) was accomplished via a Random Walk MH algorithm

(see SI Algorithm 3).

4.1.2. The Cairns-Blake-Dowd model

The CBD model has a wide variety of applications ranging from actuarial pricing, longevity

derivative pricing and mortality predictions. Cairns et al. (2006) proposed to model the dynamics of

the true 1-year death rates as follows

qx,t =
eκ1,t+κ2,t(x−x̄)

1 + eκ1,t+κ2,t(x−x̄)
,

or equivalently

ln

(
qx,t

1− qx,t

)
= κ1,t + κ2,t(x− x̄), (4.5)

where x̄ = n−1
∑

i xi and the latent period factor κt := [κ1,t, κ2,t]
′ is a multivariate random walk with

drift process with non-trivial variance-covariance structure:

κt = θ + κt−1 + ωt, ωt ∼ N(0,Σ), (4.6)

where θ := [θ1 θ2]′ is the drift vector, and Σ is a 2× 2 covariance matrix.15

The Binomial model for the number of deaths is used for the CBD model due to its canonical link

with the generalized dynamic linear model in mortality modelling. Instead of using the crude death

rates, we use the observed number of deaths, and assume it follows a Binomial(n, p), with n = Ex,t,

p = qx,t, and logit(qx,t) as defined in Eq. (4.5). The nonlinear state-space framework is given as

follows:

P (Dx,t = dx,t) =

(
Ex,t
dx,t

)
qx,t

dx,t(1− qx,t)
Ex,t−dx,t ,

logit(qx,t) =
[
1 (x− x̄)

]NLκ1,t

NLκ2,t

 ,
NLκ1,t

NLκ2,t

 =

NLθ1

NLθ2

+

NLκ1,t−1

NLκ2,t−1

+

ω1,t

ω2,t

 ,
ω1,t

ω2,t

 ∼ N(0, NLΣ).

15For a more detailed analysis of the CBD model see SI Section 1.4.
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With the static model parameter vector ΘBCBD = {NLθ1, NLθ2, NLΣ}, the MCMC algorithm is as follows:

1. Initialise Θ
(0)
BCBD and κ

(0)
1:T .

2. For i = 1, . . . ,M ,

(a) Apply the EKF using the function EKF κt(NLθ
(i−1), NLΣ

(i−1)) to obtain κ∗.

(b) Using the function MH κt(κ
∗, NLκ

(i−1)
1:T , NLθ

(i−1), NLΣ
(i−1)) sample NLκ

(i)
1:T ∼ π(NLκ1:T |Θ(i−1)

BCBD,y1:T ).

(c) Sample Θ
(i)
BCBD from π(ΘBCBD|NLκ(i)

1:T ,y1:T ).

A sample from π(NLκ1:T |ΘCBD,y1:T ) can be obtained via an EKF with MH algorithm. To draw

samples from the posterior distributions, π(ΘBCBD|NLκ(i)
1:T ,y1:T ), we assume the following priors for

ΘBCBD:

π(NLθi) ∼ N(µθi ,Σθi), i = 1, 2,

π(NLΣ|(σ2
1, σ

2
2)) ∼ I.W

(
(ν + 2)− 1, 2ξdiag

(
1
σ2

1
, 1
σ2

2

))
,

π(σ2
k)

indep∼ I.G
(

1
2 ,

1
Ak

)
k = 1, 2.

Using the prior distributions described above, the posterior distributions for the static parameters

are given by:

π(NLθ|y, NLκ, NLΣ) ∼ N
(

(Σ−1
θ + nNLΣ−1)−1

(
Σθ

−1µθ + nNLΣ−1
∑T
t=1[NLκt −NL κt−1]

)
,
(
Σ−1
θ + TNLΣ−1

)−1
)
,

π(σ2
k|NLΣ)

i.i.d∼ I.G( ξ+T2 , ξ[NLΣ
−1]kk + 1

(Ak)2 ) for k ∈ (1, 2),

π(NLΣ|σ2
1, σ

2
2,y, NLκ, NLθ) ∼ I.W (ξ+T+n−1, 2ξdiag( 1

σ2
1
, 1
σ2

2
)+
∑T

t=1 [NLκt− NLθ] [NLκt− NLθ]′),

where [NLΣ
−1]kk denotes the (k, k) element of [NLΣ

−1]. Derivations of these posteriors are provided in

SI Appendix 1.5. Once again, the choice of a hierarchical prior for Σ is to circumvent the issue of the

inverse-wishart prior leading to a biased estimator for the correlation coefficient when the variances

are small. Details for the MCMC algorithm including EKF are provided in Appendix C.

4.1.3. K-step ahead forecasting

Under the Bayesian method of forecasting, we utilize our posterior draws which retain information

about our parameter uncertainty to produce our K-step ahead forecasts. The method to produce the

forecasts for the LC and CBD model varies in the dimension of the variance-covariance matrix and

drift term. Let us start by denoting k as the kth step ahead forecast, this is consistent with the notion

used in Algorithms 1 and 2. Furthermore, let m denote the mth iteration from the MCMC, where M

11



is the number of kept iterations after the burn-in period.16 For both Algorithms 1 and 2, the latent

Algorithm 1 Bayesian K step ahead forecasting for the LC model

1: for k = 1, ...,K do
2: for i = 1, ...M do

Linear
3: κiT+k ∼ N(κiT+(k−1) + δi, (σ2

ω)i)

4: log(m̃i
x,T+k) ∼ N(αix + βixκ

i
T+k(σ2

ε)i)
Nonlinear

5: NLκ
i
T+k ∼ N(NLκ

i
T+(k−1) + NLδ

i, (NLσ
2
ω)i)

6: mi
x,T+k = exp(NLα

i
x + NLβ

i
x NLκ

i
T+i)

7: end for
8: end for

Algorithm 2 Bayesian K step ahead forecasting for the CBD model

1: for k = 1, ...,K do
2: for i = 1, ...M do

Linear
3: κi

T+k ∼ N(κi
T+(k−1) + θi, (σ2

ν)i)

4: logit(q̃iT+k) ∼ N((x− x̄)κi
T+(k−1), (σ

2
ε)i)

Nonlinear
5: NLκ

i
T+k ∼ N(NLκ

i
T+(k−1) + NLθ

i, (NLσ
2
ν)i)

6: qiT+k =
exp((x−x̄)NLκ

i
T+k)

1+exp((x−x̄)NLκ
i
T+k

)

7: end for
8: end for

states are taken from the Forward Filtering Backward Sampling (FFBS) algorithm, where the model

static parameters are taken from Gibbs sampling at the mth iteration.17 The 10-year ahead mortality

forecasts for ages 50-90 in increments of 10 years over the years 2001 till 2010 was also produced.

For example, m(90, t) will correspond to the realised and forecasted mortality rate at age 90 for a

specified country between 1950 and 2010.

4.2. The new Bayesian Backtesting Framework

Financial risk model evaluation plays a major part in risk management and typically this evalu-

ation process is called a backtesting procedure, which aims to measure the accuracy of the risk models

promised coverage. For instance, a VaR model tries to define a conditional quantile (or coverage)

of the return distribution. To evaluate the effectiveness of the VaR model, we can backtest it and

determine whether the required coverage rate is met. This is usually accomplished by using ex-post

returns on ex-ante VaR forecasts. In this Section, we propose a new UC backtest for VaR-forecasts

16For the parameter estimation results and convergence statistics see SI Section 1.7.
17SI Section 1.7 shows a 10-step ahead forecast of κt from the LC model and κt from the CBD model.
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under a Bayesian framework which is a cornerstone of this paper. In addition, we also include the

formulation of the Independence and CC backtest under this same framework. However, our applic-

ation will be focussed on the UC backtest and further developments and application of the two other

backtests will be available for future research.

