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Sustained fluvial deposition recorded in Mars’
Noachian stratigraphic record
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Maarten G. Kleinhans 1

Orbital observation has revealed a rich record of fluvial landforms on Mars, with much of this

record dating 3.6–3.0 Ga. Despite widespread geomorphic evidence, few analyses of Mars’

alluvial sedimentary-stratigraphic record exist, with detailed studies of alluvium largely lim-

ited to smaller sand-bodies amenable to study in-situ by rovers. These typically metre-scale

outcrop dimensions have prevented interpretation of larger scale channel-morphology and

long-term basin evolution, vital for understanding the past Martian climate. Here we give an

interpretation of a large sedimentary succession at Izola mensa within the NW Hellas Basin

rim. The succession comprises channel and barform packages which together demonstrate

that river deposition was already well established >3.7 Ga. The deposits mirror terrestrial

analogues subject to low-peak discharge variation, implying that river deposition at Izola was

subject to sustained, potentially perennial, fluvial flow. Such conditions would require an

environment capable of maintaining large volumes of water for extensive time-periods,

necessitating a precipitation-driven hydrological cycle.
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While the present-day Martian surface is generally dry
and cold, its geomorphic record contains compelling
evidence for the former presence of liquid water1–7. In

addition to this rich geomorphic archive, Mars’ increasingly
accessible sedimentary rock record provides a repository of
information from which to study how planet-wide patterns in
deposition have changed over time. From orbit, Martian sedi-
mentary rocks have been observed for more than 20 years8–13,
but detailed descriptions of large Noachian alluvial successions
have so far been lacking. In fact, unequivocal sedimentary-
stratigraphic evidence of alluvium has only been identified in-situ
by rover-led studies14, and whilst rovers provide unprecedented
direct access to extraterrestrial strata15, methodologies are typi-
cally limited by accessible outcrop dimensions. For example, the
Shaler outcrop, an interpreted Hesperian fluvial deposit identified
by Curiosity16, comprises a single 70-cm-thick, 20-m-wide
sandstone body. This is a crucial scale difference when com-
pared with orbital investigation: the physical dimensions of most
rock outcrops studied on the ground to date are smaller than the
dimensions of many geomorphic components of even moderate-
sized extant river systems17,18.

In this study, we use high-resolution imaging science experi-
ment (HiRISE) image (25 cm/pixel) and topographic (1 m/pixel)
data to describe the sedimentary-stratigraphic architecture of a
far-larger, 1500-m-wide, 190-m-thick sedimentary succession.
The recently identified Izola outcrop is located in the north-
western rim of the Hellas basin (Fig. 1a), a ~2000 km diameter
impact structure containing a variety of 3.7 Ga Noachian Fe/Mg
phyllosilicate-rich sedimentary intercrater plains, overlain by
Hesperian-aged (~3.3 Ga) lava flows19.

These intercrater plains offer erosional windows which expose
stratigraphic sections with well-preserved channel forms, and
which must be older than the ~3.7 Ga overlying plains19. The
channel forms and associated sedimentary packages are inter-
preted as the product of an actively depositing fluvial system, with
the final sedimentary architecture suggesting that these
Noachian-aged rivers were not typified by high-energy episodic
floods, but rather perennial or semi-perennial fluvial flow. The
scale and completeness of the sedimentary succession offers a so
far unique opportunity to assess the larger scale morphology of an
evolving Noachian-aged fluvial system.

Results and discussion
The sedimentary succession. The outcrop exposes layered sedi-
mentary strata, which display a variety of large-scale stratal
architectures consistent with an alluvial interpretation. Alluvial
sedimentary strata can be subdivided into genetically related
three-dimensional packages20–22. The aggregate of these packages
is referred to as the succession’s sedimentary architecture, and is
the product of the scale and behaviour of the fluvial system over
time. The outcrop appears to have undergone little post-
depositional deformation, has a gentle dip and large-dimen-
sions, so is suitable for the analysis of sedimentary architecture
(Supplementary Fig. 5). A hierarchy of bounding surfaces is
applied to divide stratigraphy, hierarchically ordered to reflect
river processes at varying scales (Table 1, Supplementary Fig. 1).
Two distinct sedimentary packages were recognised in the studied
outcrop: (1) channelised packages; and (2) inclined accretionary
surfaces. As details of sedimentary facies (usually discriminated
by grain size and centimetre to decimetre-scale bedding and
sedimentary structure) are unattainable without in-situ investi-
gation on the ground, only the three-dimensional geometry of the
sedimentary packages are described, with no details of internal
structure attempted.

