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ABSTRACT

Context. Data-driven methods play an increasingly important role in the field of astrophysics. In the context of large
spectroscopic surveys of stars, data-driven methods are key in deducing physical parameters for millions of spectra in a
short time. Convolutional neural networks (CNNs) enable us to connect observables (e.g. spectra, stellar magnitudes)
to physical properties (atmospheric parameters, chemical abundances, or labels in general).
Aims. We test whether it is possible to transfer the labels derived from a high-resolution stellar survey to intermediate-
resolution spectra of another survey by using a CNN.
Methods. We trained a CNN, adopting stellar atmospheric parameters and chemical abundances from APOGEE DR16
(resolution R = 22500) data as training set labels. As input, we used parts of the intermediate-resolution RAVE
DR6 spectra (R ∼ 7 500) overlapping with the APOGEE DR16 data as well as broad-band ALL_WISE and 2MASS
photometry, together with Gaia DR2 photometry and parallaxes.
Results. We derived precise atmospheric parameters Teff, log(g), and [M/H], along with the chemical abundances of
[Fe/H], [α/M], [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] for 420 165 RAVE spectra. The precision typically amounts to 60K
in Teff, 0.06 in log(g) and 0.02-0.04 dex for individual chemical abundances. Incorporating photometry and astrometry
as additional constraints substantially improves the results in terms of the accuracy and precision of the derived labels,
as long as we operate in those parts of the parameter space that are well-covered by the training sample. Scientific
validation confirms the robustness of the CNN results. We provide a catalogue of CNN-trained atmospheric parameters
and abundances along with their uncertainties for 420 165 stars in the RAVE survey.
Conclusions. CNN-based methods provide a powerful way to combine spectroscopic, photometric, and astrometric data
without the need to apply any priors in the form of stellar evolutionary models. The developed procedure can extend
the scientific output of RAVE spectra beyond DR6 to ongoing and planned surveys such as Gaia RVS, 4MOST, and
WEAVE. We call on the community to place a particular collective emphasis and on efforts to create unbiased training
samples for such future spectroscopic surveys.

Key words. Galaxy: abundances - Galaxy: stellar content - stars: abundances - techniques: spectroscopic - methods:
data analysis

1. Introduction

Stellar chemical abundances are key tracers of the star for-
mation history of the Milky Way and they are indicators of
the timing of successive star formation events. The relative
chemical abundances of stars thus allow us to disentan-
gle stellar populations and to put constraints on the nucle-
osynthetic origin of the respective elements Yoshii (1981);
Freeman & Bland-Hawthorn (2002). It allows us to con-
strain the composition of the gas cloud from which a star
was formed and the variations of the initial mass function,
particularly at the high-mass end (Wyse & Gilmore 1988;
Matteucci & Francois 1989). However, in order to perform

? The catalogue of atmospheric parameters and chemical
abundances presented in Section 10 is publicly available on the
RAVE website: https://doi.org/10.17876/rave/dr.6/020

this exercise on the scale of the Galaxy, it is necessary to
observe and reduce spectra for some hundreds of thousands
of long-lived stars that are representative of the broad kine-
matic, chemical, and age distributions of Galactic popula-
tions (Hayden et al. 2015; Buder et al. 2019).

Over the last two decades, multiple efforts have been
undertaken to provide the community with high-quality
stellar spectra, largely drawn from dedicated spectroscopic
surveys. The RAdial Velocity Experiment (RAVE) was the
first systematic spectroscopic Galactic archaeology survey
(Steinmetz 2003; Steinmetz et al. 2020b), targeting half a
million stars. While the initial aim was to measure radial
velocities of stars (Steinmetz et al. 2006), RAVE data pro-
cessing was later extended to include stellar atmospheric
parameters (Zwitter et al. 2008; Kordopatis et al. 2013),
chemical abundances (Boeche et al. 2011; Steinmetz et al.
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2020a), and Gaia proper motions (Kunder et al. 2017),
thus enabling chemo-dynamical applications (Ruchti et al.
2010, 2011; Boeche et al. 2013a,b, 2014; Minchev et al.
2014; Kordopatis et al. 2015; Antoja et al. 2017; Minchev
et al. 2019). Together with RAVE, the Geneva-Copenhagen
survey (GCS, Nordström et al. 2004) yielded pioneering
work in the comprehension of our Galaxy, solely based
on ∼ 17 000 nearby stars. The RAVE and GCS surveys
were followed by numerous spectroscopic surveys with a
broad variety of spectral resolving power. The Sloan Ex-
tension for Galactic Understanding and Exploration survey
(SEGUE, Yanny et al. 2009) obtained roughly 240 000 low-
resolution spectra (R=1 800). The Gaia-ESO survey car-
ried out a high-resolution investigation of 105 stars, based
on the UVES (Ultraviolet and Visual Echelle Spectrograph,
R=48 000) and GIRAFFE (R=16 000) spectrographs of the
Very Large Telescope (VLT, Gilmore et al. 2012). At a lower
resolution (R=1 800), the ongoing Large sky Area Multi-
Object Fibre Spectroscopic Telescope (LAMOST) observed
about one million stars in the northern hemisphere (Zhang
et al. 2019). The ongoing Apache Point Observatory Galac-
tic Evolution Experiment (APOGEE) just released their
Data Release 16 (Ahumada et al. 2020; Jönsson et al.
2020). This survey observed ∼ 400 000 stars in both hemi-
spheres using a high-resolution near-infrared spectrograph
(R ∼ 22 500). The Galactic ArchaeoLogy with HERMES
project (GALAH), an ongoing survey dedicated to chemical
tagging, has targeted nearly 350 000 stars at high resolution
(R ∼ 28 000, Buder et al. 2018) to provide detailed chem-
ical abundances. A common feature of all these endeavors
is that automated and eventually unsupervised data reduc-
tions and parameter determination algorithms have to be
employed, owing to the sheer number of spectra.

In the near future, the WHT Enhanced Area Velocity
Explorer (WEAVE, Dalton et al. 2018) and the 4-metre
Multi-Object Spectroscopic Telescope (4MOST, de Jong
et al. 2019) will deliver intermediate and high-resolution
observations of several millions of stars (see Chiappini et al.
2019 and Bensby et al. 2019 for details on the 4MOST low-
and high-resolution surveys of the bulge and discs, respec-
tively). The need for automatic and fast software for the pa-
rameterisation of stellar spectra will become even greater.

To derive atmospheric parameters and chemical abun-
dances, standard pipelines usually compare spectral mod-
els to observations, either localised around selected spec-
tral lines or, alternatively, over a broader wavelength range.
Methods range from the curve-of-growth fitting of spectral
lines (e.g. Boeche et al. 2011, SP_Ace Boeche & Grebel
2018), on-the-fly spectrum syntheses such as Spectroscopy
Made Easy (SME, Valenti & Piskunov 1996), on-the-fly
flux ratios such as A Tool for HOmogenizing Stellar pa-
rameters (ATHOS, Hanke et al. 2018), or a comparison
based on a synthetic spectra grid (FERRE Allende Prieto
et al. 2006; MATISSE Recio-Blanco et al. 2006; GAUGUIN
Bijaoui et al. 2012; Guiglion et al. 2016). These methods
have shown their efficiency in deriving precise and accurate
abundances (Jofré et al. 2019) for various spectral ranges
and spectral resolutions in the context of the major cur-
rent spectoscopic surveys, such as the Gaia-ESO Survey,
APOGEE, GALAH, and RAVE. These families of stan-
dard pipelines are essential because they are based on the
physics of stellar interiors, deriving atmospheric parameters
and chemical abundances that can be used as stellar labels
in the context of data-driven methods.

Indeed, data-driven approaches have started to play an
important role in estimating these stellar labels. Such meth-
ods transfer the knowledge from a reference set of data,
so-called training samples, to infer stellar labels.

The Cannon (Ness et al. 2015) is one of the pioneering
data-driven analysis packages and its reliability was demon-
strated through applications to spectroscopic surveys such
as APOGEE and RAVE (Casey et al. 2016, 2017). The
Payne (Ting et al. 2019) recently demonstrated that it is
possible to couple stellar spectra modeling and a model-
driven approach to reflect stellar labels. We note that the
Cannon uses observed spectra (with the same set-up, but
higher signal-to-noise than the survey) as the training data,
whereas the Payne uses synthetic spectra as its training set.

A few recent studies have used convolutional neural net-
works (CNNs) to infer atmospheric parameters and chemi-
cal abundances from high-resolution spectra. Leung & Bovy
(2019) derived 22 stellar parameters and chemical abun-
dances based on APOGEE DR14 spectra and labels, util-
ising their astroNN tool and purely observational data. On
the other hand, Fabbro et al. (2018) developed the StarNet
pipeline, which is based on a CNN and an input synthetic
spectra grid. They applied their StarNet to high-resolution
data of APOGEE and, more recently, to Gaia-ESO Survey
UVES spectra (Bialek et al. 2020). Zhang et al. (2019) used
StarNet to estimate atmospheric parameters and chemical
abundances of LAMOST spectra, based on APOGEE re-
sults.

Combining spectoscopy and photometry has been ex-
plored by Schönrich & Bergemann (2014) with physical
modelling and a Bayesian approach on SEGUE data. The
goal of the present paper is to show that a CNN-based ap-
proach can be employed for an efficient transfer of stellar la-
bels from high resolution spectra to intermediate-resolution
spectra. This is done in conjunction with additional observ-
ables in the form of stellar magnitudes and parallaxes. We
aim to derive atmospheric parameters and chemical abun-
dances from intermediate-resolution RAVE DR6 spectra,
based on a training sample of common stars with higher
resolution APOGEE DR16 (Ahumada et al. 2020) spectra.
We also show that using broad-band infrared photometry
and parallax measurements as an extra set of constraints
during the training phase improves the atmospheric param-
eters considerably. This study represents a complementary
approach to the RAVE project’s main parameter pipeline,
and enhances the scientific output of the RAVE spectra.
This work also has a good synergy with the next full Gaia
release (Gaia DR3), which will provide spectra from the
Radial Velocity Spectrometer (RVS), which are very simi-
lar to RAVE spectra in terms of wavelength coverage and
resolution.