Before we proceed with the new UC backtest, let us consider two hypotheses, H0 and H1, that

we wish to test. Under the standard NHST framework, inference is normally conducted on P (y|H0),

however applying Bayes rule, we obtain the following relation:

π(Hi|y) =
P (y|Hi)π(Hi)

π(y)
, i = 0, 1,

where π(y) is the marginalizing constant to ensure π(Hi|y) is a proper probability distribution, and

finally the point of interest, the posterior odds ratio, is given by:

π(H0|y)

π(H1|y)
=
π(y|H0)π(H0)

π(y|H1)π(H1)
= BF01

π(H0)

π(H1)
, (4.7)

where BF01 = π(y|H0)
π(y|H1) is commonly referred to as the BF, and π(H0)

π(H1) is known as the prior odds. BF01

measures the change in evidence when going from prior to posterior odds. In the decision making

process where both hypotheses are given equal weighting, the testing framework focuses solely on

BF01, thus a higher positive value for BF01 implies π(H0|y) > π(H1|y), and concludes an increased

support for H0.

Consider now a point null hypothesis {H0 = θ0} and a composite alternative hypothesis {H1 6= θ0}.

The Bayesian framework then assigns a prior distribution over both hypotheses. Let y := {y1, ..., yn}

be a vector of n observations, the likelihood function of the observed data is given by l(y|θ), where θ

is the parameter of interest. Then, for a given prior, π(θ), our posterior distribution is given by

π(θ|y) =
l(y|θ)π(θ)

π(y)
. (4.8)

The prior specifications will be as follows: “under H0, we assign the (point mass) prior π(θ) = θ0,

whereas for H1, we assign a prior distribution over the parameter space required”. The decision to

accept H0 is denoted by “a0” and the decision against H0 is denoted by “a1”. Overall, for a given

loss function, L[ai; θ], i = 0, 1, H0 is rejected when the expected posterior loss for H0 is sufficiently

larger than the expected posterior loss under H1. The expected posterior loss for the ith decision is
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given by

Eπ(θ|y) [L(θ, ai)] =

∫
θ
L[ai; θ]π(θ|y)dθ, for i = 1, 2 (4.9)

and we will reject H0 when

∫
θ

(L[a0; θ]− L[a1; θ])π(θ|y)dθ > 0. (4.10)

If we choose to employ a zero-one loss function18

L[a0; θ] =


0 if θ = θ0,

1 if θ 6= θ0,

(4.11)

with L[a1; θ] = 1 − L[a0; θ]. Given equal probability of H0 and H1 occurring, that is π(H0) =

π(H1) = 0.5, we will have the following decisions to make. For the first decision, when θ = θ0, we

will accept H0 with decision a0, and the second decision, a1, occurs when θ 6= θ0. To tabulate the

decision outcome more formally:

Choose:


a0, if θ = θ0,

a1, if θ 6= θ0.

Combining Eqs. (4.9), (4.10) and (4.11), rejection of the H0 will occur when:∫
θ L[a0; θ]π(θ|y)dθ∫
θ L[a1; θ]π(θ|y)dθ

=
l(y|θ = θ0)∫
θ l(y|θ)π(θ)dθ

< 1, (4.12)

where the quantity l(y|θ=θ0)∫
θ l(y|θ)π(θ)dθ

is the BF01.19 Further, note that the marginalizing constant π(y)

from Eq. (4.8) disappears in Eq. (4.12), since it appears in both the numerator and the denominator.

The Bayesian version of the Likelihood Ratio Test (BLRT) was pioneered by Li et al. (2014), where

instead of having a 0−1 loss function which corresponds to BF01, they used a continuous loss difference

function, defined by

∆L[H0; θ] = −2 [log(π(y|θ0))− log(π(y|θ))] ,

18A zero-one loss function is a commonly chosen loss function used in Bayesian hypothesis testing, this is simply due
to its binary outcome, and is equivalent to either rejecting (a1) or accepting (a0), the null hypothesis.

19The range of values that BF01 can take, represents the different levels of evidence in support of the null or the
alternative hypothesis, in Table 1 of Goodman (2001) the strength of evidence against the null hypothesis for a given
BF is shown.
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under a continuous loss difference function, rejection of H0 occurs when

∫
θ

∆L[H0; θ]π(θ|y)dθ > 0,

and the Bayesian test statistic is given by

TBLRT(y, θ) =

[
−2

∫
θ

[log(π(y|θ0))− log(π(y|θ))]π(θ|y)dθ

]
+ 1. (4.13)

The main difference between the BLRT and BF01 is that the BLRT focuses on averaging over the

(log)posterior distribution, whereas BF01 averages over the prior distribution. Li et al. (2014) also

found that TBLRT(y, θ) has an asymptotic χ2(1)-distribution, and a convenient property of the BLRT

statistic is that if the integral in Eq. (4.13) has no analytical form, it can be approximated via an

MCMC,

TBLRT(y, θ) = −2
M∑
i=1

[
log(π(y|θ0))− log(π(y|θi))

]
/M + 1, (4.14)

where i represents the ith MCMC draw, and M corresponds to the number of MCMC iterations. In

either case, we can produce Bayesianised p-values via

p = P (χ2(1) ≤ TBLRT).

4.2.1. The Unconditional Coverage backtest

The statistical backtest for VaR developed by Kupiec (1995) tests whether a risk model truly

generated the correct coverage using the LRT. In this section, we formulate a novel approach of

the UC backtest using the Bayesian decision theoretic framework developed in the previous section.

Let y denote the daily observed asset or portfolio losses, yt, for t ∈ (1, . . . , T ), and the VaR as

P (yt ≥ V aRt|Ft−1
(p)) = p. To produce interval forecasts for each observation, we let Ut|Ft−1

(p)

denote the upper forecast interval produced for time t using information up until t− 1 with coverage

p. Let us define an indicator variable where,

Ip(t) =


1, if yt ∈ (−∞, Ut|Ft−1

(p))

0, otherwise,

(4.15)

for which Ft−1 corresponds to the information set Ft−1 := {Ip(1), . . . , Ip(t− 1)}.
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In laymen terms, if the observed daily losses, yt, is greater than the expected upper bound,

yt > Ut|Ft−1
(p), then we conclude that the VaR forecasts are violated at time t and we assign a value

of 1. Kupiec (1995) examines whether the average non-violations shown in Eq. (4.15) occurs at the

required coverage p, mathematically,

E

[
(1/T )

T∑
t=1

Ip(t)

]
= P (Ip(t) = 1) = p, ∀t. (4.16)

This also implies that each Ip(t) ∼ Be(p), where Be(p) represents the Bernoulli distribution with

probability p of success. Let Ip := {Ip(t) : t ∈ (1, ..., T )}, and let m1 and m0 denote the number of

one and zero occurrences in Ip, respectively. Then, Ip will be a vector of size T = m1 + m0. Our

aim is to determine whether or not E[Ip(t)] = p∗, for some predetermined probability p∗ and since,

Ip(t) ∼ Be(p) ∀t, the joint likelihood function will be given by,

l(I|p) = pm1(1− p)m0 . (4.17)

The Bayesian framework starts by assigning priors on p. Under the H0 : p = p∗ with an assigned

point mass prior. Under the alternative H1 : p 6= p∗, since p has a support between (0,1), we use a

Beta prior distribution which mimics the support between 0 and 1. Formally, let

π(p) =


1 if p = p∗,

Beta(a, b), if p 6= p∗.

The priors chosen here are non-informative and conjugate to the posterior, hence the posterior loss

distribution will be mainly data driven and have a closed form expression.20

Lemma 4.1. The BF for the UC backtest is given by,

BF01 =
(p∗)m1(1− p∗)m0

β(a+m1, b+m0)
,

where β corresponds to the β-function. For a proof of Lemma 4.1 see Appendix D.1. Then using the

derived BF01 from Eq. (4.1), the decision to reject the H0 will occur when,

BF01 =
(p∗)m1(1− p∗)m0

β(a+m1, b+m0)
< 1. (4.18)

20In this paper we will focus on the non-informative prior, however, subjective priors based on past history can also
be used to calibrate the hyper-parameters on the Beta(a,b) distribution.
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For the BLRT statistic, we can use Eq. (4.13) instead of the simulation method presented in Eq.

(4.14). The following Theorem provides an analytical form for the BLRT statistic for the UC backtest,

which is extremely useful in what follows.

Theorem 4.1. The analytical form for the BLRT statistic for the UC backtest is given by,

TBLRT(y, p) = −2[Aπ0 −Bπ1 ] + 1, (4.19)

where

Aπ0 = m1 log(p∗) +m0 log(1− p∗),
Bπ1 = m1(ψ(a+m1)− ψ(a+m1 + b+m0))−m0(ψ(b+m0)− ψ(a+m1 + b+m0)),

and ψ corresponds to the digamma function.