Channelised packages. In the observed stratigraphy, packages
bound by lower erosional, channel-shaped (fourth order) surfaces
and truncated by flat, erosional (fourth and fifth order) surfaces
are attributed to channel-fill deposition (Figs. 2, 3b, Supplemen-
tary Fig. 2A). They are 5–15 m thick, with observable lateral
extents of up to 210m (although outcrop limitations restrict
observation of the full lateral extent of many channel forms:
Table 2, Supplementary Fig. 2). Internally, packages appear
succession-dominated23, comprising multiple aggrading (third
order) surfaces (Fig. 3b). Final channel banks and former channel
margins coalesce, indicating that the original channels laterally
migrated (Fig. 3b, d). Some channelised packages have a distinct
channel wing (yellow asterisks in Fig. 2b; Supplementary Figs. 3,
4), which may archive a genetically associated levee or crevasse
and thus strengthen the alluvial interpretation. Particular areas of
the outcrop show high concentrations of discrete, but partly
amalgamated, channelised packages (Fig. 3b). In these areas,
smaller channelised packages may be nested inside larger exam-
ples (Fig. 3b), implying that periods of net erosion locally
occurred within a dominantly depositional regime. Areas con-
taining clusters of channels are bottomed and topped by laterally
extensive (up to 640 m), low relief, fifth-order surfaces, which
suggest a change in the type or location of the dominant
depositional process. These surfaces probably reflect channel
avulsion, in which the location of the active channel changes
abruptly. The sediments enclosed between these fifth-order sur-
faces were therefore laid down between avulsion events and are
thus defined as channel belts24.

Inclined accretionary surfaces. In the observed stratigraphy,
wedge-shaped packages comprise gently inclined depositional
surfaces (third and fourth order; Fig. 3d). They are topped and
bottomed by flat, erosional surfaces (both fourth order), except on
occasions where they can be traced laterally into an associated
channelised package (Fig. 3b). Most frequently only erosional
remnants are preserved, with deposits often passing laterally into
areas of non-exposure (Fig. 3d). Thicknesses range from 1.5 to 14
m, similar to the associated channels. Geometry and internal
stacking patterns are suggestive of shifting fluvial barforms. For
example, in some instances, bottomsets of fourth-order surfaces
are downlapped by third-order foresets (Fig. 3d), demonstrating
discrete intervals of bar-building. The outcrop orientation with
respect to paleoflow is not well known, meaning it is not possible
to build any unequivocal consensus on the direction of barform
accretion with respect to the flow of the original channels (e.g.,
downstream accretion, lateral accretion). However, the identifi-
cation of channel forms in conjunction with the outcrops align-
ment with the regional slope direction suggests a broadly
depositional-strike succession.

Alternative explanations. Without in-situ validation of fluvial
deposition other alternative possibilities must additionally be
considered. In this section, we examine two alternative origins for
the studied sedimentary succession: aeolian deposition, and
deposition within submarine channels.

Aeolian: if these deposits have an aeolian origin, then the
working hypothesis is that the channel forms are in fact localised
scour fills formed by migrating aeolian strata, and that this
succession records periods of aeolian accumulation punctuated by
erosion or stagnation. However, there are disconnects between
the stratigraphic architecture described here, and that of large-
scale cross-bedding typical of aeolian bedforms described on both
Earth25,26 and Mars27. No aeolian interpretation can explain the
observable lateral migration surfaces associated with the discrete
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channelised packages (Fig. 3b). Multiple generations of aeolian
dunes would partially erode preceding examples, perceived at
outcrop by marked downlapping surfaces not apparent anywhere
across the succession. Also, the fill geometry of aeolian dune
deposits is often symmetrical and concordant with the trough