The paper is laid out as follows. In Sect. 2, we present
the data we used to build the training sample. In Sect. 3, we
present the main features of the CNN and provide details
of the training phase. In Sect. 4, we deduce the atmospheric
parameters and chemical abundances for more than 420 000
RAVE spectra, with the error budget treated in Sect. 5. In
Sect. 6, we compare and validate the tests with respect to
external data sets. The scientific verification for some typi-
cal Galactic archaeology applications is presented in Sect. 8.
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Fig. 1. Normalised distribution of S/N of RAVE DR6 spectra
in the observed sample (blue dashed line, 420 165 stars) and in
the training and test samples (solid orange line 3 904 stars in
common between RAVE DR6 and APOGEE DR16).

2. Training sample

One of the main goals of this study is to show that high-
resolution stellar labels can be used to deduce atmospheric
parameters and chemical abundances from lower resolution
spectra. For this purpose, we need to build a training set
that contains the labels - namely, the parameters we wish to
derive (in our case, the atmospheric parameters and chemi-
cal abundances) and the observables (the spectra and pho-
tometric measurements). Here, we chose to work with la-
bels provided by the APOGEE survey and observables from
the RAVE spectroscopic survey, complemented by 2MASS
(Skrutskie et al. 2006), Gaia DR2 (Gaia Collaboration et al.
2018a), and ALL_WISE photometry (Wright et al. 2010)
as well as Gaia DR2 astrometry (Lindegren et al. 2018).
Since the APOGEE survey, on average, offers higher resolu-
tion and higher signal-to-noise ratios (S/N) than the RAVE
survey, we can translate the higher quality of the derived
APOGEE labels to RAVE.

We take advantage of the latest release of APOGEE,
namely, DR16 (Ahumada et al. 2020; Jönsson et al. 2020),
which provides high-quality atmospheric parameters and
chemical abundances. The APOGEE spectra are taken at
near-infrared wavelengths with high resolution (R = 22 500
and λ ∈ [1.5 − 1.7]µm). The RAVE DR6 spectra have a
spectral resolving power of R ∼ 7 500. We re-sampled the
spectra to a common wavelength coverage of λ ∈ [8 420 −
8 780]Å, with equally spaced 0.4Åpixels.

We performed a cross-match based on the Gaia DR2
Source IDs between the 518 387 RAVE DR6 observations
and the 473 307 observations of APOGEE DR16, resulting
in a sample of ∼ 7 000 sources. In order to build a clean and
coherent training sample based on APOGEE stellar labels
and RAVE spectra, we cleaned this cross-matched sample
in the following way.

Firstly, we required that a given star has available mea-
surements of Teff, log(g), [M/H], [Fe/H], [α/M], [Mg/Fe],
[Si/Fe], [Al/Fe], [Ni/Fe] and their associated errors in the
APOGEE set. We excluded parameters for stars with
S/N_APOGEE<60 (per pixel) and required the ASP-
CAP1 parameterisation flag to be aspcap_flag=0. The
mean APOGEE S/N of the sample is 420 per pixel. We
filtered stars with a bad flag on chemical abundances, that

1 APOGEE Stellar Parameter and Chemical Abundance
Pipeline, García Pérez et al. 2016

is, selecting only X_Fe_FLAG=0. The ASPCAP pipeline
uses spectral templates for matching any observations. Such
procedures can lead to systematics (due for example to in-
complete line list) that will be transferred by the CNN.

Secondly, we adopted the normalised, radial-velocity-
corrected spectra from the DR6 of RAVE. The normalisa-
tion has been performed by the RAVE survey, with an iter-
ative second-order polynomial fitting procedure (see Stein-
metz et al. 2020b for more details). We required that the
spectra have at least S/N>30 per pixel. We excluded spec-
tra showing signs of binarity or continuum issues (’c’, ’b’,
and ’w’ according to the RAVE DR6 classification scheme,
see Steinmetz et al. 2020b).

Finally, as detailed in Sect 3.2, we used absolute mag-
nitudes during the training process. We required that a
star have an apparent magnitude available in the 2MASS
JHKs, ALL_WISE W1&2 pass-bands, and Gaia DR2
G, GBP GRP , and Gaia parallaxes (with parallax errors
ep < 15%). As such apparent magnitudes can suffer from
dust extinction, we took advantage of the StarHorse cat-
alogue, which provides improved extinction measurements
based on RAVE and Gaia DR2 data (Queiroz et al. 2020,
see also Santiago et al. 2016; Queiroz et al. 2018 for de-
tails on the method). We required that all spectra have an
available StarHorse extinction (AV ).

The resulting common sample between APOGEE DR16
and RAVE DR6 consists of 3 904 high-quality RAVE spec-
tra and high-quality atmospheric parameters and chemical
abundances. The RAVE S/N distribution of this sample is
presented in Fig. 1. We carefully checked the spectra of the
3 904 stars of the sample in order to reject any misclassified
stars, possibly having a very low S/N. Some examples of
RAVE spectra are presented in Fig. 2, for typical metal-
poor and metal-rich dwarfs and giants. Kiel diagrams of
the 3 904 targets based on APOGEE DR16 parameters are
presented in the left panels of Fig. 7.

3. Training the network

An artificial neural network consists of several layers of neu-
rons that are interconnected. The strength of connections
between the neurons is governed by the weight of each con-
nection. This feature enables the network to translate the
input data vector to the desired output labels. The weights
need to be set to values with which the translation becomes
meaningful. For example, a stellar spectrum sampled at N
wavelength points is fed into a neural network with N input
neurons and the network produces an output in the form of,
for instance, effective temperature. The setting of weights
is done through training. This is a process of passing a lim-
ited set of data vectors through the network and gradually
adjusting the weights so that the output matches the pre-
determined labels of the data vectors. Each passing of the
input data and adjustment of the weights is known as an
epoch and many epochs are needed to successfully train the
network. Once this is done, a new data vector can be passed
through the network and we obtain its label as a result. We
note that convergence is reached when the error from the
model has been sufficiently minimised. In theory, it could
be the case that the desired level of error minimisation is
never reached and the network would run indefinitely. We
detail in Sect. 3.3 how we stop the training in such cases.
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Fig. 2. Example of four typical metal-poor and metal-rich dwarfs and giants RAVE spectra from the training sample. The
RAVE_OBS_IDs and the atmospheric parameters are indicated in the top left corner of each panel. Apart from the prominent
CaII triplet lines, the RAVE spectra also show a variety of more subtle spectral features (main chemical abundance diagnostic
lines are over-plotted).

3.1. Architecture of the CNN

In Fig. 3, we present the architecture of the neural network
used in this study. It is composed of three convolutional lay-
ers and two fully connected or dense layers. In the subsec-
tion below, we justify the reason for utilizing these features.
We used the Keras python libraries for coding the network
(Chollet et al. 2015). The stellar labels are normalised, rang-
ing from 0 to 1 by using a Min-max normalisation.

3.1.1. Convolution and dense layers

Convolution layers are the key for detecting patterns and
features in images (see e.g. Cires,an et al. 2011 for more
details on this topic). In the present study, we work with
one-dimensional normalised stellar spectra characterised by
spectral line features. Such spectral features are indicators
of the physical properties of the stars (temperature, grav-
ity, chemical composition, etc). The ability to capture the
relations between the different wavelength pixels in a spec-
trum, as opposed to treating them as independent entities,
is the key to improved performance and this is provided by
the convolutional layers.

To understand the impact of these types of layers we ex-
perimented with training our network with and without the
convolution stage. In comparison to the network with the
convolution stage, the training phase to find a stable solu-
tion is three to four times longer for the non-convolutional
network. In addition to a lengthier training period, the out-
put parameters are not recovered as precisely. This applies
in particular to chemical abundances. After trying many
different layouts, we adopted a network with three convo-
lution layers that contain eight, four, and two filters, respec-
tively (as shown in Fig. 3). We adopted a kernel size of ten
pixels for all three layers. Tests revealed that kernel sizes
between 5 to 20 pixels tend to extract features efficiently.
Much larger kernels (>40 pixels) degrade the performance.
2

2 We note that the performance of the network is not impacted
by a random uniform shift of a spectrum’s continuum of up to
20% in flux. This implies that that the network does not extract
information from the overall level of the continuum.

Between the convolution layers and the fully connected
part of the network, we used a dropout layer that ensures
that a certain randomly chosen fraction of the neurons are
not used at each of the epochs during the training phase.
This type of regularisation prevents the over-fitting the net-
work and also prevents the algorithm from relying on a
smaller part of the network alone. We tested a range of frac-
tions from 10 to 30%, with no major change in the training
phase. We adopted 20% for the final analysis.

The fully connected layers (also called ’dense’ layers)
following the convolutional stage are a more common type
of neural network layers. They receive the output of the
convolutional stage in the form of learned spectral features
and convert them to the output labels (atmospheric param-
eters, abundances) that are sought. We must allow enough
complexity in the network at this stage for it to be able
to model the non-linear relations between features and la-
bels. We adopted the Leaky Rectified Linear Units (Leaky
ReLU) activation function instead of Rectified Linear Units
(ReLU), allowing us to face the dead ReLU problem (i.e.
null or negative ReLU leading to no learning in the layers
below the dead ReLU). We are, thus, less sensitive to the
initialisation of the network.

3.1.2. Initialisers and cost function

The weights of the CNN must be initialised prior to the
training. The choice of how we initialise them can influence
the performance of the network. We adopted the default
initialiser for our convolution and dense layers, namely,
the ’glorot_uniform’ and the default bias initialiser, ’ze-
ros’, meaning that the weights prior to training are drawn
from a uniform distribution within a certain range.

To train the network, we need a cost function that eval-
uates how good the network’s performance is at each itera-
tion and which would also allow us to compute the gradient
in the weight space so the difference between the output
and pre-determined labels can be minimised. The choice of
this function is important. We experimented with a sim-
ple mean-squared error loss-function and a negative log-
likelihood criterion. Tests performed on the negative log-
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Fig. 3. Representation of the architecture of the Keras model
used in this study. The input layer (the spectra) is passed
through three steps of convolution (Conv1D). Then, we ran-
domly drop 20% of the neurons at each epoch of training with
the dropout layer in order to prevent overfitting. We then flatten
the output for the next dense layer (also called a fully connected
layer). As an additional input, we include eight absolute mag-
nitudes (2MASS JHKs, ALL_WISE W1&2, and Gaia DR2 G,
GBP GRP passbands) and one AV correction (input layer with
shape of 9). We concatenate it to the main part of the network in
the form of 27 neurons. The fully connected part of the network
is then composed of two dense layers. The output is an array
of nine parameters (atmospheric parameters and six chemical
abundances).

likelihood criterion revealed that such a criterion appears
to be inferior for our science case, and it adds too much
complexity to the framework.