For a proof of Theorem 4.1 see Appendix D.2. Let CBLRT be determined using a required tail

significance from a χ2(1)-distribution, then the decision to reject H0 will occur when TBLRT(y, p) >

CBLRT. A more formal representation for the UC test outcomes is shown in Table 1.

Table 1: Criteria for the rejection or acceptance of the H0

Reject H0 Reject H1

BF01
(p∗)m1 (1−p∗)m0

β(a+m1,b+m0) ≤ 1 (p∗)m1 (1−p∗)m0

β(a+m1,b+m0) > 1

TBLRT TBLRT ≥ CBLRT TBLRT < CBLRT

Finally, a power analysis is included in Table 5 of Appendix E to demonstrate the consistency of

the Bayes Factor, and thus to support the adoption of the proposed test. We further provide a short

description and comments of the simulation outputs, see Appendix E.

4.2.2. The Independence Test

Christoffersen (1998) developed the independence test for VaR-violations in Ip, which is tested

against a first order Markov process. In this situation the chosen VaR coverage p∗ will be irrelevant

since the main focus is on the clustering of VaR violations and not their required coverage p∗. Let us

first consider the transition probability matrix representing a first order Markov process,

Π1 =


1− p01 p01

1− p11 p11

 , (4.20)
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here, pij = P (Ip(t) = i|Ip(t − 1) = j). In this case, VaR violations do indeed contain a Markovian

structure and hence we conclude that the violations occur dependently to each other. On the contrary,

an independent model would have a transition probability matrix governed by Eq (4.21). In essence,

the probability does not change if entering a “zero” state from either a “one” state or “zero” state.

Π2 =


1− p2 p2

1− p2 p2

 . (4.21)

A common choice in the Bayesian literature is to use the natural Dirichlet prior since it is often

used as a means of modelling transition probabilities. Let us define two different priors under each

hypotheses. First, denote α0 and α := {α0, α1}, both be the concentration parameter used in the

Dirichlet prior. Let

π(p) =


Dir(α0) if {p0 ∈ Θ0 : p0 = p1},

Dir(α), if {p0 ∈ Θ1 : p0 6= p1}.

Lemma 4.2. The BF for the Independence backtest is given by

BFInd
01 =

β(α0 + n00 + n10, α0 + n01 + n11)

β(α0 + n00, α1 + n01)β(α0 + n10, α1 + n11)
.

See Appendix D.2 for the proof of Lemma. 4.2.

4.2.3. The Conditional Coverage Test

The CC test is composed of both the UC test and the test for Independence. In this context, our

objective is to determine if violations occur independently and are identically distributed with the

specified level of probability of p∗. The test statistic for the CC test combines the null model from

the UC test and the alternative model from the test for Independence.

π(pi) =


1 if {p ∈ Θ0 : p0 = p1, p11 = p01 = p∗},

Dir(α), if {p0 ∈ Θ1 : p0 6= p1}.

Combining both BF01 and BFInd
01 we have,

π(y|p = p∗)∫
p6=p∗ l(y|p)π(p)dθ

=
(p∗)m1(1− p∗)m0∫

p1

∫
p0

1∏
i=0

1∏
j=0

p
nij
ij Dir (α) dp0dp1
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BFCC
01 =

(p∗)m1(1− p∗)m0

β(α0 + n00, α1 + n01)β(α0 + n10, α1 + n11)
. (4.22)

A summary table of the BF for the UC, Independence, and CC test is shown in Table 2.

Table 2: Bayes Factor for the UC, Independence, and CC Backtesting

BF

Unconditional Coverage Test (p∗)m1 (1−p∗)m0

β(m1+a,m0+b)

Independence Test β(α0+n00+n10,α0+n01+n11)
β(α0+n00,α1+n01)β(α0+n10,α1+n11)

Conditional Coverage Test (p∗)m1 (1−p∗)m0

β(α0+n00,α1+n01)β(α0+n10,α1+n11)

4.3. Annuity liabilities backtesting

To backest annuity liabilities, we apply a stress test procedure on the longevity trend with the aim

of capturing longevity risk. Our first step is to obtain an upper quantile liability estimate. This is

achieved by stressing the mortality forecasts at the lower quantile, which thus signifies improvements

in life expectancy (liability). Assume now we have a $1 continuously paid temporary annuity to a

person currently aged x for the next N years. Let the price of a zero coupon bond which matures in

n years be denoted as B(0, n), we then have the liability for a $1 annuity paid to a person aged x at

time t for the next N years to be,21

Lx(N) =
N∑
n=1

B(0, n)Sx,t(n). (4.23)

We intentionally choose to not use market based annuity rates since besides longevity risk the premium

will include company dependent factors such as profits and expenses. Eq. (4.23) will only be affected

by longevity improvements over time and as such allows us to focus on longevity trend risk. Let

N = ω−x, where ω is our limiting age. Using a set of mortality forecast intervals, a mean and upper

bound on Lx(N) can be obtained. Denote the mean of Lx(N) as Lmean
x (N) = E[Lx(N)] and the

upper bound as Lupper
x (N), where Lupper

x (N) is the liability calculated at the required VaR quantile

p∗.22 Furthermore, the capital requirement is a ratio which determines the extra capital amount

21Here, B(0, n) := ( 1
1+i

)n

22It is calculated using a (1 − p∗) quantile of the mortality forecasts since a lower quantile estimate of mortality
represents an increase of the annuity liability.
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needed to be held at time t for someone aged x. It is determined using,

CapR =

(
Lupper
x (N)

Lmean
x (N)

− 1

)
× 100%. (4.24)

The capital requirement ratio allows us to determine the percentage of extra capital needed to achieve

the p∗ quantile of annuity liabilities compared with its mean.

The idea of backtesting in the context of annuity pricing is to determine whether the stressed

longevity scenarios were enough to capture the experienced liability over a required forecast time

horizon. Our objective is to then test whether the “hits” (when I = 1) follows a Be(p∗) distribution,

where p∗ represents the quantile of interest. A backtesting procedure using BF and BLRT test statistic

shown in Eqs. (4.18) and (4.19) can be used to determine the strength of evidence for the null and

alternative models. This procedure statistically examines whether the frequency of exceptions for

N -year annuity liabilities is in line with the regulations of Solvency II. That is, whether companies

are able to hold reserves capable of sustaining the liabilities in the long term. In this section we

define “long term” to be capped at ω years, however this assumption can be relaxed. Let j represent

either varying countries analysed or a separate male/female population. Then, denote jL
∗
x(N) for

x ∈ (x1, ..., xn) as the sample path of realised liabilities. Let us create an indicator variable, Ijx where

for a given interval forecast (−∞, jLupper
x (N)), we have

Ijp(x) =


1, if jL

∗
x(N) ∈ (−∞, jL

upper
x (N)),

0, if jL
∗
x(N) /∈ (−∞, jL

upper
x (N)).

(4.25)

We wish to test whether Ip(x) ∼ Be(p∗). Let Ip∗ := {Ijp(t) : j ∈ (1, ..., J), x ∈ (x1, ..., xn)}, and let

m1 and m0 denote the number of one and zero occurrences in Ip∗ respectively. Then Ip∗ will be a

vector of size T = m1 +m0, and the joint likelihood function will be given by,

l(Ip|p) = pm1(1− p)m0 . (4.26)

We assign the point mass prior under H0 : p = p∗ and under the alternative H1 : p 6= p∗ we use a

Beta(a,a) uninformative prior distribution. Let

π(p) =


1 if p = p∗,

Beta(a, a), if p 6= p∗.
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with,

BF01 =
(p∗)m1(1− p∗)m0

β(a+m1, a+m0)
.

