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Abstract 

Objective: Expression of the translocator protein (TSPO) on inflammatory cells has facilitated imaging of synovitis 
with TSPO-targeted positron emission tomography (PET). We aimed to quantitatively assess the specificity of the 
second-generation TSPO PET radioligand,  [11C]PBR28, and to generate simplified PET protocols in patients with 
inflammatory joint disease (IJD) in this pilot study.

Methods: Three IJD patients (two rheumatoid arthritis and one osteoarthritis) with knee involvement underwent 
dynamic  [11C]PBR28-PET scans before and after administration of 90 mg of oral emapunil (XBD-173), a TSPO ligand the 
same day. Radial arterial blood sampling was performed throughout the scan, and total radioactivity and radioactive 
metabolites were obtained. A semi-automated method was used to generate regions of interest. Standardized uptake 
value (SUV) and SUV ratio corrected for activity in bone and blood between 50 and 70 min  (SUVr50–70 bone,  SUVr50–70 
blood, respectively) and PET volume of distribution (VT) of the radioligand were calculated.

Results: A mean  [11C]PBR28 radioactivity of 378 (range 362–389) MBq was administered. A significant decrease 
(p < 0.05) in VT,  SUVr50–70 bone and  SUVr50–70 blood observed after oral emapunil confirmed the TSPO specificity of 
 [11C]PBR28. A decrease in SUV was not observed in the post-block scan.

Conclusion: [11C]PBR28 is TSPO-specific radioligand in IJD patients. Simplified PET protocols with static PET acquisi-
tion can be used in the management and evaluation of novel therapeutics that target TSPO overexpressing cells.

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
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Introduction
Synovial envelope of the articular joint is a critical pro-
vider of synovial fluid components and articular cartilage 
nutrients. Synovial inflammation (synovitis) together 
with progressive degeneration of articular cartilage is key 
pathological features in a variety of inflammatory joint 
diseases (IJDs), as diverse as rheumatoid (RA), psoriatic, 
juvenile and idiopathic arthritis, lupus and gout and a sig-
nificant contributor of articular cartilage degeneration in 
osteoarthritis (OA) [1]. Synovial inflammatory infiltrate is 
composed of aggressive macrophage- and fibroblast-like 

mesenchymal cells, macrophage-like cells, fibroblast-like 
synoviocytes and other inflammatory cells [2, 3].

Detection and treatment of subclinical or early inflam-
matory arthritis is  likely to prevent disease progression, 
permanent joint damage and associated comorbidity. 
However, subclinical or early disease is often difficult to 
detect, leading to a delay in diagnosis [4]. Furthermore, 
the assessment of response to treatment of inflamma-
tory disease is often based on composite disease activ-
ity scores, which can be highly subjective and difficult to 
reproduce consistently. Therefore, an unmet clinical need 
is to functionally evaluate the target tissue and assess 
changes in the infiltrate not only for quantitative assess-
ment but also to evaluate targeted therapies.

Positron emission tomography (PET) studies with the 
18 KDa translocator protein (TSPO) radioligands have 
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demonstrated the high expression of TSPO (formerly 
known as the peripheral benzodiazepine receptor; PBR) 
on activated macrophages at sites of inflammation, and 
indeed, up-regulation of TSPO has been noted in mac-
rophages of inflamed synovium of animal models of 
inflammatory arthritis [5]. Clinical TSPO-PET studies 
in healthy volunteers and subjects with rheumatoid and 
psoriatic arthritis have reported higher TSPO radioligand 
uptake in IJD subjects compared to healthy volunteers [6, 
7]. However, to date there have been no clinical studies 
to confirm that the elevated PET signal can be attrib-
uted to specific binding to TSPO in IJD subjects. In this 
manuscript, we report on a cohort of subjects with IJD 
who underwent dual  [11C]PBR28-PET scans prior to and 
after a heterologous oral TSPO blocking agent, emapunil 
(XBD-173), to assess the specificity of TSPO binding in 
the knee joints of the subjects scanned.

Methods
Regulatory approval and subjects
The study was approved by the West Midlands–Black 
Country research ethics committee (ref. 17/WM/0082), 
Integrated Research Application System (ref. 216737) 
and Administration of Radioactive Substances Advi-
sory Committee (ref. 630/3925/36195) and conducted in 
accordance with the Declaration of Helsinki. The study 
was registered with the UK National Institute of Health 
Research (NIHR) Clinical Research Network (No. MUSC 
33816). Three subjects (two subjects with RA and satisfy-
ing the American College of Rheumatology criteria with 
active clinical disease in the knee and one subject with 
knee OA) were recruited (Table 1). Participants provided 
written informed consent, with eligibility determined 
by medical history, physical examination, coagulation 
screen and blood genotyping for rs6971single-nucleotide 
polymorphism [8]. Subjects with homozygous G allele 
(high-affinity binders; HABs) and heterozygous G/A 
allele at position 439 (Ala147Thr) (medium-affinity bind-
ers; MABs) were only included in the study as they have 
higher binding to  [11C]PBR28 [8].