3.1.3. Effect of noise in the training phase

The training and test samples include in total 3 904 stars
with S/N > 30 per pixel. As a test, we constrained this
range to S/N > 40 (2 529 stars) and S/N > 50 (1 289
stars). With a lower number of stars, the performance nat-
urally tends to degrade. We believe, however, that this lack
in performance is only due to the fact that we have a lim-
ited common sample with APOGEE. In general, high S/N
data and sufficient statistics lead to a better training phase,
but lower S/N spectra also come with a higher degree of
correlated noise, which the network is likely to learn.

As another check, we extended the S/N range to S/N >
20, S/N > 15 and S/N > 10 per pixel, leading to 4 802,
5 023, and 5 136 stars in the training sample. We concluded
that including such low-S/N data in the training phase
tends to reduce the quality of the training and degrades
the overall performance.

We tried to train a network with a sample composed
only of stars with S/N < 30, finding that no robust solu-
tion could be reached, probably owing to to the spectral
information being too hidden by noise. Especially for the
chemical abundances, the network is unable to reproduce
the main Galactic trends and basically fits a straight line
in the [α/M] versus [M/H] plane instead of reproducing the
α−rich and α−poor sequences. A similar finding also holds
for other elements. Our conclusion is that an efficient train-
ing cannot be performed if only low S/N stars are present
in the training set.

We recommend that for future spectroscopic surveys
particular attention should be given when defining the
training sample S/N range, because too low S/N spectra
lead to worse training and performance for the CNN.

3.2. Feeding absolute magnitudes to the neural network

In addition to spectra, our input includes broad-band pho-
tometry. Absolute magnitudes provide strong constraints
on the effective temperature and the surface gravity of
a star. We adopted the 2MASS apparent magnitudes m
in the passbands JHKs (1.235, 1.662, and 2.159µm, re-
spectively), ALL_WISE W1 and W2 pass-bands (3.4, and
4.6µm) and Gaia DR2 GBP (328.3-671.4 nm), and GRP
(629.6-1 063.7 nm) and G (332.1-1 051.5 nm) bands, using
the cross-matches provided in RAVE DR6 (Steinmetz et al.
2020b). The distributions of these apparent magnitudes are
shown in Fig. 4.
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Fig. 4. Normalised distribution of Gaia, 2MASS, ALL_WISE
apparent magnitudes and extinction (AV ) for the training sam-
ple (blue, solid), the test sample (orange, dotted), and the ob-
served sample (green, dashed). Those magnitudes are converted
to absolute magnitudes and are used during the training phase.
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We computed absolute magnitudes, M, using the paral-
laxes (p) from the second data release of the Gaia satellite
(Gaia Collaboration et al. 2018b), using M = m + 5 ×
[log10(p)+1]. We selected the best measurements for which
we required the errors on the parallax, ep, to be better that
20% (96.5% of the spectra of the initial cross-match with
APOGEE DR16 fulfil this criterion). We discuss the perfor-
mances of the CNN parameterisation for stars with parallax
errors larger than 20% in Appendix A.

As stellar magnitudes can suffer from dust extinction
even in the infrared passbands, we adopted the extinction
correction AV from StarHorse (see Queiroz et al. (2018);
Anders et al. (2019) for more details). The distributions of
AV for the training, test, and observed sample are presented
in Fig. 4. We find that 78% of our stars have an extinction
lower than AV = 0.5 mag. Our tests found that stars with
AV > 0.8 show a smaller error in Teff by 20K if we include
this correction.

Our choice to compute absolute magnitudes from paral-
laxes instead of, for example, StarHorse distances was moti-
vated by the fact that we want to restrict our model depen-
dency as much as possible. As a test, we computed absolute
magnitudes using StarHorse distances, but no notable dif-
ference in the training was measured.

The eight absolute magnitudes and the extinction cor-
rections were then added smoothly to the CNN architec-
ture, directly in the fully connected part, as 27 neurons (see
scheme in Fig. 3). We tested several layer sizes for this part:
below 27, the performances tended to degrade and above
27, no further improvement was notable. We note that we
did not directly apply the AV correction to the absolute
magnitudes, thus leaving the network with more flexibility
to learn from it.

It has been shown that Gaia DR2 astrometric measure-
ments have small systematic errors, in particular, an offset
of the parallax zero-point that varies across the sky. This
parallax zero-point offset is dependent on magnitude and
colour (Lindegren et al. 2018; Arenou et al. 2018). This off-
set is roughly of the order of 50 µas. Following the way
we compute our absolute magnitudes, this parallax offset
translates into a shift of the order of 0.01 magnitudes. In
the context of this study, this offset is negligible. We refer
the reader to Sect. 7 for a discussion on the advantage of
adding photometry during the training process.

3.3. Training an ensemble of 100 CNNs

From the quality cuts and selection process detailed above,
our starting sample is thus composed of 3 905 stars, with
stellar labels corresponding to atmospheric parameters and
chemical abundances. Before training the CNN, we split
the data into a training sample and a test sample, as is a
common practice in the machine-learning community. We
adopted a fraction of 6% for the test sample to retain a large
the training sample. This led to 3 669 stars in the training
sample and 235 stars in the test sample. We tested several
test and training fractions, from 3 to 40%, with no major
difference in terms of training. In order to provide stable re-
sults and errors, we built an ensemble of 100 trained CNNs,
all of them initialised differently. A similar method was re-
cently used by Bialek et al. (2020).

One challenge while using a CNN is to stop the learning
phase at the right time. The model can under-fit the train-
ing and test samples in case of insufficient training. On
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Fig. 5. Top: Value of the cost function for the test sample
(Test_loss) for the 100 CNN runs as a function of the epoch.
Middle: Accuracy computed on the test sample (Test_acc) as
a function of the epoch. Bottom: Distribution of 100 values of
Test_loss after the training was completed. Vertical black line
indicates the 80th percentile of the distribution.

the other hand, in cases of over-fitting, the training sample
will perfectly fit the model, but the performances on the
test sample will degrade drastically (which is the main rea-
son behind the training-test split). One solution is to stop
the training phase when the performance on a validation
dataset starts to degrade. In this context, we adopted the
commonly used early-stop procedure. If after 40 epochs (the
so called patience period), the solution does not improve, we
stop the training. We tried different levels of patience, find-
ing that 40 epochs provide the best compromise between
final accuracy and computation time.

Typical curves of the cost functions ’Test_loss’ for the
test sample are presented in Fig. 5 for the 100 runs, as
well as the accuracy Test_acc. It is clear that the training
phase takes no more than 120 epochs. Training the CNN
takes between 70 to 90 seconds per run. We can also see
that the last value of the cost function of the test sample
(Last_Test_loss) can vary from one run to another. We
plot such values in the bottom panel of Fig. 5. We excluded
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networks with too large a value of Last_Test_loss (every-
thing inside of the lower 20th percentile of the distribution).

3.4. Result of the training

In Fig. 6, we compare the labels used as input of our CNN
(from APOGEE DR16) to those trained by the network (av-
eraged over the 80 runs). The network is able to learn a sig-
nificant amount of information about the main atmospheric
parameters Teff, log(g), [M/H] as well as [Fe/H]. No obvi-
ous systematic trends are visible while the dispersion is low,
for both training and test samples. The mappings of Teff
and log(g) are very similar between the training and test
samples, as seen in the distributions. Abundances [α/M],
[Si/Fe], [Mg/Fe], [Al/Fe] and [Ni/Fe] compare well with the
input labels. Because of the poor mapping of the parameter
space, the stars with very low or very high abundance ratios
can suffer from systematic trends, especially in the metal-
poor regime. It is, for example, visible for the [Al/Fe]-poor
tail. In general, the dispersion in the test sample is similar
to the one in the training sample, indicating that we do
not over-fit our data. Finally, we note that for [Al/Fe] and
[Ni/Fe], the comparison with the input APOGEE DR16 la-
bels does not track the 1-to-1 relation, even for the bulk
of the data, meaning that the model predicted during the
training could suffer from systematic trends for those two
elements. In general, we warn the reader that systematics
a low S/N, typically S/N < 30, can be present in the data.
The abundances for those stars should be thus used with
caution.

In Fig. 7, we present a Kiel diagram of Teff and log(g)
from the training sample (left columns), for the training
(top) and test (bottom) samples. In the right columns, we
present the labels as trained by the CNN. The main fea-
tures in the Kiel diagram are well recovered in both train-
ing and test samples: the position and inclination of the
red clump, the giant branch with a smooth metallicity se-
quence, the turn-off sequence. The sequence of the very cool
dwarfs spans a large Teff range, and shows low scatter even
in the very cool regime.

In the left panels of Fig. 8, we present the abundance
patterns used as input for our CNN, for both training and
test samples. We recall that those labels ([Fe/H], [α/M],
[Si/Fe], [Mg/Fe], [Al/Fe], [Ni/Fe]) are derived by APOGEE
DR16. In the right panels, we present the labels as trained
by our CNN, averaged over 80 runs. The chemical patterns
of the trained labels, in particular [Al/Fe], show slightly
less scatter than the original labels (around 0.05 dex). This
effect comes mainly from the fact that during the training,
the neural network values tend to stay within the bound-
aries of the data. In spite of the poor mapping of the pa-
rameter space in the metal-poor regime, the network is still
able to provide robust output in that metallicity regime.

In Fig. 9, we present the averaged [α/M] ratios of the
training sample, as a function of [M/H], for different bins of
Teff and log(g). One can see that the [α/M]−rich sequence is
mainly composed of red giant branch stars, while only a few
stars are dwarfs. Similar plots are presented in Appendix D
for [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe].

4. Estimation of atmospheric parameters and
abundances of RAVE DR6 spectra

In this section, we provide details of the way we built an
observed sample of stars based on RAVE DR6 spectra,
then we present the predicted atmospheric parameters and
chemical abundances of this observed sample.