For the BLRT statistic we find TBLRT(y, θ) = −2[Aπ0−Bπ1 ]+1 as defined in Eq. (4.19). Furthermore,

we can also back-solve BF01 to obtain an implicit p̂, which represents the true frequency rate implied

by the model. p̂ can be found by:

p̂ = min
p∈(0,1)

(p)m1(1− p)m0

β(a+m1, b+m0)
. (4.27)

5. Empirical results

In this section, we compare the results obtained from estimating the LC and the CBD models

under the linear and nonlinear variants. We used the Human Mortality Database for the total

population aged between 50 and 95 of the following list of countries: Australia, United Kingdom,

Italy, France, Spain, New Zealand, Sweden, Germany, and Russia. For countries where the mortality

data does not date back to 1950, the earliest year was used instead. A total of 20, 000 MCMC

iterations are conducted, and the first 5, 000 was used as the burn-in period. Hyper-parameters were

chosen to be non-informative, such that our posterior distribution will be mainly data driven. The

hyper-parameter specifications are shown in SI Table 1, and they were identical for all countries. The

Geweke statistic is a tool used in Bayesian statistics to determine whether the last iterations of the

MCMC draws from the full conditional posteriors are different from the first half of the iterations, if

there is no statistical evidence of a difference we say that the chain has reached a stationary state.

The Geweke Statistic shown in SI Tables 2 to 19, indicate that most parameters reached a stationary

state with a 95% confidence. Furthermore, the trace-plots shown in SI Figures 10 and 11 indicate no

apparent signs of serial correlation, once again confirming our hypothesis that the chain has reached

convergence.23

In order to generate our out-of-sample forecasts, we use ages x1 = 50 to xn = ω−1 = 95, where the

period of interest spans from 2001 to 2013. The forecasts are obtained using the methods described in

section 4.1.3 applied to J = 9 different countries. Using these forecast intervals we obtain the following

set: {(jLmean
x (N), jL

upper
x (N)) : j ∈ (1, ..., J), x ∈ (x1, ..., xn)}, where jL

upper
x (N) is calculated using

the p∗ = 0.5% quantile of the mortality forecasts24 applied to Eq. (4.2), and thus would represent the

liability estimated at the upper 99.5% quantile.

23For more details on the LC and CBD parameter implications see SI Section 1.6.1.
24A lower quantile estimate of mortality forecast represents an increase of the annuity liability.
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Table 3: Comparison of the MAPE forecast measure under the Bayesian nonlinear model against the frequentist 2-step
estimation averaged across all countries used.

Mean Absolute Percentage Error under the CBD model

Age Group 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-95

Bayesian 1.95 1.48 1.03 1.36 2.38 2.54 2.18 1.25 0.297
Frequentist 2.13 1.54 1.25 1.85 2.54 2.37 1.39 0.694 1.45

Mean Absolute Percentage Error under the LC model

Age Group 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-95

Bayesian 1.68 1.79 2.08 2.24 1.94 1.22 1.02 0.72 0.69
Frequentist 1.73 2.04 2.20 2.29 1.75 1.23 1.05 0.88 0.85

(a) CBD model (b) LC model

Figure 1: MAPE measured over a 13 year forecast horizon under the CBD and LC model. The horizontal axis
corresponds to the MAPE across ages and the vertical axis corresponds to the MAPE averaged across all countries.
The red dotted line corresponds to the nonlinear Bayesian estimation and the blue dotted line represents the two-step
frequentist approach.

To determine whether our new Bayesian nonlinear estimation methods produce plausible results,

we compare them against the commonly used two-step frequentist estimation method. We use the

“R” package StMoMo (Millossovich et al., 2017) to obtain frequentist forecasts, and in order to retain

the non linearity estimation we used the Binomial and Poisson link functions for the CBD and LC

model respectively. To test whether our proposed Bayesian nonlinear estimation benefits from the

classical approach, we consider the Mean Average Percentage Error (MAPE) forecast measure. While
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many forecast measures exist, see for instance (Dowd et al., 2010), the MAPE measure is among the

most popular within the actuarial literature and in particular, Leung et al. (2018) uses it in the

Bayesian linear context. The MAPE measure is given by:

MAPE =
1

T

T∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ , (5.1)

where At and Ft correspond to the realised and forecasted mortality rates at time t. Table 3 shows

the Average of MAPE across all countries and we observe that under the CBD model our proposed

method performs significantly better at the earlier and higher age groups, whilst the frequentist

method outperforms in the age brackets 75-79, 80-84 and 85-89. Furthermore, under the LC model

specification, our method performs better across all age groups barring 70-74. Figure 1 compares

the MAPE across all ages, and we observe that the red dots, corresponding to our proposed method,

are mostly lower than the blue dots representing the frequentist estimation. This further emphasizes

that our proposed methods seems to perform better at earlier and later age groups.

Figures 2 and 3 represent the percentage of extra capital required for a 99.5% longevity stressed

scenario. It is interesting to note that the linear and nonlinear variant of the LC model produced

similar capital requirements and average difference across all countries for the realised annuity and

99.5% upper bound. Whereas on the contrary, the nonlinear CBD model produced largely varying

results. The graph for the extra capital amount shows that the linear CBD model requires a larger

amount for all ages when compared with its nonlinear counterpart. Furthermore, we see that the

average difference across all ages shows that it peaks for the higher age groups, indicating that the

linear CBD model overestimates the upper 99.5% annuity price. The findings can be summarized

as follows. Firstly, the linear and nonlinear LC models show similar structures in the extra capital

required and average difference of the upper annuity liability compared with the realised one, thus not

much difference can be seen between the two models. The linear CBD model seems to over estimate

the annuity liabilities and hence has the highest peak for the average difference curve, this is also

reflected in the larger extra capital required to ensure that a 99.5% of the annuity obligation can be

met.

To backtest the liabilities, we assign the point mass prior H0 : p = p∗ = 0.5% and the Beta(0.5,0.5)

uninformative prior distribution for H1 : p 6= p∗ 6= 0.5%. For the BLRT statistic we find TBLRT(y, θ) =

−2[Aπ0−Bπ1 ]+1 with p∗ = 0.5%, a = 0.5, and b = 0.5. Table 6 in the Appendix shows the violations

across age groups and countries, and also the extra capital required and differences from realised
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(a) Average over countries of the Percentage
of extra capital required across ages 50− 95.

(b) Average difference of Realised annuity and
the upper 99.5% predicted annuity liability
across ages 50 − 95 under both Lee-Carter
model variants

Figure 2: LC model

(a) Average over countries of the Percentage
of extra capital required across ages 50− 95.

(b) Average difference of Realised annuity and
the upper 99.5% predicted annuity liability
across ages 50 − 95 under both CBD model
variants

Figure 3: CBD model
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annuity liability.25

Table 4 contains the BF and BLRT statistic for each variant of the LC and CBD model by

tallying the “ones” from Appendix Table 6. A higher value for BF01 represents evidence favouring

H0, meaning that indeed the violations occur at frequency of p∗. For values smaller than 1, it shows

evidence towards H1, that violations do not follow a frequency of p∗. For the BLRT statistic, we

compare it against the χ2-distribution with 1 degrees of freedom. At the 5% region, the critical

value (CBLRT) is 2.841. A variety of prior specifications was conducted as a means of robustness

check, however the goal of choosing a diffuse prior still applies. Besides the Beta(0.5,0.5) distribution

corresponding to Jeffreys Prior, the Beta(ε̄,ε̄) known as Haldane’s prior and the Neutral-Information

(NI) Beta(1
3 ,1

3) prior was also used.26

Table 4: Derived BF and BLRT under the linear and nonlinear LC and CBD models across varying prior hyper-parameter
specifications.