base, unless the final outcrop is cut obliquely to the original flow
direction, in which case planes are perceived to fill asymmetrically
and downlap onto the trough base28 (again, an architectural style
not recognised here). Finally, multiple possible examples of
channel wings, evident from a distinct inflexion point, are found

a

C

A

Hellas Basin

Terby

Huygens

50 km

Slope

b

~ 9 km

~
 4 km

B

c

–400 m

–600 m

–5
00

 m

–6
00

 m

–500 m

–600 m

N

N

200 m
Figure 2A

Izola outcrop

Izola outcrop

400 m

400 m

400 m

–400 m

–400 m

0 m

0 m
0 

m

–800 m

–600 m

–200 m

–200 m

N

Izola crater

Izola mensa

Fig. 1 General context of study location at Izola mensa. a Mars Orbiter Laser Altimeter (MOLA) topographic map centred on the NW rim of the Hellas
basin, showing a depression (blue/violet) in the centre-lower right corner, the cratered highlands (brown-orange) in the upper left corner and the location
of the studied outcrop within the red box. The magenta arrow indicates the slope direction of the modern surface. The identified macroforms suggest that
the outcrop is broadly cut in the depositional-strike direction, in alignment with regional slope (a). The topographic elevation spans from 1500 m (brown)
to −1350 m (white). Bottom right inset shows the regional context. Mars Orbiter Laser Altimeter (MOLA) topographic map centred on the northwestern
shoulder of the Hellas basin. Study area indicated by white box. The topographic elevation spans from 4319 m (brown) to −8194 m (white). b High-
resolution imaging science experiment (HiRISE) contour lines from HiRISE digital terrain model (1 m/pixel) (HiRISE stereo pairs ESP_055357_1540;
PSP_003799_1540) over HiRISE visible image (25 cm/pixel). The Izola outcrop is located at 25.88°S and 54.29°E and faces almost N-S. c 3D view without
vertical exaggeration of the Izola outcrop shown in b. HiRISE ESP_055357_1540 (25 cm/pixel) draped on HiRISE digital terrain model (1 m/pixel).

Table 1 Hierarchical division of bounding surfaces applied in this study.

Bounding surface order Maximum lateral extent Bounded units Sedimentary process

Fifth 640 m Channel belts Switch between dominant depositional process (e.g., channel-
belt avulsion)

Fourth 210 m Channel fills, fluvial barforms Termination of accretion or reworking of a discrete
macroform

Third 180 m Macroforms Accretion of a discrete macroform
Second Not observable (rover only) Cosets Accretion and reworking of mesoforms
First Not observable (rover only) Sets Ripple or dune migration
Zeroth Not observable (rover only) Laminae Burst-sweep cycle

Bounding surface ranking and process interpretations adopted from previous studies22,62.
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across the outcrop (Fig. 2b, Supplementary Figs. 3, 4). Such
elements can be variably interpreted as the topmost story of an
individual channel or a genetically associated levee or crevasse23,
but do not concur with any aeolian model.

Submarine channels: certain depositional structures are found
in both submarine and alluvial environments (e.g., channel
wings), but several architectural characteristics in these deposits
favour alluvial interpretation and suggest against a submarine
origin. Evidence of lateral migration is widespread across the

outcrop (i.e., inclined accretionary surfaces). Such an architec-
tural style is more typical of alluvial settings, with submarine
slope architectures more regularly dominated by vertical accre-
tion29. Some inclined accretion surfaces additionally have distinct
foreset and bottomset elements (Fig. 3d), consistent with those of
fluvial barforms which scale to bankfull water-depth. Further-
more, most described submarine slope channels on Earth are at
least an order of magnitude greater in size than the channels
identified in this study30, which have dimensions consistent with
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Fig. 2 Architectural analysis of Martian channel forms and inclined accretionary surfaces at the Izola outcrop. a High-resolution imaging science
experiment (HiRISE) image of the studied outcrop (ESP_055357_1540; 25 cm/pixel resolution). Objects down to 77 cm can be resolved. The outcrop is
1500-m-wide and 190-m-thick. Note the different scale between the vertical and horizontal axis (vertically exaggerated). b Line drawing of a to illustrate an
architectural interpretation, displayed in c. Line drawings were only attempted in areas where stratigraphy was clearly visible (no lines were joined across
areas on non-exposure). The yellow asterisk and hashtag link to Supplementary Figs. S3 and S4, both possible examples of channel wings. Identified fifth-
order surfaces are labelled with letters and surface dimensions listed in Table 2. The well-exposed channels are labelled with numbers and their parameters
reported in Table 2.
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many other geomorphic fluvial channels identified across the
Martian surface31. Finally, regional observations of paleolakes
occupying the Hellas basin at various stages in its evolution32 are
compatible with an alluvial interpretation for these deposits.