4.1. Creation of the observed sample

Our observed sample is based on RAVE DR6 normalised
radial-velocity-corrected spectra (Steinmetz et al. 2020b).
We required that a spectrum have ALL_WISE W1&2,
2MASS JHKs photometry and Gaia DR2 G, GBP , GRP
bands available as well as its Gaia DR2 parallax (no cut on
parallax errors). We checked that all spectra have StarHorse
extinction measurements (AV , Queiroz et al. 2020). Finally,
we restricted our observed sample to a range of S/N>10 per
pixel (as determined by RAVE DR6), removing stars with
problematic spectra ("c" and "w" according to the RAVE
DR6 classification). This leads to an observed sample com-
posed of 420 165 stars with S/N > 10 per pixel. The S/N
distribution of the observed sample is presented in Fig. 1.

Adopting the orbital data from Steinmetz et al. (2020a),
we carefully checked that both the training and observed
samples probe the same Galactic volume, in terms of mean
Galactocentric radii and height above the Galactic plane.
Also, as the stellar age distribution can vary from one sam-
ple to another we took advantage of the StarHorse ages of
Queiroz et al. (2020) to check the age distributions of both
the training and observed samples. The age distributions
cover the same range and their shapes are consistent. Tests
performed with BDASP ages from Steinmetz et al. (2020a)
have led to the same conclusion.

4.2. Prediction of atmospheric parameters and abundances

Once a given CNN is trained, we can predict atmospheric
parameters and chemical abundances for the entire ob-
served sample. Predicting nine parameters for 420 165 stars
is quick, lasting ten seconds on a simple GPU unit. Thus,
estimating parameters for 80 CNN runs does not take more
than 15 minutes. We then computed a set of parameters
averaged over the 80 runs, as well a typical dispersion used
as error (see Sect. 5).

4.2.1. Atmospheric parameters

In Fig. 10, we present a Kiel diagram of the observed sam-
ple, sliced in S/N, for 371 967 stars with S/N > 20 per pixel,
and parallax errors better than 20%. We plotted such a di-
agram in two different fashions: colour-coded with overall
metallicity, and normalised-density map. For such a plot,
we selected normal and hot stars (’n’ and ’o’) according
to the RAVE DR6 classification scheme (Steinmetz et al.
2020b).

At low S/N, we recover the main features of a typical
Kiel diagram, especially the cool main sequence and the
location of the red clump. The bottom of the cool main
sequence shows a gradient in metallicity, while the turn-off
shows no clear gradient. For very high S/N, the cool dwarf
sequence is very narrow, while the red giant branch shows a
slight warp as in the training sample. At low temperatures
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Fig. 6. One-to-one relation between the CNN trained labels (y-axis) and the input labels (x-axis, APOGEE DR16 data). The
training sample is plotted with blue circles, while the test sample is shown with orange crosses. The x- and y-axis parameters are
presented as histograms with a logarithmic scale. For each parameter, a typical mean difference and scatter are computed in both
sets. We plotted the difference ∆ between the CNN trained labels and the APOGEE DR16 input labels with the same symbols
and colours, and its histogram with a logarithmic scale.

(Teff < 4300K), we are able to properly characterise giants
and dwarfs, putting them on the right sequence, with no
degeneracy observed.

In Fig. 11, we present normalised distributions of Teff,
log(g), [M/H], and [Fe/H] of the training, test, and ob-
served sample, for S/N > 40. We also added distribu-
tions of RAVE DR6 parameters for the same stars (with
algo_conv_madera=0, corresponding to the best solutions,
see Steinmetz et al. 2020a for more details). We first see
that the training and test sample distributions tend to track
each other very well and that the observed sample is well
defined in the training and test sample limits (defined by
the grey areas). The same behaviour is observed for [Fe/H],
because APOGEE DR16 [Fe/H] and [M/H] tend to track
very well each other (Jönsson et al. 2020). Both Teff and
log(g) from RAVE DR6 track pretty well the CNN distri-

butions. In addition, both RAVE DR6 [M/H] and [Fe/H]
present a metallicity-dependent shift with respect to our
study, varying basically for zero in the metal-rich regime
to roughly 0.1 dex in the metal-poor regime. It is a known
systematic shift between RAVE DR6 and APOGEE DR16;
see, for example, Figure 22 in Steinmetz et al. (2020a).

4.2.2. Individual chemical abundances

In Fig. 12, we present abundance patterns for [α/M] as
a function of the overall metallicity [M/H]. We selected
301 076 stars with S/N>30 per pixel, RAVE DR6 ‘n&o’
classification (’normal’ and ’hot’ stars) and parallax errors
lower than 20%. In order to disentangle the different stel-
lar classes, we decomposed our sample in bins of 500K in
Teff, and 1 dex in log(g), and present the [α/M] vs. [M/H]
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Fig. 7. Top left: Kiel diagram of the APOGEE DR16 stars (used in the training sample), colour-coded with overall [M/H]. Top
right: For the same stars, trained labels, averaged over 80 trained CNN. Bottom left: APOGEE DR16 parameters of the test
sample. Bottom right: Trained labels, averaged over 80 trained CNN, for the same test sample. The right panels correspond to
what the network learns from the APOGEE parameters (left panels).

trends for different locations in the Kiel diagram (see Ap-
pendix D for similar plots with [Si/Fe], [Mg/Fe], [Al/Fe],
and [Ni/Fe].)

Dwarf stars exhibit typical low-[α/M] sequences, while
giants populate both the low-[α/M] and high-[α/M] range
up to halo chemistry. Red clump stars show a smooth
transition from the low- to the high-[α/M] regime, with a
strongly decreasing density. On the other hand, in the range
of 4000 < Teff < 4500K and 1 < log(g) < 2, the high-[α/M]
regime is clearly marked by a continuum of stars from solar-
α up to 0.25 dex. Such behaviour is also observed when
plotting [Si/Fe] and [Mg/Fe] as a function of [Fe/H] (see
Appendix D).

We note that the low-metallicity high-[α/M] plateau
shows different behaviours in different regions of the Kiel
diagram. This is mainly driven by the fact that we only
have a few stars for [M/H] < −1 dex in the training sample,
showing quite different trends. For future machine-learning
applications, we should put substantial efforts into prop-

erly mapping the parameter space when creating a training
sample. The case of [Al/Fe] is discussed in Appendix D.

We have shown that in using a CNN approach and high-
resolution stellar labels, we are able to provide reliable
[α/M] values for more than 301 076 stars, thus extending
the scientific output of RAVE spectra beyond RAVE DR6.

In Fig. 11, we present normalised distributions on CNN
chemical abundances in the training, test, and observed
sample, as well as the corresponding values from RAVE
DR6 ([α/Fe], [Al/Fe], [Ni/Fe], Steinmetz et al. 2020a). We
first note that both training and test sample distribu-
tions show basically the same shape. For [Mg/Fe], the bi-
modality is not well represented in the test sample, because
of a larger scatter in [Mg/Fe] at a given [Fe/H]. As for the
atmospheric parameters, the chemical abundances in the
observed sample track pretty well the training and test sam-
ple, for this regime of S/N (S/N > 40). We note that for
lower S/N regimes, the distributions of the observed sam-
ple present larger tails than the training sample. Finally the
[α/Fe], [Al/Fe], and [Ni/Fe] ratios from RAVE DR6 present
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Fig. 8. Left panels: Abundance patterns of the APOGEE DR16
labels used as input for our CNN, for the training sample (blue)
and for the test sample (orange). Right panels: Abundance pat-
terns of the averaged labels trained over 80 CNNs.

broader distributions than the present study. Such an effect
is already visible in Figure 22 of Steinmetz et al. (2020a),
where RAVE DR6 and APOGEE DR16 are compared. The
RAVE DR6 abundances show a larger scatter at a given
metallicity, mainly because of lower spectra resolution. In
the present study, besides the intermediate resolution of the
RAVE spectra, our CNN is able to provide more precise
abundances, showing narrower distributions. We compare
further [α/Fe] ratios between our study and RAVE DR6 in
Sect 6.5.

5. Determination of uncertainties

Despite the fact that we employ the same input labels in ev-
ery run, the CNN does not provide the same trained labels

because a new set of weights is automatically generated by
the CNN during each run and the trained labels then change
slightly. We showed the resulting average trained labels in
Sect 3.4. Here we present the resulting errors (precision),
defined as the dispersion of each label for the 80 runs. As
a result, the errors in both test and observed samples are
derived in the same fashion. In Fig. 13, we present the error
on our nine atmospheric parameters and abundances as a
function of Teff, log(g) and [M/H], for 391 035 stars with
S/N > 20 per pixel. The uncertainty for the nine param-
eters tend to increase for both the hot and the cool tails.
The same effect is visible for the stars with log(g) < 2. On
average, the dwarf stars tend to show larger errors than the
giants. The uncertainties on the nine parameters tend to in-
crease with respect to the bulk of errors for the metal-poor
tail. In the same figure, we present normalised distributions
of uncertainties for the observed sample, together with the
training and test samples. Overall, the trained labels show
on average smaller errors than the test and the observed
sample, mostly because the training sample covers a higher
S/N range. The test and observed sample tend to track each
other well, meaning that we do not over-fit our model.

As a test, we added random offsets to the labels of the
training sample, drawn from Gaussians with widths given
by the quoted uncertainties from APOGEE DR16. We ob-
served that the resulting error distributions barely change.

A recent study by Bialek et al. (2020) adopted a nega-
tive log-likelihood criterion instead of a mean squared error
loss-function as employed in our study. In that way, they
were able to derive the individuals error of the predicted
atmospheric parameters. We explored such a criterion. Be-
cause of the limited number of stars in our training sample,
this criterion did not provide improved results. We therefore
kept a simple mean squared error loss-function and errors
derived over several CNN runs.

The present uncertainties reflect, in fact, the internal
dispersion of the CNN. Figure 13 shows that the method is
internally precise and stable if we consider such types of se-
ries of trainings (Monte-Carlo type). As a consequence, such
uncertainties could be then underestimated, with respect to
typical external errors that we would expect at such a res-
olution. Typical external errors for classical pipelines using
RAVE spectra report errors of roughly 100K in Teff, 0.15-
0.2 dex in log(g), and 0.10-0.15 dex in metallicity and chem-
ical abundances (see for exemple Steinmetz et al. 2020a).
However, as presented in Fig.17, we note that the disper-
sion in atmospheric parameters and abundances for a star
with several RAVE observations is very compatible with
the uncertainties derived with our method.