LC model

Linear Nonlinear

Hyper-Parameters Haldanes-Beta(ε̄,ε̄) NI-Beta(1
3 , 1

3) Jeffreys-Beta(0.5,0.5) Haldanes-Beta(ε̄,ε̄) NI-Beta(1
3 , 1

3) Jeffreys-Beta(0.5,0.5)

Bayes Factor 8.472522× 10−09 2.556865× 10−08 4.431379× 10−08 2.8695× 10−06 9.2722× 10−09 1.6618× 10−05

BLRT 37.0473 37.0613 37.0635 25.1922 25.2094 25.2120
p̂ 0.039 0.039 0.039 0.031 0.031 0.031

CBD model

Linear Nonlinear

Hyper-Parameters Haldanes-Beta(ε̄,ε̄) NI-Beta(1
3 , 1

3) Jeffreys-Beta(0.5,0.5) Haldanes-Beta(ε̄,ε̄) NI-Beta(1
3 , 1

3) Jeffreys-Beta(0.5,0.5)

Bayes Factor 0.0000 0.3492 1.4415 0.5394 3.3818 8.2784
BLRT 5.1504 4.4837 4.1510 -0.0790 0.0350 0.0430
p̂ NA NA NA 0.005 0.005 0.005

In Table 4, the outcomes of both test statistics and p̂ is shown. Both the LC models are presented

with a rejection of H0 under the BF and BLRT, meaning that a frequency of p∗ was rejected. In

particular since the BF can be compared between models, we see that the nonlinear version of the

LC model presents a stronger model compared with its linear variant due to its larger BF, with its

resulting p̂ closer to p∗. The nonlinear CBD model performed the best out of the group, this can

be seen from the BF and BLRT statistic giving evidence for H0 and the BF being the largest of the

models. Its implicit p̂ of 0.005 in Table 4 also shows that the model achieved the correct mortality

coverage. It is interesting to note that although the linear CBD model was not able to achieve the

correct coverage, it was due to it having no violations across all countries and ages. This meant

that the linear CBD model overestimated the mortality rate and was able to capture the realised

longevity liability in all cases. From a pricing perspective, although the linear variant of the CBD

25For the full table of results see SI Section 2.
26Here, ε̄ represents a small positive real number (ε̄ ∈ R+).
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model captured all realised liabilities under its mortality forecasts, the liability estimates over the

long run would over compensate for more than 0.5% under the longevity stress trend scenario. In a

scenario where we are trying to minimize the capital required in order to achieve a 0.5% coverage, the

nonlinear CBD model out-performed all models. With varying prior specifications, the test outcomes

stayed mostly consistent. Under Jeffreys prior, the linear CBD model also seems to fail to reject the

H0 hypothesis, however if we compare that to the nonlinear CBD model, failure to reject the H0

is more than 8 times more likely. As pointed out by Li et al. (2014), the BLRT seems to have the

least deviations with prior changes, mainly due to its loss function being averaged over the posterior

rather than the prior distribution as in the BF. Furthermore, as seen in our current application,

the data obtained does not follow a time series. However, if we were to use time series such as

(monthy) mortality data from one specific country, we could use the Independence or CC tests to

detect mortality cohort effects.

6. Conclusion

The work in this paper contributes to three gaps in the literature. Firstly, parameter uncertainty

is of particular importance when undergoing analysis in risk management. While there are many

methods for capturing parameter uncertainty, the Bayesian estimation method comes naturally via

Bayes theorem. In addition, we impose the Poisson and Binomial nonlinear Bayesian state-space

framework for the LC and CBD models in which we efficiently sample the latent variables in block.

We showed that we are able to achieve efficient simulation of the posterior by utilizing both the EKF

and MH step within the MCMC. Lastly, we utilized tools from Bayesian decision theory to determine

test outcomes from the UC test and as an application we used annuity liabilities in a longevity stressed

scenario from two prominent mortality models, the LC model and CBD model.

Secondly, there has been a wide range of VaR backtesting procedures established to evaluate

certain VaR models. One example is the UC test by Kupiec (1995) which aims to find whether

VaR violations occur at the correct VaR coverage. Other examples are the Independence and CC

tests proposed by Christoffersen (1998). In this regard, we develop a novel approach to backtesting

under the Bayesian paradigm which can be an excellent tool for decision and policy makers and its

demonstrated effectiveness establishes the foundations for a much broader area of applications.

As a natural extension of our work, one could consider the multivariate version of our newly

proposed backtest which would have to account for possible correlations in VaR-violations across

different types of annuities and time. Moreover, we want to extend the tests for i.i.d. VaR-violations,
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and of course, for conditional coverage to annuity pricing under the same Bayesian decision theoretic

framework. As a result in doing so, we could propose new means to determine cohort effects through

the detection of consecutive VaR violations. As these issues are beyond the scope of the present

paper, we will address them in our future research.
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Appendix A Linear variants of the LC and CBD model

A.1 Linear variant of the LC model

The LC model in linear state-space form is given by

yt =α+ βκt + εt, εt ∼ N(0, Inσ2
ε) (A.1)

κt =κt−1 + δ + ωt, ωt ∼ N(0, σ2
ω), (A.2)

with the static model parameter vector ΘLC = {α,β, δ, σ2
ω, σ

2
ε}. Recall that in the Bayesian setting,

our aim is to draw samples from the joint posterior density π(κ1:T ,ΘLC|y1:T ), using Gibbs sampling,

our MCMC procedure consists of

1. Initialise Θ
(0)
LC and κ

(0)
1:T .

2. For i = 1, . . . ,M ,

(a) Sample κ(i) from π(κ|Θ(i−1)
LC ,y1:T ).

(b) Sample Θ
(i)
LC from π(ΘLC|κ(i),y1:T ).

A sample of the conditional distribution π(κ|ΘLC,y1:T ) can be obtained via forward-backward sampling

using Kalman filtering (Carter and Kohn, 1994). To draw samples from π(ΘLC|κ,y1:T ), we assume

the following conjugate prior distributions:

π(δ) ∼ N(µθ, σ
2
θ),

π(σ2
ε) ∼ I.G(aε, bε)

27, π(σ2
ω) ∼ I.G(aω, bω)

π(αx) ∼ N(µα, σ
2
α), π(βx) ∼ N(µβ, σ

2
β) for x ∈ {(x1, ..., xn).

The prior distributions were chosen such that when multiplied by the likelihood function, the resulting

posterior distribution will be of the same family; this is known as the conjugacy property and it

facilitates the Gibbs sampling procedure. In the case where no conjugacy is involved, the Metropolis-

Hastings (MH) algorithm can be applied. The full conditional posterior distribution for ΘLC are as

follows28:

π(αx|y,κ,β, σ2
ε) ∼ N

(
µασ

2
ε + σ2

α

T∑
t=1

(yx,t − βxκt)(σ2
αT + σ2

ε)
−1, (σ2

αT + σ2
ε)(σ

2
ασ

2
ε)
−1

)

π(βx|y,κ,α, σ2
ε) ∼ N

(
(µβσ

2
ε + σ2

β

T∑
t=1

(yx,t − αx)κt)(σ
2
β

T∑
t=1

(κ2
t + σ2

ε))
−1, (σ2

βσ
2
ε)(σ

2
β

T∑
t=1

(κ2
t + σ2

ε))
−1

)

27I.G. represents the Inverse Gamma distribution hereafter.
28For a full derivation of posterior parameters and MCMC algorithm see Fung et al. (2017).
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π(σ2
ε |y,κ,β,α) ∼ I.G(aε + Tn

2 , bε + 1
2

T∑
t=1

xn∑
x=x1

(yx,t − (αx + βxκt))
2)

π(δ|y,κ, σ2
ω) ∼ N

(
(µδσ

2
ω + σ2

δ

T∑
t=1

(κt − κt−1))(σ2
δσ

2
ω)−1, (σ2

δσ
2
ω)(Tσ2

δ + σ2
ω)−1

)
π(σ2

ω|y,κ, δ) ∼ I.G(aω + T
2 , bω + (κt − (κt−1 + δ))2)

A.2 Linear variant of the CBD model

Since the true death probabilities, qx,t, are unobservable, we can instead model the observable

crude death probabilities, q̃x,t, estimated using Eq. (4.1), which allows the CBD model to directly

follow a linear structure shown in Eqs. (4.5) and (4.6). For convenience, let ΘCBD = (θ1, θ2, σ
2
ν ,Σ) de-

note the static parameter vector for the CBD model in Eq. (4.5) and with the introduction of an error

component. Let yx,t := ln(q̃x,t/(1− q̃x,t)), then the CBD model in linear state-space representation is

given by 
yx1,t

...

yxn,t

 =


1 (x1 − x̄)
...

...

1 (xn − x̄)


κ1,t

κ2,t

+


νx1,t

...

νxn,t

 ,

νx1,t

...

νxn,t

 ∼ N(0, Inσ2
ν), (A.3)

κ1,t

κ2,t

 =

θ1

θ2

+

κ1,t−1

κ2,t−1

+

ω1,t

ω2,t

 ,
ω1,t

ω2,t

 ∼ N(0,Σ), (A.4)

where In represents the n × n identity matrix. Eqs. (A.3) and (A.4) correspond to the measure-

ment equation and the state equation respectively. A measurement error term, νx,t, was included in

Eq. (A.3) to facilitate the linear Gaussian state-space model estimation. Since model (A.3) and (A.4)

belongs to the class of linear and Gaussian state-space models, we can perform MCMC estimation of

the model utilizing a multivariate Kalman filter. Similar to the case in the LC model, our aim is to

draw samples from the joint posterior density π(κ1:T ,ΘCBD|y1:T ) using Gibbs sampling which is as

follows:

1. Initialise Θ
(0)
CBD and κ

(0)
1:T .