PET scanning
[11C]PBR28 PET scanning was performed at Invicro, 
London, on a Siemens PET/CT system Biograph 6 
TruePoint with TrueV or a Hi-Rez Biograph 6 (Siemens 
Healthcare, Erlangen, Germany). Prior to the scan, all 
patients had a radial arterial cannulation for sampling of 
blood during the scan and a venous cannula for adminis-
tration of radioactivity.  [11C]PBR28 was manufactured as 
described previously [9].

Initially, a low-dose CT scan of the both knee joints was 
performed for localization and attenuation correction 
followed by a 90-min dynamic PET scan after intravenous 
administration of  [11C]PBR28. Continuous arterial blood 
sampling was performed for the initial 15 min; addition-
ally, discrete blood samples were performed for the full 
duration of the scan to obtain total blood and plasma 
radioactivity and the fraction of parent radiolabelled 
compound in the blood. A second  [11C]PBR28 PET-CT 
scan was performed the same day after oral administra-
tion of the TSPO ligand. Emapunil (XBD-173) was given 
per orally about 2 h before the second scan.

Data analysis
PET images were reconstructed with corrections applied 
for attenuation, randoms and scatter. All PET-CT images 
acquired were converted to the NIfTI (Neuroimag-
ing Informatics Technology Initiative) format, and CT 
images were re-sliced to match the PET image resolution. 
Synovial regions of interest (ROIs) for each knee were 
generated using a global threshold method on CT scan, 
based on the Hounsfield Unit values for bone to exclude 
bone and adjoining tendon and muscle. For each knee, a 
single ROI for each knee was generated to include all of 
the inter-osseous area exclusive of muscle and tendons 
(Fig.  1). Finally, a manual review of the ROIs was per-
formed by one operator and reviewed by another. Each 
knee was analyzed separately due to the variation in the 
severity of joint disease with osteoarthritis and rheuma-
toid arthritis, as done previously [6].

Table 1 Demographics, disease extent, genotype and activity of  [11C]PBR28 administered for subjects imaged

Subject number (scan) Age, gender Disease Clinical disease severity and site Genotype Activity 
injected 
(MBq)

1 (Baseline) 57, F RA Right (moderate) MAB 376.7

1 (Post-block) 382.5

2 (Baseline) 56, F RA Bilateral (moderate) Left > right HAB 389.3

2 (Post-block) 361.7

3 (Baseline) 50, F OA Mild left MAB 374.8

3 (Post-block) 380.8
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PET-CT images 
converted to NIfTI 

format 

PET-CT image 
resliced to match 

PET image 
resolution 

Global thresholding 
of CT to generate 

ROI  

Manual review and 
correction of ROI 

SUV50-70 for ROIs 
calculated 

Kinetic modeling. VT
and SUVr derived

Fig. 1 Analysis methodology flowchart illustrating the semi-automated method where a global threshold method was used to define the synovial 
ROI (sagittal view, pink; top right) and used to calculate uptake parameters. The bone ROI (coronal view, blue; bottom right) is also illustrated

Fig. 2 Time–activity plots at baseline (top panel) and post-block (lower panel) depicted as orange (right knee) and blue (left knee) dots and the 
model fit as continuous lines to the output data using the 2TC model for all the subjects imaged
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Tissue time–activity curves (TAC) were generated [10] 
as previously described for each joint synovia (Fig.  2). 
Radial arterial blood data obtained were used to generate 
plasma  [11C]PBR28 TAC for the full duration of the scan 
(input function) and was modeled with the tissue data 
(output) (Fig. 3) to generate volume of distribution (VT) 
values using a two-tissue compartment model (2TC) as 
described previously [11, 12].

Semiquantitative uptake values (SUV) were calcu-
lated in the synovium between 50 and 70 min  (SUV50–70) 
and also normalized to a tissue (bone or blood) uptake 
between 50 and 70 min  (SUVr50–70 blood and  SUVr50–70 
bone).

Statistical analysis
Paired t tests were used to compare VT, SUV or SUVr 
values within subjects. p values less than 0.05 were con-
sidered statistically significant.

Results
PET analysis
The composite PET image for the full duration of the 
scan showed radioactivity uptake in the synovia of 

knee joints, with minimal uptake in the adjoining 
bone. Review of the TACs (Fig. 2) demonstrated a pla-
teauing in  [11C]PBR28 SUV between 50- and 70-min 
post-radioligand injection; hence, SUV and SUVr were 
calculated between these time points for all subjects. 
Variability of radioactivity uptake between the two 
knees post-block was minimal compared to pre-block 
uptake. VT was obtained in all subjects by fitting the 
2TC model, apart from one subject (subject 3, Base-
line), where the model did not fit the data well.