Machine-learning methods are, within limits, able to ex-
trapolate and provide parametrisations for stars outside
the boundaries of the training sample parameter space.
Together with individual uncertainties on the parame-
ters and abundances, we provide individual flags for such
stars. As an example, a star parametrised with an effec-
tive temperature inside the training sample space will have
flag_teff=0, while the flag will be equal to 1 if Teff is out-
side that range. Stars with flags equal to 1 may suffer from
systematics caused by extrapolation outside the training
sample parameter space.
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Fig. 9. Averaged trained abundance patterns [α/M] vs. [M/H] for the training sample (red dots). Trends are shown for sub-samples
in Teff (500K bins) and log(g) (1 dex bins) shown as in-set Kiel diagrams, where the overall stellar distribution is plotted in blue
with the selected subsample highlighted in red. The number of stars is indicated in the top right corner of each panel.

6. Validation of atmospheric parameters and
abundances

In this section, we proceed to several comparisons with re-
spect to external datasets in order to validate our atmo-
spheric parameters and chemical abundances. We refer the
reader to Appendix B for a comparison with stellar clusters
and to Appendix C for a comparison of our CNN results
with a sample of HR data.

6.1. Validation of surface gravities with asteroseismic data

The asteroseismology of stars with solar-like oscillations is
now widely used in large spectroscopic surveys as an ad-
ditional constraint since it ultimately calibrates the log(g)
measured from spectra (RAVE: Valentini et al. 2017; GES:
Pancino & Gaia-ESO Survey consortium 2012; APOGEE:
Pinsonneault et al. 2018; LAMOST: Wang et al. 2016;
GALAH: Kos et al. 2017). For stars with solar-like oscil-
lations, as well as red giants, ∆ν, the frequency at maxi-
mum oscillation power, is used for determining log(g)seismo

using only the additional parameter, Teff. The log(g)seismo

value depends very weakly 3 on Teff, making this quantity
reliable even for surveys affected by degeneracies such as
RAVE (Kordopatis et al. 2011a, 2013).
3 According to Morel & Miglio 2012, a shift of 100 K in Teff
changes log(g)seismo only by 0.005 dex.

The RAVE survey has some overlap with the fields ob-
served by the K2 mission, the re-purposed Kepler satellite
(Van Cleve et al. 2016). In Valentini et al. (2017), a first
comparison (and consequent calibration) of the RAVE spec-
troscopic log(g) with the seismic value was performed using
89 targets in K2-Campaign 1. Information on the RAVE-K2
sample, the reduction of the seismic data, and the calcula-
tion of the seismic log(g) can be found in Valentini et al.
(2017). In the first six Campaigns of K2, solar-like oscil-
lations were detected for 462 red giants (Steinmetz et al.
2020a, Valentini et al, in prep.) and the seismic log(g) was
derived. Here, we compare these seismic log(g) values with
the values determined using our CNN.

Fig. 14 shows that the labels (APOGEE DR16) and
the K2 log(g) values exhibit a tight and un-biased 1-to-1
relation (left panel, bias = −0.03 dex and dispersion σ =
0.04 dex). The K2 log(g) values also agree well with the
labels trained by the CNN (middle panel), with a slightly
higher scatter (σ = 0.09 dex). Finally, in the right panel
of Fig. 14, we compare the predicted surface gravity for
433 common stars of our observed sample with K2 data,
finding an very good agreement with a very small bias and
a dispersion of 0.14 dex. We note that the log(g) values from
RAVE DR6 show a larger scatter with respect to K2 data
than our CNN log(g) values (see Figure 23 of Steinmetz
et al. 2020b).
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Fig. 10. Kiel diagram of 371 967 stars of the observed sample,
sliced in S/N, colour-coded by [M/H] (left column) and plotted
as a normalised density map (right column). Only stars with ’n’
and ’o’ classification (normal and hot stars), and parallax er-
rors better than 20% are plotted. The main features of the Kiel
diagram are well recovered in the observed sample. The 6 blue
triangles in the bottom panel correspond to the yellow super-
giant Gaia "5983723702088571392", discussed in Section 6.6.

Keeping in mind that we are limited by the narrow spec-
tral range of the RAVE spectra, those comparisons illus-
trate all the potential of a method based on CNN. A more
detailed discussion on the impact of the use of photometry
can be found in Sect. 7.

6.2. Comparison with RAVE DR6 BDASP log(g)

In the latest data release of RAVE (DR6, Steinmetz et al.
2020a), improved log(g) estimates based on Gaia DR2 par-
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Fig. 11. Normalised distribution of atmospheric parameters and
abundances in the training sample (blue), in the test sample
(yellow), and the observed sample (red). For the same stars of
the observed sample, we show a normalised distribution of the
corresponding RAVE DR6 parameters (taken from Steinmetz
et al. (2020a)). The grey areas define the zones outside the limits
of the training sample parameters space.

allaxes and Bayesian isochrone fitting are provided, thanks
to the BDASP pipeline (McMillan et al. 2018). This section
is dedicated to comparing RAVE/BDASP surface gravities
to those derived by our CNN in the present study.

The left panel of Fig. 15 compares the input APOGEE
DR16 log(g) with those of BDASP . The dwarfs (log(g) >
3.5) show a shift of about +0.1 dex, while the giants do
not show any bias with respect to RAVE DR6. The typical
dispersion is 0.14 dex for both types of stars with a bias of
0.05 dex. We notice that the surface gravities provided by
APOGEE DR16 show a smaller dispersion around the red
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Fig. 12. The [α/M] vs. [M/H] for 301 076 stars of the observed sample with S/N>30 per pixel, RAVE DR6 ’n&o’ classification,
and parallax errors lower than 20%. The sample is presented in panels corresponding to cuts in effective temperature and surface
gravity (steps of 500K in Teff and 1 dex in log(g). For each panel, we overplotted a Teff − log(g) diagram with the location of the
plotted stars marked in red.

clump as compared to RAVE DR6, hence, the presence of
a diagonal line at log(g) ∼ 2.5.

Concerning the labels trained by our CNN, the bias de-
creases slightly (+0.04 dex), while the scatter drops to 0.09
dex. This decrease in the scatter is directly due to the fact
that we use absolute magnitudes during the training pro-
cess, leading to more precise log(g) values (see Sect. 7 for
more details). If no absolute magnitudes are used during
the training phase, the scatter doubles to 0.17.

Finally, in the right column of Fig. 15 we compare the
surface gravities predicted for 388 299 stars of the observed
sample (S/N>20) with respect to RAVE DR6. Again, the
biases for giants and dwarfs keep the same shape as in the
previous comparisons, and the scatter tends to still be quite
low (0.12 dex). We notice that the scatter σ increases to 0.37
dex when no photometry is used in the training phase. A
discussion on the impact of the use of photometry can be
found in Sect. 7.

As a final note on this topic, we recall that the input Teff
of the BDASP pipeline is the InfraRed Flux Method Teff
(see Steinmetz et al. (2020a) for more details). The BDASP
Teff tends to be very similar to this input. We explicitly
compare our Teff to Teff IRFM in the next section.

6.3. Validation of effective temperatures with IRFM
temperatures

A data product of the sixth data release of RAVE is the ef-
fective temperature derived via to the Infrared Flux Method
(IRFM, Casagrande et al. 2006, 2010, see Steinmetz et al.
2020a for more details). In this section, we compare our ef-
fective temperatures to those provided by RAVE DR6. We
compared the Teff used in the training sample (APOGEE
DR16 Teff), those learned by the network, and those derived
for the observed sample (for S/N>20).

The results are presented in Fig. 16. We first see that
there is a shift between the effective temperatures used as
labels in our study and those of Steinmetz et al. (2020a) for
hot stars (Teff > 5 200K) which are offset by -250K (con-
stant with temperature, with 260K scatter). Those stars
are mainly dwarfs. On the other hand, the cool stars of the
training sample (Teff < 5 200K, mostly giants) show a tight
and unbiased one-to-one relation with respect to the IRFM
temperatures (mean difference of -20K and dispersion of
90K). Overall, the dispersion is about 220K for the 3651
stars of the training sample.

We note that stars with Teff > 5 200K tend to be cooler
by 250K with respect to the IRFM Teff. The log(g) of such
stars will be then systematically higher. This could serve
as an explanation for the higher log(g) measured by our
CNN with respect to BDASP log(g) (see previous section,
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Fig. 13. Errors of atmospheric parameters and chemical abun-
dances plotted as a function of Teff, log(g) and [M/H] for 391 005
stars of the observed sample. We also present normalised distri-
bution of errors in the trained labels (blue, dotted), the test
sample (green, dashed), and the observed sample (red, solid).

Fig. 15). Once the CNN is trained, the effective temper-
atures still show the same behaviour with respect to the
IRFM Teff.

Finally, we can see that the measured Teff in 371 166
stars of the observed sample match in the same way the
RAVE IRFM Teff, with a larger scatter than the training
sample mainly due to the presence of stars with lower S/N.
Overall, the effective temperatures used in the training sam-
ple (from APOGEE DR16), those trained, and those pre-

dicted agree rather well with the Teff IRFM from Steinmetz
et al. (2020a). Finally, we note that this comparison only
provides an assessment of the biases and scatter with re-
spect to APOGEE DR16.