2. For i = 1, . . . ,M ,

(a) Sample κ
(i)
1:T from π(κ1:T |Θ(i−1)

CBD ,y1:T ).

(b) Sample Θ
(i)
CBD from π(ΘCBD|κ(i)

1:T ,y1:T ).

A sample from π(κ1:T |ΘCBD,y1:T ) can be obtained via a multivariate forward-backward sampling.

To draw samples from the full conditional posterior distributions, we assume the following priors for

ΘCBD,
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π(σ2
ν) ∼ I.G(aν , bν), π(θi) ∼ N(µθi ,Σθi), i = 1, 2,

π(Σ|(σ2
1, σ

2
2)) ∼ I.W

(
(ν + 2)− 1, 2ξ diag

(
1
σ2

1
, 1
σ2

2

))
,

π(σ2
k)

indep∼ I.G
(

1
2 ,

1
Ak

)
, k = 1, 2,

where I.W corresponds to the Inverse Wishart distribution, Ak are hyper-parameters, and the nota-

tion
indep∼ corresponds to “independently distributed”. For more information on the MCMC algorithm

and posterior derivations, see Leung et al. (2018). Using the prior distributions described above, the

posterior distributions for the static parameters are given by:

π(σ2
ν |y,κ1:T ) ∼ I.G(aν + Tn

2 , bν + 1
2

T∑
t=1

xn∑
x=x1

(yx,t − (κ1,t + (x− x̄)κ2,t))
2),

π(θ|y,κ1:T ,Σ) ∼ N
(

(Σ−1
θ + nΣ−1)−1

(
Σθ
−1µθ + nΣ−1

∑T
t=1[κt − κt−1]

)
,
(
Σ−1
θ + TΣ−1

)−1
)

,

π(σ2
k|Σ)

i.i.d∼ I.G( ξ+T2 , ξ[Σ−1]kk + 1
(Ak)2 ) for k ∈ (1, 2),

π(Σ|σ2
1, σ

2
2,y,κ1:T ,θ) ∼ I.W (ξ + T + n− 1, 2ξdiag( 1

σ2
1
, 1
σ2

2
) +

∑T
t=1 [κt− θ] [κt− θ]′),

where [Σ−1]kk denotes the (k, k) element of [Σ−1]. Derivations of these posteriors are provided in SI

Section 1.5. The choice of a hierarchical prior for Σ is to circumvent the issue of the Inverse-Wishart

prior leading to a biased estimator for the correlation coefficient when the variances are small.29

Appendix B MCMC Algorithm for the Lee-Carter Poisson model

(i) Set initial values for the parameter vector (α0, β0,κ0, δ0, (σ2
ω)0, (σ2

β)0).

(ii) Conditional on (α(i−1), β(i−1), δ(i−1)), apply the EKF and Backward Smoother shown in Al-

gorithm 1 of SI to obtain κ∗ as the candidate for step (iii).

(iii) Simulate κ(i) using the MH step for κt shown in Algorithm 2 of SI, the candidate draw is taken

from step (ii) to obtain the density f∗ and κ(i−1) is used to compute the density f .

(iv) Simulate β(i) using the MH step for βx shown in Algorithm 3 of SI.

(v) Drawα(i) from the transformed posterior LogGamma(aα+
∑

t dx,t, bα+
∑

t Ex,t exp(β
(i−1)
x κ

(i−1)
t )).

(vi) Draw δ(i) from its posterior distributionN(µ, σ2), with µ = 1/( 1
100+ T−1

(σ2
ω)(i−1) )(1/((σ2

ω)(i−1)))
∑

t(κ
(i)
t −

κ
(i)
t−1) and, σ2 = ( 1

100 + T−1
(σ2
ω)(i−1) )(1/(σ2

ω)(i−1)).

29For more details the reader is referred to Section 2 of Leung et al. (2018).
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(vii) Draw (σ2
β)(i) from its posterior distribution I.G(aβ + n/2, bβ + (1/2)ββ′).

(viii) Draw (σ2
ω)(i) from I.G(aω + (T − 1)/2, bω + (1/2)

∑
t((κ

(i)
t − κ

(i)
t−1)− δ(i))2).

(ix) Conditional on κ(i),α(i),β(i−1), (σ2
ω)(i), (σ2

β)(i), simulate β(i) using Algorithm 3 with tuning

parameter σ2
x.

Appendix C MCMC Algorithm for the CBD Binomial model

(i) Set initial values for the parameter vector (κ0
1,κ

0
2, θ

0, Σ0).

(ii) Conditional on (θ(i−1), Σ(i−1)), apply the EKF and Backward Smoother shown in Algorithm 4

of SI to obtain κ∗ as the candidate for step (iii).

(iii) Simulate κ(i) using the MH step for κ shown in Algorithm 5 of SI. The candidate draw, κ∗, is

taken from step (ii) to obtain the density f∗ and κ(i−1) is used to compute the density f .

(v) Draw θ(i) from its posterior distribution π(θ(i)|y,κ(i)
1 ,κ

(i)
2 ,Σ(i−1)).

(vi) Draw Σ
(i)
kk from its posterior distribution π(Σ

(i)
kk |y,κ

(i)
1 ,κ

(i)
2 ,θ(i)) for k ∈ 1, 2.

(vii) Draw Σ(i) from its posterior distribution π(Σ
(i)
ω |Σ(i)

kk ,y,κ
(i)
1 ,κ

(i)
2 ,θ(i)).

Appendix D Bayesian Testing

D.1 Proof of Lemma 4.1

When testing two hypotheses, H0 and H1, where H0 is a point null hypothesis and H1 is a

composite hypothesis, the BF is given by:

l(y|θ = θ0)∫
θ π(y|θ,H1)π(θ|H1)dθ

.

Under the UC backtest assumptions, the sequence of ones and zeros are assumed to follow a Bernoulli

distribution, hence the likelihood function for the data corresponds to

l(I|p) =
m∏
i=1

pyi(1− p)1−yi = pm1(1− p)m0 ,

where m is the number of data points, m1 represents the number of “ones” in the data, likewise m0

corresponds to the number of “zeros”. The null hypothesis is defined as p = p∗ for a given p∗, and
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the alternative hypothesis as p 6= p∗. With the following prior specifications for p:

π(p) =


1 if p = p∗,

Beta(a, b), if p 6= p∗.

We derive an analytical form for the BF due to the conjugate property of the Beta-Binomial distri-

bution, i.e.,

l(y|p = p∗)∫
p 6=p∗ l(y|θ)π(θ)dθ

=
(p∗)m1(1− p∗)m0∫

p 6=p∗ p
m1(1− p)m0Beta(a, b)dp

=
(p∗)m1(1− p∗)m0

β(m1 + a,m0 + b)
∫
p 6=p∗

pm1+a−1(1−p)m0+b−1

β(m1+a,m0+b) dp

=
(p∗)m1(1− p∗)m0

β(m1 + a,m0 + b)
.

D.2 Proof of Theorem 4.1

To derive the analytical form for the BLRT for the UC test, we begin with the test statistic,

TBLRT(y, θ) =− 2


∫
θ

log(l(y|θ0))π(θ|y)dθ︸ ︷︷ ︸
(1)

−
∫
θ

log(l(y|θ))π(θ|y)dθ︸ ︷︷ ︸
(2)

+ 1.

Here, it can be shown that integral (1) can be decomposed to the following:

∫
θ

log(l(y|θ0))π(θ|y)dθ =

∫
θ

log((θ∗)m1(1− θ∗)m0)
θa+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ

=m1 log(θ∗) +m0 log(1− θ∗).

(D.1)

Now, expanding integral (2), we have:

∫
θ

log(l(y|θ))π(θ|y)dθ =

∫
θ

[m1 log(θ) +m0 log(1− θ)] θ
a+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ.