Although a degree of ambiguity exists in any interpretation of
ancient sedimentary strata, whether on Earth or Mars, and
disputes between subaqueous and subaerial interpretations are
commonplace on both planets10,33,34, considering the discussion

herein, we argue that outcrop evidence strongly favours a fluvial
origin for the described Izola architecture.

Depositional environment. From outcrop measurements, the
channel and barform thicknesses are up to 13 and 14 m,
respectively. This provides minimum constraints for bankfull
water-depths at the time of deposition. Numerical models
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Fig. 3 Example channelised packages and inclined accretionary surfaces. a Close up of white box indicated in Fig. 2b. b Architectural interpretation of
a displaying a number of channels (blue lines). Some examples preserve former channel margins, strong evidence for original channel lateral migration.
Channelised packages have associated inclined accretion surfaces (magenta lines), with all packages topped and floored by more extensive fifth-order
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demonstrate that preserved sand-body thickness is on average
30% of the original channel depth35, so this approximation is
almost certainly an underestimate. These hypothesised water-
depths would be comparable with those of modern, mature fluvial
systems on Earth draining extensive basins36, suggesting these
Noachian-aged rivers had similar drainage capacities.

Channels and barforms account for the entire observable
stratigraphy. The evidence for channels being succession-
dominated (Fig. 3b) implies that entrenchment was quickly
followed by bed aggradation23. The occurrence of distinct channel
clusters is consistent with channel belts with relatively stable
banks and limited lateral mobility37. The internal structure of the
identified barforms comprises remnants of numerous phases of
bar-building activity (Fig. 3d). On Earth, deposits of rivers with
low-peak discharge variability preserve macroform structure,
enabling the reconstruction of barform morphology35,38. The
similar preserved architectural style seen here, of relatively intact
barforms and channels, implies that the depositing Izola rivers
were also characterised by low-peak discharge variability.
Episodic flooding events may not have been responsible for
deposition, but rather long-term, potentially perennial fluvial
flow. This conclusion also indicates that the Izola rivers were not
the product of meltwater flowing from a glacial front, as these
environments are more widely associated with fluctuating, high
discharges, and so would be unlikely to leave a stratigraphic
record comprising relatively intact channels and bars.

Siliciclastic deposition on an unvegetated planet. Depositional
models are largely based on sedimentary environments on Earth,
where physical form and process is near ubiquitously influenced
by biology39. Comparisons between the terrestrial and Martian
sedimentary record therefore require careful consideration before
application. For instance, copious observations demonstrate the
various ways extant vegetation modifies fluvial processes and
landforms40,41. Most important from an astrobiological stand-
point is the likelihood of alluvial mud becoming preserved on an
unvegetated planet. In addition to increasing mud production
through chemical weathering42, terrestrial vegetation promotes
mud retention on the continents through above-ground baffling
and below-ground stabilisation41,43,44. Through these combined
processes, an upsurge in mudstone abundance within alluvial
stratigraphy is observed in stratigraphic alignment with evolving
land plants45. Before this time, terrestrial alluvium is pre-
dominantly sand-grade or coarser with few preserved muddy
floodplain facies45,46. Direct comparison between the pre-
vegetation Earth and unvegetated Martian record might there-
fore imply that the studied Izola alluvium might also be lacking in