6.4. Validation with repeat observations

Another way to show the reliability of our atmospheric pa-
rameters and chemical abundances is to investigate stars
with repeated observations. We follow the same procedure
as in Steinmetz et al. (2020b,a). Briefly, for a given star with
several observations, we computed the differences in atmo-
spheric parameters and chemical abundances. For all stars
with multiple repeats, we analyzed the distribution of those
differences. We approximated the distribution function by
a combination of two Gaussians using a least-squares fit.
The results are presented in Fig. 17, for all repeats (80 342
stars, S/N > 20). Firstly, we can see that the distribu-
tions are roughly similar in shape for Teff, log(g), [M/H],
and [Fe/H]. On the other hand, the chemical abundances of
[α/M], [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] present asym-
metric tails. The typical dispersion of the distribution for
the effective temperature is about ∼ 50K, while for the
surface gravity, the dispersion is below 0.05 dex. The dis-
persion increases to 80K for Teff and 0.14 dex for log(g)
if we do not use photometry to introduce additional infor-
mation. For [M/H] and [Fe/H], the typical dispersion over
all repeats is of the order of 0.05 dex. Finally, for [α/M],
[Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe], a dispersion of 0.02-
0.03 dex is measured over all repeats. These results imply
that the CNN is precise (low dispersion within repeats)
and accurate (overall difference distributions centered on
zero) in determining atmospheric parameters and chemical
abundances of RAVE spectra. We note that such dispersion
within repeats in consistent with the typical uncertainties
reported in Sect. 5 for both atmospheric parameters and
chemical abundances.

6.5. Comparison with RAVE DR6 [α/M] ratios

The RAVE spectra cover the near-infrared CaII triplet,
which is a key spectral feature in the process of placing con-
straints on the overall α enrichment of stars. In this section,
we compare the [α/M] derived in the present study by our
CNN to the [α/Fe] derived in Steinmetz et al. (2020a) by a
more classical approach (synthetic spectra grid + optimisa-
tion method). Both quantities were derived using the same
observed spectra.

In Fig. 18, we present an abundance pattern compar-
ison between the present study ([α/M] vs. [M/H]) and
RAVE DR6 ([α/Fe] vs. [Fe/H]), for 69 659 dwarfs and giants
(S/N > 20). We adopt the same quality criteria presented
in Steinmetz et al. (2020a) to select the best RAVE DR6
[α/Fe] ratios.

We first show a typical Kiel diagram for each sample
(CNN top-left, RAVE DR6 top-right). Using our CNN ap-
proach with combined spectroscopy, photometry and as-
trometry, we are able to tackle the degeneracy caused by
RAVE’s narrow wavelength range, especially in the very
cool regime.

The abundances derived by RAVE DR6 show a larger
scatter at a given metallicity. In the metal-poor regime, the
CNN results show a tight [α/M] sequence. Overall, both
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Fig. 14. Comparison of surface gravities from the present study with K2 asteroseismic data. Left: Comparison with the log(g)
labels from APOGEE DR16 used as input by our CNN. Middle: Comparison with averaged labels trained by the CNN. Right:
Comparison with averaged log(g) predicted for common stars in the observed sample. Mean difference and scatter are indicated in
the top left corner of each panel.

studies show the same main chemical features, for both gi-
ants and dwarfs. They also cover the same metallicity range.
We note that in the metallicity range of −1 < [M/H] <
+0 dex, the CNN [M/H] present a shift of +0.14 dex with
respect to RAVE DR6 [Fe/H], while for both metal-poor
and metal-rich tails, the bias is basically null. The differ-
ences in trends and zero-points originate from a different
calibration between the two studies, one based on APOGEE
data, while the RAVE DR6 is based on synthetic spectra
grid.

6.6. Exotic star detection capabilities

Neural networks are particularly efficient with regard to
classifying objects. In addition, peculiar stars are expected
to be detected by such a machine-learning pipeline; by pe-
culiar, we mean that the CNN is able to parameterise stars
in regions where the training sample parameter space is
poorly covered. We illustrate this point by the example of
the known yellow supergiant (spectral type F3I, Houk 1978,
Gaia_sourceid=’5983723702088571392’), which has been
observed six times by the RAVE survey. The normalised
RAVE DR6 spectra are presented in Fig. 19. This star has
been characterised as ’normal’ by RAVE DR6. Its Gaia DR2
parallax error is 10%. The mean atmospheric parameters
and errors derived by our CNN from the six repeats are
the following: Teff = 5423 ± 355K, log(g) = 1.02 ± 0.53,
[M/H] = −0.36±0.20 dex. The average RAVE DR6 parame-
ters derived with the BDASP pipeline (using Gaia DR2 and

isochrone fitting) are the following: Teff = 5047 ± 213K,
log(g) = 1.39± 0.08, [M/H] = +0.28± 0.15 dex. In spite of
the differences in the approach, the CNN and BDASPmeth-
ods tend to put this star in the same region of the Kiel di-
agram, within 1-σ errors. The overall metallicity shows the
largest scatter, with CNN and BDASP consistent within
2-σ.

On the other hand, the RAVE DR6 parameters by
the MADERA pipeline (pure spectroscopy) are the follow-
ing: Teff = 5986 ± 95K, log(g) = 3.63 ± 0.15, [M/H] =
+0.51± 0.09 dex. Those parameters are consistent to those
derived by our CNN, only using spectroscopic data (no
photometry or parallaxes), within 2-σ in Teff and 1-σ in
log(g) and [M/H]: Teff = 6401±150K, log(g) = 3.90±0.20,
[M/H] = +0.50± 0.11 dex.

7. Including versus excluding photometry

We show here that adding absolute photometric magnitudes
during the training phase of the CNN significantly improves
the quality of the derived effective temperature and surface
gravity, and, to a lesser extent, the overall metallicity. We
recall that colours are key indicators of effective temper-
atures and that colours and absolute magnitudes help to
constrain surface gravities.

To do so, we simply re-trained our CNN a hundred
times, with the same overall architecture but removing
the photometric neurons, meaning that we only use pure
spectroscopic data from RAVE. We kept the same training
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Fig. 15. Left: Comparisons of the log(g) values used as input labels of our CNN (APOGEE DR16 log(g)) with respect to log(g)
values of Steinmetz et al. (2020a). We also show a residual plot and an histogram of the difference. Mean difference and scatter are
indicated in the top-left corner. Middle: Comparison of log(g) values trained by our CNN with respect to log(g) values of Steinmetz
et al. (2020a). Right: Comparison of the log(g) values derived by our CNN for 388 299 stars of our observed sample with respect
to the log(g) values of Steinmetz et al. (2020a).

sample. We simultaneously predicted Teff, log(g), [M/H],
[Fe/H], plus individual abundances for the observed data.

In Fig. 20, we present the resulting Kiel diagram of Teff
and log(g), colour-coded in [M/H]. We only show data with
S/N > 40, that is, stars with good observational data.
Compared to the Kiel diagram derived including absolute
magnitudes, the pure spectroscopic results still have all the
typical features, like the cool dwarf sequence, the turn-off,
or the giant branch. On the other hand, the cool dwarfs
sequence suffers from large scatter, while degeneracies ap-

pear for very cool giants (large log(g) scatter for a given
Teff). The red giant branch appears as a straight sequence.
Finally, the metallicity sequence in the giant branch is not
as well-defined as when absolute magnitudes are used. The
wavelength range around the CaII triplet is known to suffer
from degeneracies when deriving atmospheric parameters
(Kordopatis et al. 2011a). We note that including absolute
magnitudes helps us to break these degeneracies, without
applying any prior or restraining the parameter space of
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Fig. 16. Left: Comparisons of the input label Teff for our CNN (APOGEE DR16 labels) with the IRFM temperatures of Steinmetz
et al. (2020a). Mean difference and scatter are indicated in the top-left corner. We also show a residual plot and an histogram
of the difference. Middle: Comparison of the labels Teff trained by the CNN with the IRFM temperatures of Steinmetz et al.
(2020a). Right: Comparison of the Teff values derived for our whole observed data-set (for S/N>20) with the IRFM temperatures
of Steinmetz et al. (2020a).

the training sample. The mean error in Teff is increased by
∼ 20K when no absolute magnitudes are used.

We then compare our surface gravities with
those from RAVE BDASP log(g). When using
2MASS+ALL_WISE+Gaia, we can see that the av-
erage difference between both studies is one quarter of the
one based purely on spectroscopy, while the dispersion
drops from 0.23 to 0.09 dex.

Next, we compare our purely spectroscopic log(g) values
to those provided by K2. Without photometric input, the
scatter is much larger (0.26 dex) with a tiny bias. We note

that the purely spectroscopic Teff values show a slightly
higher dispersion with respect to those derived including
absolute magnitudes during the training phase.

Finally, we compare Teff, log(g), and [M/H] derived from
purely spectroscopic data by our CNN to those of the high-
resolution sample presented in Appendix C (only stars with
S/N > 20). Without absolute magnitudes, we observed a
significantly larger dispersion in log(g) (0.58 dex) and bias
(+0.26 dex), as compared to the high-resolution sample.
This is also the case for the effective temperature, with a
slightly larger bias (55K instead of no bias) and a disper-
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Fig. 17. Differences in atmospheric parameters and chemical abundances for 80 342 stars based on several observations and
S/N > 20.

sion larger by 80K. Finally, the metallicity derived purely
by spectroscopic data suffers from a slightly higher bias and
dispersion with respect to the literature sample. The main
improvement is actually notable for [M/H]<-1.5 dex, con-
sistent with previous remarks on the Kiel diagram.

With these comparisons, we demonstrate that purely
spectroscopic data can still provide quite satisfying outputs,
however, adding photometry as well as astrometric paral-
laxes provides a major gain with a strong increase in pre-
cision and accuracy, mainly for effective temperature and
surface gravity. We are able to efficiently break the degen-
eracies in the Teff− log(g) space, caused by limited spectral
range of RAVE spectra, particularly in the cool regime.

8. Science verification

8.1. Abundance-kinematical properties of the Milky Way
components

Here, we investigate some implications for the chemical and
kinematical properties of the Milky Way. We adopted the
kinematics from RAVE DR6 (Steinmetz et al. 2020a) and
followed the same approach as Gratton et al. (2003) and
Boeche et al. (2013a). We first kinematically selected a
thin disc component with low eccentricity stars (e < 0.25)
and low maximum altitude (Zmax < 0.8 kpc). We identi-
fied a dissipative collapse component, mainly composed of
thick disc and halo stars with e > 0.25, Zmax > 0.8 kpc,
and Vφ > 40 km s−1. Finally, we characterised an ac-
cretion component, composed of halo and accreted stars
(Vφ < 40 km s−1).