∫
θ
m1 log(θ)

θa+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ =

m1

β(a+m1, b+m0)

∫
θ

log(θ)θa+m1−1(1− θ)b+m0−1dθ
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=
m1

β(a+m1, b+m0)

∫
θ

∂θa+m1−1

∂a
(1− θ)b+m0−1dθ

=
m1

β(a+m1, b+m0)

∂β(a+m1, b+m0)

∂a

=
m1∂ log(β(a+m1, b+m0))

∂a

=
m1∂ log(Γ(a+m1))

∂a
− m1∂ log(Γ(a+m1 + b+m0))

∂a

=m1(ψ(a+m1)− ψ(a+m1 + b+m0)).

(D.2)

∫
θ
m0 log(1− θ)θ

a+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ =

∫
θ
m0 log(1− θ)θ

a+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ

=
m0

β(a+m1, b+m0)

∫
θ

log(θ)θa+m1(1− θ)b+m0dθ

=
m0

β(a+m1, b+m0)

∫
θ

∂θa+m1−1

∂a
(1− θ)b+m0−1dθ

=
m0

β(a+m1, b+m0)

∂β(a+m1, b+m0)

∂a

=
m0∂ log(β(a+m1, b+m0))

∂a

=
m0∂ log(Γ(a+m1))

∂a
− m1∂ log(Γ(a+m1 + b+m0))

∂a

=m0(ψ(b+m0)− ψ(a+m1 + b+m0)).

(D.3)

Combing Eqs. (D.1), (D.2), and (D.3), we retrieve the analytical form for the BLRT statistic.

TBLRT(y, θ) = −2[m1 log(θ∗) +m0 log(1− θ∗)− (m1(ψ(a+m1)− ψ(a+m1 + b+m0))+

m0(ψ(b+m0)− ψ(a+m1 + b+m0)))] + 1, (D.4)

as required.

D.3 Proof of Lemma 4.2

Let the Multinomial data generating process be defined as,

f(I|P ) =

1∏
i=0

1∏
j=0

p
nij
ij ,
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where nij corresponds to the number of times a transition from state i to state j occurred. Let P be

the transition matrix, with elements pij for i, j = (0, 1) being the transition probability from state i

to state j. We impose the Dirichlet prior on pij for i, j = (0, 1), as it is a natural conjugate for the

Multinomial distribution. The Dirichlet distribution is given by,

fDIR(x) =
1

B(α)

N−1∏
i=0

xαi−1
i ,

where B(α) is the Multivariate Beta function evaluated by computing
∑
i Γ(αi)

Γ(
∑
i αi)

. Let pj = p0j + p1j ,

then, nj = n0j + n1j for j = 0, 1. Assuming we want to test for p0 = p1, we have

π(P |I) =
f(I|p)π(p)

f(y)
∝ f(I|p)π(p)

∝
1∏
i=0

1∏
j=0

p
nij
ij

1

B(α)

1∏
i=0

1∏
j=0

pα0−1
ij

∝ (p00 + p10)n00+n10+α0−1(1− (p00 + p10))n01+n11+α0−1 (D.5)

Eq. (D.5) contains the kernel of a β(n00 + n10 + α0, n01 + n11 + α0) distribution. Now, assuming

p0 6= p1, we have

π(P |I) =
f(I|p)π(p)

f(y)

∝ f(I|p)π(p)

∝
1∏
i=0

1∏
j=0

p
nij
ij

1

B(α)

1∏
i=0

1∏
j=0

pαi−1
ij

∝
1∏
i=0

1∏
j=0

p
nij
ij

1

B(α)

1∏
i=0

1∏
j=0

pαi−1
ij

∝ (1− p01)n00−α0−1(p01)n10−α0−1(1− p11)n01+α1−1(p11)n11−α1−1 (D.6)

Eq. (D.6) contains the kernel of two Beta distributions given by, β(n00 + α0, n01 + α0) and β(n10 +

α1, n11 + α1).

Appendix E Simulation Results for the Bayes Factor under Unconditional Coverage

In this section we examine the performance of the new Bayesian backtest method in a finite sample

situation. Our study aims to mimic a realistic scenario of sample sizes, namely, 1-year (T = 252),
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4-year (T = 1000), 10-year (T = 2500) and lastly 20-year (T = 5000) periods. This simulation study

is setup to determine whether our method is capable of detecting changes in VaR violations ranging

from as expected (when the null is correct) till higher than expected (when the alternative is correct).

For the UC test, the aim is to determine whether or not VaR violations occur with probability p = p∗.

The first step is to simulate 30,000 sets of Bernoulli random variables (see Algorithm 3):

It(p) ∼ Bern(γ · p), for t = 1, .., T

of length T and probability p∗ of success. In this case, a success in It(p) would imply a VaR violation

Algorithm 3 Unconditional Coverage Simulation

1: Generate a T -length violation sequence (I1:T ), based on independent Bernoulli(p∗ ·γ) distribution.
2: Compute BF01 using Eq. (4.18), with m1 =

∑T
t=1 It and m0 = T −m1.

3: Rejection if BF01 < 1

has occurred. The γ coverage variable allows us to determine whether or not we correctly rejected the

null hypothesis. When γ = 1, the VaR violations occur at the rate p∗ which implies the null model

was correct. As γ increases from 1 to 1.5, it increases the chance of VaR violations occurring more

often than the null model of p∗.

The simulation results of the UC test are shown in Table 5. In our simulation study we choose

γ = 1, 1.25, and, 1.5. Our VaR levels will be represented by p∗ = 0.01 and 0.05. At γ = 1, we see

that the BF false rejection rate decreases as sample size T increases. This is a consistency we should

expect with the BF; as opposed to NHST, where a particular type-1 error α would need to be chosen

and the false rejection rate of the null cannot be decreased with sample size. When the VaR is low

at p∗ = 0.01, Jeffreys prior seems to reject the null hypothesis less often than both Haldanes prior

and NI prior. However, once we increase the VaR to 5% (p∗ = 0.05), all three priors show consistent

results. Lastly, we see that when VaR violation rates occur more frequently than p∗, γ increases, we

see that chance of rejecting the null also increases in tandem. The outcomes of our simulation study

shows there is some robustness with varying prior distributions.

37



Table 5: Shows the rejection rates for the BF under UC after 30,000 simulations using Algorithm 3. The three priors, Haldanes, NI and Jeffreys, were used to
conduct the simulation.

Bayes Factor

VaR at 1% VaR at 5%

γ T Haldanes-Beta(ε, ε) NI-Beta(1
3 ,

1
3) Jeffreys-Beta(0.5, 0.5) Haldanes-Beta(ε, ε) NI-Beta(1

3 ,
1
3) NI-Beta(1

3 ,
1
3)

1

252 0.08263 0.00457 0.00457 0.01497 0.01883 0.00797
1000 0.01223 0.00543 0.00173 0.00703 0.00703 0.00460
2500 0.00463 0.00463 0.00137 0.00447 0.00383 0.00273
5000 0.00507 0.00323 0.00113 0.00297 0.00297 0.00197

1.25

252 0.05573 0.01387 0.01387 0.04577 0.07420 0.04533
1000 0.03087 0.02967 0.01557 0.17993 0.17993 0.15043
2500 0.05317 0.05317 0.02543 0.44973 0.44973 0.41850
5000 0.12787 0.10250 0.06477 0.81030 0.81030 0.77647

1.5

252 0.05943 0.03793 0.03793 0.19177 0.26163 0.19170
1000 0.12577 0.12570 0.08340 0.74127 0.74127 0.70160
2500 0.30410 0.30410 0.20137 0.99000 0.99000 0.98783
5000 0.65333 0.60763 0.51697 1.00000 1.00000 1.00000
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Appendix F Annuity Liability Results

Table 6: Table showing the percentage of extra capital required, difference from realised annuity, and the indicator variable jIxp (N) over all countries used under
the linear and nonlinear LC and CBD models.