preserved mudstone. Such tangible characteristics of the terres-
trial pre-vegetation alluvial record have been used previously as
supportive evidence for environmental interpretations elsewhere
on Mars: for example, the scarcity of pre-vegetation terrestrial
floodplain mudstones was used to recommend a lacustrine, not
floodplain, origin of the Sheepbed mudstone at Gale crater16. The
abundance of mudstone in the studied outcrop here is not known
or speculated upon, as their intrinsic fine-grained components
require rover-based observations. However, the preserved
channel-belt architecture, comprising relatively intact channels
and barforms, suggests some degree of original channel-belt
stability, with naturally shear-resistant sediment such as mud a
possible candidate47,48. With regard to channel and barform
facies, evidence of relatively stable, deep-channelled drainage on
pre-vegetation Earth is being increasingly reported37. Such find-
ings are helping to dispel notions that pre-vegetation rivers were
ubiquitously wide and shallow49, an observation that can now be
extended to Mars (Fig. 2).

Preservation of time and implications for early Mars climate.
Disentangling the total duration recorded in any sedimentary
outcrop is difficult as stratigraphic records are highly fragmen-
tary, incomplete chronicles of time50,51. Despite uncertainty,
broad approximations from the studied outcrop can be made
which can inform ongoing debates about the early Martian cli-
mate52. The outcrop comprises at least four possible channel belts
(Fig. 2), discrete packages of strata bound by laterally extensive
(fifth order) surfaces and, on Earth, channel belts of this scale can
require up to ~104–105 terrestrial years to deposit52 (though we
recognise that this approximation may differ under Mars’ distinct
boundary conditions). However, the amount of additional time
hidden within the bounding fifth-order surfaces between indivi-
dual channel belts is unknown (and unknowable)53. If a channel-
belt interpretation is correct, the laterally extensive surfaces
developed after the active channel-belt was transposed through
avulsion. During this time, deposition was likely occurring else-
where in the basin, and the region covered by our sedimentary
outcrop was undergoing intervals of net erosion or stasis54. In
other words, hiatuses in deposition in the studied outcrop were
accompanied by deposition elsewhere in the basin. This implies
that the time recorded in the 190-m-thick succession represents
only a fraction of the total time fluvial deposition was ongoing in
this region. The majority of strata and time will have either been
lost to erosion, or preserved in outcrops as of yet undiscovered, or
currently buried and not amenable to study. While we are only
beginning to understand the chronostratigraphic exactness of
sedimentary rock outcrops on Earth53,55,56, let alone Mars, it
appears likely that the period of deposition in the northwestern
rim of the Hellas basin exceeded 105 terrestrial years. Further-
more, the preservation of relatively intact channel margins and
barforms advocates that throughout this protracted period fluvial
deposition was a relatively constant phenomena38.

The architectural interpretation of this so far unique
sedimentary succession feeds into ongoing debates about the
early Martian climate. Our interpretation of long-lived, deep,
perennial or semi-perennial rivers necessitates a climate in which
active water-conduits were maintained for 105 years or longer.
For the first time, orbital data has allowed us to examine, through
detailed high-resolution architectural analysis, a large (1500 m by
190 m) pre-late Noachian outcrop, and draw reliable paleoenvir-
onmental interpretations based on sedimentary-stratigraphic
evidence. Our observations and analysis favour steady water
discharges that are most consistent with a precipitation-driven
hydrological cycle. This conclusion aligns with previous argu-
ments for the prolonged presence of water on the early Martian

Table 2 Fourth and fifth order observed bounding surface
dimensions.

Depth (m) Width (m) Width/depth ratio

Fourth-order ID
1 8 150 18
2 11 110 10
3 15 210 14
4 7 110 15
5 15 170 11

Fifth-order ID
A–A′ Undefined 570 N/A
B–B′ 21 345 N/A
C–C′ 30 640 N/A

The ID locations of these bounding surfaces are reported in Fig. 2c.
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surface drawn from alternative geomorphological2,6,14,19 and
mineralogical57,58 observations.