In Fig. 21, we present the [α/M] pattern for these three
components for giant stars (log(g) < 3.5). The thin disc
is mainly confined to [M/H] > −1 dex, while the dissipa-
tive collapse component shows a large metallicity range, a

few metal-rich stars, including halo stars with metallicities
higher than −2 dex, and a narrow [α/M] sequence. The ac-
cretion component is only composed of metal-poor stars, in
the range −2.0 < [M/H] < −0.5. We note that the mean
error on [M/H] and [α/M] increases with decreasing metal-
licity for the three components. These findings are in good
agreement with Boeche et al. (2013a).

We measured the gradients of Vφ vs. [M/H] in both
the thin disc and dissipative collapse components. The
thin disc component shows an anti-correlation (∇ =
−20km s−1/dex), while a strong correlation is visible in
the dissipative collapse component (∇ = +54km s−1/dex).
Such gradients are consistent with previous works, like for
example Lee et al. (2011) with SEGUE data or Kordopatis
et al. (2011b), despite different selection functions. We note,
however, that the positive gradient in the dissipative col-
lapse components results from the superposition of mono-
[α/M] sub-populations with negative slopes, as was recently
shown using RAVE DR5 data (Wojno et al. 2018; Minchev
et al. 2019). These simple science applications show the po-
tential of the CNN abundances.

8.2. Chemical cartography of [α/M] ratio in the galactic discs

In this section, we investigate the spatial transition between
the [α/M]-rich and [α/M]-poor populations of the Milky
Way. We once again take advantage of the orbital param-
eters provided by the sixth data release of RAVE (Stein-
metz et al. 2020a). We present, in Fig. 22, the behaviour
of the [α/M] ratio as a function of [Fe/H] for different bins
of mean Galactocentric radii (R) and heights above the
Galactic plane (|Z|). The figure shows hexagonal density
maps and contour plots for a total of 185 569 giant stars
with S/N > 30, parallax errors lower than 20%, and RAVE
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Fig. 18. Top: Teff vs. log(g) for 69959 stars, derived with our
CNN (left) and derived by RAVE DR6 (right). Middle: Abun-
dance pattern for 30 988 dwarfs, derived by our CNN (left) and
RAVE DR6 (right). Bottom: Same plots for 38 671 giants.
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Fig. 19. Normalised RAVE DR6 spectra of the target Gaia
’5983723702088571392’. The six spectra are plotted in different
colours.

’n&o’ classification. We observe that the [α/M]-poor pop-
ulation dominates at low Galactic heights (|Z| < 0.5kpc),
while [α/M]−rich stars are mostly located at larger height
above the plane (|Z| > 0.5kpc). In between, there is a very
smooth transition. We note that such observations are also
valid for the [Mg/Fe] and [Si/Fe] ratios, with slightly larger
scatter. We find consistent results with the study of Hay-
den et al. (2015) based on APOGEE DR12. For the same
Galactic volume, our results are a good match with the
recent study by Queiroz et al. (2020) based on APOGEE
DR16. We show that we are able to complement RAVE
DR6 and ultimately provide chemical abundance trends for
a larger sample of stars with improved precision.

9. Caveats

The present project relies entirely on the cross-match be-
tween a few thousand RAVE and APOGEE targets, which,
together with the limitations of the two respective surveys,
results in a number of possible caveats.

Firstly, the spectral range of RAVE spectra, [8 410 −
8 795]Å, contains plenty of features with which to derive
[α/M] ratios, such as Ca, Ti, Mg, Si, and O spectral lines.
The [α/M] labels adopted here come from the DR16 of
APOGEE. This survey uses a different wavelength range
(1.51–1.70µm), nonetheless, its wavelength coverage con-
tains similar elements as RAVE contributing to the [α/M]
mixture, apart from Ne and S. On the other hand, it is
known that the most significant contributors of the spectral
features are Ca, Ti, Si, O, and Mg. In this context, using
the RAVE spectral range to constrain [α/M] is reasonable.

Secondly, we clearly have a lack of stars at low metal-
licity ([M/H] . −1) in the training sample, which us
mainly due to the fact that we have few metal-poor stars in
RAVE (Matijevič et al. 2017) and in the cross-match with
APOGEE DR16. The mapping of the parameters space for
those stars is quite limited. For future studies, it is impor-
tant to carefully build a training sample with good map-
ping of the parameters in the metal-poor regime. More and
more metal-poor stars are being observed, for example, in
the Pristine Survey (Starkenburg et al. 2017; Youakim et al.
2017) and they are key stars for obtaining a more homoge-
neous mapping of the parameters space.

Finally, out of the approximately 400 000 stars of the
APOGEE survey DR16, our training sample contains
roughly 4 000 stars in common with the RAVE survey. It
is clear that in the present study the performances of our
CNN approach is limited by the small size of the training
sample. We have seen that the training and test samples can
then suffer from slightly different coverage in the parameter
space. The APOGEE and RAVE surveys are characterised
by different selection functions. The selection function of
the training sample is then characterised by traits common
to both surveys. This is a caveat in our study, but the goal
for the moment is not to characterise the selection function
in full as this will be the object of a future study. Our mes-
sage here to the community is that we call for everyone to
make a special effort to creating unbiased training samples,
especially for the next generation of spectroscopic surveys,
such as 4MOST, GAIA and WEAVE.

10. Database and public code

Here, we present our catalogue of atmospheric parameters
(Teff, log(g) and [M/H]), along with chemical abundances
([Fe/H], [α/M], [Si/Fe], [Mg/Fe], [Al/Fe], and [Ni/Fe]) for
420 165 stars (summarised in Table 1). The data table is
available at: doi://10.17876/rave/dr.6/19.

The CNN architecture, stellar labels, stellar pho-
tometry and spectra used in this paper are accessible via
"https://github.com/gguiglion/CNN_Guiglion_et_al_2020".
The CNN can be easily applied to any current spectro-
scopic archive or survey to derive atmospheric parameters,
chemical abundances, and also other extra parameters
such as rotational velocity.

11. Conclusion

Here, we list here the main results of our study.
Based on APOGEE DR16, we built a training sample

composed of 3 904 stars in common with RAVE DR6. These
stars have high quality atmospheric parameters and chemi-
cal abundances for [Fe/H], [α/M], [Si/Fe], [Mg/Fe], [Al/Fe],

Article number, page 19 of 31



A&A proofs: manuscript no. 38271corr

Col Format Units Label Explanations
1 char - rave_obs_id RAVE Obs ID
2 char - sourceid Gaia Source ID
3 float K teff Effective temperature
4 float K eteff Error of Teff
5 int - flag_teff Boundary flag for Teff
6 float cm s−2 logg Surface gravity
7 float cm s−2 elogg Error on log(g)
8 int - flag_logg Boundary flag for log(g)
9 float dex mh Overall metallicity
10 float dex emh Error on [M/H]
11 int - flag_mh Boundary flag for [M/H]
12 float dex feh [Fe/H] ratio
13 float dex efeh Error on [Fe/H]
14 int - flag_feh Boundary flag for [Fe/H]
15 float dex alpham [α/M] ratio
16 float dex ealpham Error on [α/M]
17 int - flag_alpham Boundary flag for [α/M]
18 float dex sife [Si/Fe] ratio
19 float dex esife Error on [Si/Fe]
20 int - flag_sife Boundary flag for [Si/Fe]
21 float dex mgfe [Mg/Fe] ratio
22 float dex emgfe Error on [Mg/Fe]
23 int - flag_mgfe Boundary flag for [Mg/Fe]
24 float dex alfe [Al/Fe] ratio
25 float dex ealfe Error on [Al/Fe]
26 int - flag_alfe Boundary flag for [Al/Fe]
27 float dex nife [Ni/Fe] ratio
28 float dex enife Error on [Ni/Fe]
29 int - flag_nife Boundary flag for [Ni/Fe]
20 float /pix snr Signal-to-noise ratio

Table 1. Atmospheric parameters, chemical abundances, and boundary flags of the publicly available online catalogue for 420 165
stars.

and [Ni/Fe], which we use as labels. We built a CNN us-
ing the Keras libraries in Python to train the labels de-
fined above. Using these trained labels, we predicted atmo-
spheric parameters and chemical abundances for 420 165
RAVE spectra, with our results available online. Our cat-
alogue covers a larger range of S/N than RAVE DR6, and
extends the scientific output of the RAVE spectra.

Next, we used ALL_WISE W1&2, 2MASS JHKs and
Gaia DR2 G, GBP , and GRP apparent magnitudes, and
extinction estimates to derive absolute magnitudes. We in-
cluded them in the training process and showed that CNNs
are efficient in combining spectroscopic and photometric
data. We gain a dramatic advantage in precision and accu-
racy, especially in Teff and log(g), where spectral features
are overly degenerate (cool main sequence stars, metal-poor
giants, and very cool giants). We demonstrated that such
a comprehensive combination of spectra, photometry, and
parallaxes allows us to efficiently break degeneracies when
the spectral range is too narrow to provide strong con-
straints on surface gravity.

In performing a hundred training phases, we derived er-
rors of the atmospheric parameters, which typically amount
to 60K in Teff, 0.06 in log(g), and 0.02-0.04 dex for indi-
vidual chemical abundances. Such high precision is realistic
because the network is able to learn the low- and high-α se-
quences in the Milky Way disc. We show that for stars with
several observations, the network is able to provide precise
atmospheric parameters and abundances among the repeats

that typically precise to 50K in Teff and 0.03-0.05 dex in
abundances.

We show that the surface gravities match nicely with
more than 430 asteroseismic gravities from the K2 space
mission within 0.14 dex dispersion and no bias. We com-
pared our effective temperature and surface gravities with
respect to both the IRFM Teff and log(g) from the DR6
of RAVE and we were able to characterise the systematics
between the two studies.

It is important to note that different trends and zero-
point offsets between this work and external studies pri-
marily reflect the different calibrations applied to these sur-
veys. A systematic comparison between different surveys is
therefore crucial. Furthermore, the CNN architecture and
weights will be publicly available.

Despite quite a low number statistics in the training
sample with respect to the number of free parameters to fit,
we show that such an approach can provide solid scientific
output. Of course, the performance would improve a lot
if the size of the training sample was three to four times
larger, but this pilot study is limited by the current overlap
with APOGEE DR16. This study allowed us to highlight
possible bias and systematics induced by using a limited-
size training sample with a CNN machine-learning method.
For the next generation of surveys, the community will have
to put strong efforts into producing large and un-biased
training samples.