LC model: Linear variant

Australia United Kingdom Italy France Spain New Zealand Sweden Germany Russia

x CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N)

62 1.0871 0.0345 0 1.3976 -0.0027 1 1.4167 0.0346 0 1.3211 0.0754 0 1.6937 0.1345 0 1.2647 0.0457 0 0.7653 0.0139 0 1.1181 0.0007 0 2.9916 0.1953 0
63 1.1863 0.0400 0 1.5136 -0.0126 1 1.5539 0.0459 0 1.4437 0.0793 0 1.8621 0.1560 0 1.3784 0.0342 0 0.8516 0.0229 0 1.2135 -0.0093 1 2.9308 0.0746 0
64 1.2891 0.0432 0 1.6438 -0.0277 1 1.7054 0.0484 0 1.5849 0.0882 0 2.0546 0.1594 0 1.4972 0.0355 0 0.9434 0.0225 0 1.3135 0.0030 0 2.8399 0.1390 0
65 1.4045 0.0434 0 1.7866 -0.0260 1 1.8837 0.0725 0 1.7383 0.1028 0 2.2676 0.1615 0 1.6369 0.0540 0 1.0441 0.0450 0 1.4354 0.0105 0 2.7367 0.1525 0
66 1.5266 0.0409 0 1.9488 -0.0182 1 2.0850 0.0875 0 1.9075 0.1149 0 2.5059 0.1859 0 1.7883 0.0644 0 1.1604 0.0651 0 1.5661 0.0700 0 2.6445 0.1601 0

67 1.6674 0.0451 0 2.1263 -0.0152 1 2.2985 0.1191 0 2.1026 0.1409 0 2.7705 0.1993 0 1.9546 0.0775 0 1.2778 0.0583 0 1.7244 0.0553 0 2.5420 0.0837 0
68 1.8089 0.0494 0 2.3145 -0.0063 1 2.5403 0.1292 0 2.3119 0.1550 0 3.0570 0.2183 0 2.1262 0.1207 0 1.4140 0.0878 0 1.8940 0.0893 0 2.5299 0.1208 0
78 3.6317 0.1937 0 4.8381 0.3167 0 6.0905 0.4478 0 5.3598 0.3220 0 6.3595 0.3362 0 4.3679 0.3027 0 3.3127 0.2586 0 4.6747 0.2946 0 4.5228 -0.0945 1
79 3.7922 0.2315 0 5.1090 0.3803 0 6.4520 0.4760 0 5.7091 0.3397 0 6.5175 0.3137 0 4.6064 0.4092 0 3.4933 0.3098 0 5.0275 0.3529 0 4.9417 -0.0125 1
83 4.4613 0.3334 0 5.9857 0.4174 0 7.6583 0.5039 0 6.7247 0.3379 0 6.6271 0.2436 0 5.6131 0.4988 0 4.1458 0.3883 0 6.1867 0.2771 0 7.3121 -0.0343 1

89 3.3419 0.2215 0 4.3346 0.2995 0 5.5666 0.2744 0 4.8763 0.2055 0 3.4448 -0.0029 1 4.5050 0.3767 0 3.2734 0.2785 0 5.2542 0.1695 0 11.1593 0.1917 0
90 3.0166 0.1994 0 3.8785 0.2400 0 5.0126 0.2081 0 4.3462 0.1607 0 2.9596 -0.0044 1 4.1780 0.3092 0 2.9890 0.2129 0 4.9491 0.1366 0 11.0033 0.1582 0
91 2.7074 0.1729 0 3.4274 0.2243 0 4.3573 0.1942 0 3.7929 0.1780 0 2.3229 -0.0517 1 3.8098 0.2965 0 2.6991 0.2141 0 4.4998 0.1203 0 11.6785 0.1490 0
93 2.0600 0.1206 0 2.4038 0.1287 0 2.9633 0.1280 0 2.5141 0.1001 0 1.6598 -0.0240 1 2.8808 0.2030 0 2.0125 0.1506 0 3.4585 0.0721 0 8.3450 0.1345 0
94 1.6045 0.0888 0 1.8104 0.0776 0 2.2519 0.0757 0 1.8733 0.0527 0 1.3483 -0.0252 1 2.2760 0.1381 0 1.5699 0.0976 0 2.7775 0.0496 0 6.5192 0.0965 0

LC model: Nonlinear variant

Australia United Kingdom Italy France Spain New Zealand Sweden Germany Russia

x CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N)

63 1.2695 0.0503 0 1.7360 -0.0052 1 1.6612 0.0471 0 1.5021 0.0803 0 2.0136 0.1692 0 1.4916 0.0420 0 1.0001 0.0261 0 0.8158 -0.0071 1 3.4137 0.0808 0
64 1.3791 0.0545 0 1.8832 -0.0182 1 1.8260 0.0508 0 1.6402 0.0890 0 2.2261 0.1744 0 1.6240 0.0450 0 1.1102 0.0267 0 0.8634 0.0025 0 3.2759 0.1433 0
65 1.4949 0.0559 0 2.0537 -0.0133 1 2.0143 0.0753 0 1.8048 0.1044 0 2.4505 0.1777 0 1.7636 0.0643 0 1.2315 0.0505 0 0.9456 0.0114 0 3.1094 0.1537 0
66 1.6245 0.0554 0 2.2286 -0.0037 1 2.2267 0.0908 0 1.9833 0.1172 0 2.7054 0.2038 0 1.8948 0.0736 0 1.3728 0.0714 0 1.0541 0.0751 0 2.9430 0.1604 0
91 2.3049 0.1302 0 3.2832 0.1903 0 4.3565 0.1690 0 3.6473 0.1583 0 1.9845 -0.0045 1 3.6316 0.2798 0 2.5641 0.1658 0 1.8977 0.0736 0 10.3803 0.1823 0

93 1.7617 0.0904 0 2.2035 0.1038 0 2.8844 0.1119 0 2.4057 0.0867 0 1.3278 -0.0075 1 2.9968 0.2011 0 1.8977 0.1172 0 1.3124 0.0389 0 7.7978 0.1469 0
94 1.4047 0.0676 0 1.6078 0.0588 0 2.1721 0.0629 0 1.7553 0.0420 0 1.0020 -0.0190 1 2.4746 0.1397 0 1.5227 0.0749 0 1.0246 0.0259 0 6.0321 0.1054 0
63 1.2695 0.0503 0 1.7360 -0.0052 1 1.6612 0.0471 0 1.5021 0.0803 0 2.0136 0.1692 0 1.4916 0.0420 0 1.0001 0.0261 0 0.8158 -0.0071 1 3.4137 0.0808 0
76 3.3241 0.1787 0 4.8855 0.3000 0 5.6138 0.4152 0 4.8224 0.3075 0 6.3248 0.4009 0 3.9225 0.2331 0 3.3571 0.2020 0 2.9556 0.2970 0 2.7350 -0.0271 1
78 3.6884 0.1930 0 5.4783 0.3447 0 6.4470 0.4454 0 5.5334 0.3251 0 7.0404 0.4116 0 4.4158 0.2503 0 3.8241 0.2429 0 3.4005 0.3212 0 3.3081 -0.1337 1

79 3.8234 0.2251 0 5.7610 0.4048 0 6.8284 0.4707 0 5.8599 0.3392 0 7.2263 0.3956 0 4.6646 0.3493 0 4.0534 0.3223 0 3.6003 0.3748 0 3.8562 -0.0345 1
80 3.9549 0.2345 0 6 0.3577 0 7.1986 0.4754 0 6.1692 0.3513 0 7.4181 0.4106 0 4.7713 0.3364 0 4.2201 0.3082 0 3.7534 0.3606 0 4.2202 -0.0017 1
83 4.3148 0.2917 0 6.5218 0.4124 0 7.9736 0.4780 0 6.8316 0.3269 0 7.3116 0.3324 0 5.4876 0.4766 0 4.5474 0.3669 0 3.9718 0.2714 0 6.4005 -0.0374 1

CBD model: Nonlinear variant

Australia United Kingdom Italy France Spain New Zealand Sweden Germany Russia

x CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N) CapR(%) ∆R jIxp (N)

70 3.1158 0.0927 0 3.7519 0.1045 0 4.1374 0.1496 0 3.5182 0.0263 0 4.6068 0.1828 0 3.2907 0.1245 0 2.1797 -0.0052 1 1.7275 0.0502 0 7.9876 0.0733 0
82 11.7376 0.5207 0 12.3340 0.3435 0 15.3102 0.7242 0 12.1693 0.5594 0 15.0026 0.7515 0 11.7768 0.6471 0 8.0685 0.2912 0 5.5538 -0.0247 1 14.4498 0.5227 0
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