Methods
DTM construction. High-resolution imaging science experiment59 image
ESP_055357_1540 acquired in May 2018 along with HiRISE image
PSP_003799_1540 (acquired in 2007) enabled the construction of a centimetre
scale DTM. Both images have 25.6 cm/pixel (with 1 × 1 binning) resolution so
objects down to 77 cm can be resolved. A digital terrain model (DTM) was pro-
duced from the HiRISE images ESP_055357_1540 and PSP_003799_1540 using the
USGS Integrated Software for Imagers and Spectrometers (ISIS) software and the
BAE photogrammetric package SOCET SET according to a previously used
methodology60. Tie points were automatically populated in SOCET SET between
the two images. We ran a series of bundle adjustments, removing erroneous tie
points until the remaining points had an RMS pixel matching error of ≤0.6 pixels.
The resultant DTM was then tied to Mars Orbital Laser Altimeter61 topography
and exported with a horizontal post spacing of 1 m/pixel and a vertical precision
of ~1 m.

Calculation of sedimentary package dimensions. The acquired HiRISE DTM of
the Hellas outcrop was of sufficient resolution to enable accurate tracing of beds
and plotting of architectural elements (Fig. 2). Channels thickness were obtained
measuring the exact elevation of the channel top and the exact elevation of the
channel base using ArcMap 10.6 elevation tools. Channel widths were measured by
tracing an edge-to-edge topographic channel profile using the HiRISE DTM. This
allowed calculation of true thickness, given that they are bound by laterally
extensive fifth-order surfaces, which are almost flat lying (Supplementary Fig. 5).

Architectural analysis. Line drawings were only attempted at areas where stra-
tigraphy is clearly visible. Outcrop orientation with respect to paleoflow is not
known, so no architectural elements with distinct directional components (e.g.,
downstream accretion, lateral accretion) were assigned. Sediment grain size is also
unknown, thereby prohibiting the distinction between active and abandoned
channel-fill deposits. The completed architectural panel enabled the various sedi-
ment stacking patterns and lateral relationships assessed.

Bounding surface hierarchy. A hierarchy of bounding surfaces was used to
describe partitions of fluvial strata at outcrop, with different order surfaces
reflecting river processes at varying scales62 (Table 1, Supplementary Fig. 1). The
principles of the hierarchical division applied here follows that detailed in previous
papers22,62. Succinctly, zeroth, first and second order surfaces relate to foreset, set
and coset boundaries, respectively, and are not observable from HiRISE imagery.
Third- and fourth-order surfaces indicate the presence of macroforms (e.g., a
barform deposit) or a channel. Fourth-order surfaces represent the upper and
lower boundaries of the macroform or channel, whereas third-order surfaces relate
to internal growth increments (indicating flow fluctuation, but no significant
changes in predominant fluvial style). Fifth-order surfaces are the highest order
observed at the studied outcrop and bind major depositional packages (e.g.,
channel belts). More fifth-order surfaces are likely present in the studied outcrop
than highlighted on Fig. 2. This is simply because their confident recognition
depends on an understanding of their relationship with lower order surfaces, and
in some instances the vagaries of outcrop exposure (particularly towards the bot-
tom of the section) prevent this.

Estimation of outcrop age. The age of the intercrater plains, which form the
planform cover of the studied sedimentary-stratigraphic succession, has been
estimated in a previous work19 using various crater count techniques. They date
3.70+ 0.03/−0.04 Ga (Noachian). The latter represents the age of the surface at the
top of the outcrop studied in this work, which lies in the S1 unit (Fig. 1819). Crater
counts were performed on Context Camera (CTX; 5–6 m/pixel) data using Crater
Tools. Crater statistics and crater model ages were analysed with
Craterstats2 software. For more details and references see a previous study19.

Data availability
The HiRISE data that support the findings of this study were obtained freely from the
Planetary Data System (PDS) and are publicly available online at https://pds.nasa.gov/index.
shtml. Satellite imagery and the Extended Data were generated with ISIS 3 (Integrated
Software for Imagers and Spectrometers) available online at https://isis.astrogeology.usgs.
gov. All these data were integrated into ArcMap 10.6 project. The DTM was produced using
the USGS Integrated Software for Imagers and Spectrometers (ISIS 3) software and the BAE
photogrammetric package SOCET SET with a post spacing of 1m/pixel.
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