There was no change in mean (SD)  SUV50–70 after 
oral XBD-173 (0.65 (0.21) versus 0.69 (0.13); p = NS). 
In contrast, PET parameters that account for peripheral 
distribution of the radioligand such as VT,  SUVr50–70 
blood and  SUVr50–70 bone showed a significant 
decrease in radioligand uptake in the synovium with 
mean (SD) respective pre- and post-block ligand uptake 
for VT being (4.84 (0.54) versus 2.69 (0.80); p < 0.05), for 
 SUVr50–70 blood (3.67 (1.29) versus 2.22 (0.32); p < 0.05) 
and for  SUVr50–70 bone (3.12 (1.03) versus 2.10 (0.20); 
p < 0.05). Individual uptake values for all subjects are 
provided in Table  2. Figure  4 illustrates a decrease in 
 [11C]PBR28 uptake in subject 2 after normalization 

Fig. 3 The percentage of parent  [11C]PBR28 contributing to the total radioactivity (a) and the plasma over blood ratio (b) in arterial blood that were 
used to generate the plasma  [11C]PBR28 input function for the full duration of the scan (c) for subject 1 at baseline and post-block

Table 2 Uptake parameters for all the subjects imaged

Subject no. (scan) SUV SUVr50–70 blood SUVr50–70 bone VT

Left Right Left Right Left Right Left Right

1 (Baseline) 0.37 0.46 2.25 2.81 2.14 2.70 5.19 4.32

1 (Post-block) 0.52 0.54 1.90 1.97 1.87 1.91 3.85 2.60

2 (Baseline) 0.92 0.84 5.49 5.01 4.44 4.42 5.40 4.44

2 (Post-block) 0.82 0.80 2.66 2.59 2.36 2.31 2.14 2.18

3 (Baseline) 0.64 0.68 3.13 3.33 2.45 2.60 ND ND

3 (Post-block) 0.75 0.73 2.13 2.08 2.07 2.10 1.91 1.44
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to blood activity  (SUVr50–70 blood) after dosing with 
emapunil.

Discussion
We conducted this study to evaluate if the increased 
uptake of  [11C]PBR28 observed in the joints of patients 
with IJD was specific to TSPO binding and not a conse-
quence of increased radioactivity in joints due to other 
associated pathological processes. The decrease in the 
 [11C]PBR28 quantitative uptake parameter, VT, after 
administration of a heterologous TSPO blocking agent 
confirmed that the increase in  [11C]PBR28 uptake was 
specific to TSPO in the tissue cellular infiltrate. How-
ever, performing dynamic PET imaging with radial arte-
rial sampling may not always be appropriate as the small 
joints of the wrist are commonly involved in RA and 
need to be imaged. Further, performing scans of shorter 
duration without arterial blood sampling would increase 
subject tolerability. Since the semiquantitative param-
eter SUV, which does not account for changes in periph-
eral metabolism of the radioligand [13], did not exhibit 
a decrease in uptake after blocking of TSPO, we investi-
gated if we could use a pseudo-reference agent as in the 
brain where the cerebellum has been used [14]. We used 

both blood and cancellous bone, both of which contain 
TSPO [15, 16] as pseudo-reference region as an estimate 
specific  [11C]PBR28 tissue uptake. We found that like VT, 
a decrease in  SUVr50–70 blood and  SUVr50–70 bone was 
observed after TSPO blocking with XBD-173 was noted 
with a decrease, indicating that both  SUVr50–70 blood and 
 SUVr50–70 bone could be used to quantify  [11C]PBR28 
uptake. We also confirmed that a static  [11C]PBR28 scan 
between 50 and 70 min, correcting for nonspecific bind-
ing using bone SUV  (SUVr50–70 bone) as a pseudo-ref-
erence region, allows quantification of TSPO expression 
with  [11C]PBR28. This is likely to help facilitate PET stud-
ies that provide better subject comfort to evaluate disease 
and TSPO-targeting therapy and also allow assessment 
of disease in the small joints of the hand in subjects with 
IJD.

Conclusion
In conclusion, we observed that  [11C]PBR28 behaves as 
a TSPO-specific radioligand in the knee joint synovia 
of patients with IJD. PET uptake of  [11C]PBR28 can also 
be quantified using simplified acquisition of static PET 
scans, likely to be suitable in the evaluation of novel ther-
apeutics that target TSPO overexpressing cells in IJD.

Fig. 4 Trans-axial (top), coronal (middle) and sagittal (bottom) images of  [11C]PBR28 uptake normalized for blood activity  (SUVr50–70 blood) in 
subject 2 shows synovial uptake at baseline (PET1 baseline) that is reduced after administration of oral emapunil (PET2 post-block)
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