Article number, page 20 of 31



G. Guiglion et al.: Parameterisation of RAVE spectra based on Convolutional Neural-Network

Our study shows that CNNs are particularly efficient in
transferring knowledge from one survey at high resolution,
such as APOGEE, to another at lower resolution, such
as RAVE. This study gives good insights for ongoing
and future spectroscopic surveys, such as Gaia-RVS and
4MOST. The Gaia-RVS spectra are expected to be very
similar to those of RAVE (R∼11400) and we show that
adding photometry breaks spectral degeneracies; photom-
etry will be available for all RVS targets. Efficient training
of Gaia-RVS data based on higher-resolution surveys could
deliver atmospheric parameters and abundances for a
larger number of RVS stars, as it is the case for RAVE in
the present paper. The low-resolution 4MOST spectra will
cover a much larger spectral range (4 000 − 9 000 Å) at a
slightly lower resolution than Gaia for the 4MIDABLE-LR
low-resolution survey (Chiappini et al. 2019), and Gaia
photometry will also be available for all targets. Addi-
tional constraints could then be put on the derivation
of Teff and log(g) by coupling spectroscopy, photometry,
and astrometry. Such surveys will deliver millions of
spectra that can be analysed in only a few minutes on
a single graphics processing unit once the labels are trained.
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Appendix A: Effect of parallax errors on CNN
performance

In the present study, 94% of the RAVE DR6 targets have
good Gaia DR2 parallaxes, with an error better than 20%.
Deriving absolute magnitudes from such parallaxes and ap-
parent magnitudes is then safe in the context of the present
paper. This high success rate is, however, an immediate
consequence of the relatively bright magnitude limit of
I < 13 for RAVE, with the majority of the stars even having
I < 12. The overall Gaia RVS survey will, however, probe
considerably fainter objects. The low-resolution surveys like
Gaia RVS or 4MIDABLE-LR of 4MOST (Chiappini et al.
2019) will probe a much larger volume than RAVE. There
is then a risk that many targets suffer from large parallax
errors. Here, we discuss the impact of such large parallax
errors on the determination of atmospheric parameters and
abundances.

In Fig. A.1, we present CNN results for 3 502 stars of
the observed sample with parallax errors, ep > 20%, and
S/N > 50 per pixel. Despite the large parallax errors, we
can recover a proper giant branch with a clear metallicity
sequence. Most of the stars with ep > 40% are actually lo-
cated in the upper part of either the main sequence or the
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cool giant branch. Such stars should be thus used with cau-
tion. For all stars with ep > 20%, the [α/M] versus [M/H]
abundance patterns do not show systematics, meaning that
chemical abundances are less sensitive to less precise par-
allaxes (absolute magnitudes constraining mainly Teff and
log(g)).

To check if the CNN could learn from lower quality data,
we added in our training sample ∼ 150 more stars with
parallax errors higher than 20%. Adding such stars did not
improve the training phase or the atmospheric parameters
of the observed sample stars with parallax errors larger than
20%.

Appendix B: Validation of atmospheric parameters
with stellar clusters

Here we compare the CNN results with 41 stars from four
clusters used in RAVE DR6 for calibration purposes: 47Tuc
(Carretta et al. 2009), Pleiades (Funayama et al. 2009),
Blanco1 (Ford et al. 2005), IC4651 (Pasquini et al. 2004),
and Omega Centauri (Johnson & Pilachowski 2010). The
results are presented in Fig. B.1.

The giants tend to match pretty well between our study
and the literature, with slight variations from cluster to
cluster. The Pleiades show no discernible offset in log(g)
and [Fe/H], while a large mean difference is measured for
Teff (-353K). We have both giant and dwarf stars in com-
mon with IC4651, and they tend to show a good match
with our study. The dispersion in [Fe/H] drops to 0.03 when
only considering stars with S/N > 40. We only have one
star in common with Blanco 1, but we find good agreement
between the literature and our study. Finally, the cluster
47Tuc presents an offset of +0.13 dex in [Fe/H] with respect
to the literature, while the dispersion is about 0.1 dex. We
note that we have a total of 13 stars from 47Tuc and the
Pleiades in our training sample. We have 12 giants in com-
mon with the metal-poor globular cluster Omega Centauri.
The [Fe/H] values of our CNN do not show any bias with re-
spect to the literature, and the dispersion is about 0.1 dex.
The Omega Centauri stars span lower log(g) values that
47Tuc, mainly log(g) < 1. We show that the CNN is able to
provide reliable parameterisation of metal-poor super-giant
stars.

The systematics observed in the three parameters come
directly from systematics in the APOGEE DR16 labels.
Overall, the typical dispersion σ in Teff and [Fe/H] tends
to decrease when selecting stars with S/N > 40, but stays
constant for log(g).

Appendix C: Validation of atmospheric parameters
and chemical abundances with the HR sample

Here, compare our atmospheric parameters and chemical
abundances with those from high-resolution (HR) studies
in the literature. We took a high resolution sample com-
piled and used for validation purposes in RAVE DR6 (Stein-
metz et al. 2020a). It includes more than 1700 stars, taken
from several studies, among them with available chemical
abundances Reddy et al. (2003); Valenti & Fischer (2005);
Soubiran & Girard (2005); Reddy et al. (2006); Ruchti et al.
(2011); Adibekyan et al. (2012); Bensby et al. (2014) and
Gaia-ESO Survey DR5.

We present a Kiel diagram and abundance patterns for
stars of the high-resolution sample and from the present
study in Fig. C.1. We only selected stars with S/N > 20.
Basically, the main and giant sequences match pretty well.
The [α/M], [Si/Fe] patterns tend to match for [Fe/H] >
−0.5 dex, while at lower metallicity the CNN abundances
tend to be systematically lower. This comes from the fact
that [α/M] and [Si/Fe] do not reach values higher than
+0.30 dex in APOGEE DR16. On the other hand, [Mg/Fe]
matches rather well between our CNN results and the liter-
ature. The [Al/Fe] ratios are reasonably consistent around
solar [Fe/H], but the scatter increases for the metal-poor
regime. Finally, [Ni/Fe] is rather flat in both samples, as
expected for an Fe-peak element.

In Fig. C.2, we present the 1-to-1 relations between the
high-resolution sample and the present study. This illus-
trates the differences in the trends and zero-points very
well. The typical dispersion is about 200K in Teff (no bias),
while it is around 0.3 for log(g) (bias of 0.13 dex) and [Fe/H]
(∼ 0.3 bias). We observe an increase of the scatter with de-
creasing [Fe/H]. We note that the overall scatter in [Fe/H]
drops to 0.2 dex if we only select stars with S/N > 50. All
other abundances show quite a small dispersion, roughly 0.1
dex. In fact, shifts in the trends or in the zero-points reflect
more a systematic difference of the calibration between the
APOGEE DR16 surveys and the test sample, rather than
an incorrect estimation of parameters or abundances. Such
differences are to be expected considering the differences
in instrument specifications, resolution, wavelength range,
and wavelength coverage.

Appendix D: Chemical abundance patterns of
[Mg/Fe], [Si/Fe], [Al/Fe] and [Ni/Fe]

In this section, we present chemical abundance patterns
of [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] as a function of
[Fe/H] in the training and observed samples (S/N>30 and
"n" stars). Fig. D.1 and Fig. D.2 present [Mg/Fe] and
[Si/Fe] abundances patterns for 301 076 stars. The trends
of both elements look pretty similar to the trends of [α/M]
presented in Fig. 12, Si and Mg being α-elements. In
Fig. D.3, we present the chemical abundance patterns of
[Al/Fe] of the same 301 076 stars. For [Fe/H] > −1 dex,
[Al/Fe] behaves like an α−element (consistent with pre-
vious findings in the literature, see for example Smiljanic
et al. 2016). For [Fe/H] < −1, we can see that the [Al/Fe]
ratio drops to solar – and even down to negative ratios. It is
mainly driven by the very few stars we have in the training
sample exhibiting low-[Al/Fe] ratios. We ought to be par-
ticularly careful when using such [Al/Fe] abundances. In
Fig. D.4, we present [Ni/Fe] ratios for 301 076 stars. This
ratio is rather flat with [Fe/H], as is expected for such an
Fe-peak element.
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Fig. 20. Systematic comparisons of parameters from our CNN with or without photometry (2MASS+ALL_WISE+GaiaDR2)
and astrometry (Gaia DR2). Top-left: The Kiel diagrams are colour-codded in [M/H] for 198 106 stars (’n&o’ classification) with
S/N > 40 and parallax errors lower than 20%; Top middle: Comparison of log(g) with respect to RAVE DR6 log(g) for the same
stars; Top-right: Comparison of CNN log(g) values with respect to K2 log(g) values; Bottom: Comparisons of CNN Teff, log(g),
and [M/H] values with respect to the high-resolution sample (one-to-one relations).
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Fig. 22. [α/M] ratio as a function of [Fe/H] for several bins of R and |Z|. [α/M] and [Fe/H] were derived through our CNN
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Fig. C.1. Kiel diagram and chemical abundances patterns for stars in common between our study (black circles) and the literature
(red crosses).
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Fig. D.1. Top: [Mg/Fe] vs. [Fe/H] for the training sample. Bottom: [Mg/Fe] vs. [Fe/H] for 301 076 stars of the observed sample
with S/N>30, RAVE DR6 ’n&o’ classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff − log(g)
diagram with the location of the plotted stars marked in red.
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Fig. D.2. Top: [Si/Fe] vs. [Fe/H] for the training sample. Bottom: [Si/Fe] vs. [Fe/H] for 301 076 stars of the observed sample
with S/N>30, RAVE DR6 ’n&o’ classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff − log(g)
diagram with the location of the plotted stars marked in red.
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Fig. D.3. Top: [Al/Fe] vs. [Fe/H] for the training sample. Bottom: [Al/Fe] vs. [Fe/H] for 301 076 stars of the observed sample
with S/N>30, RAVE DR6 ’n&o’ classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff − log(g)
diagram with the location of the plotted stars marked in red.
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Fig. D.4. Top: [Ni/Fe] vs. [Fe/H] for the training sample. Bottom: [Ni/Fe] vs. [Fe/H] for 301 076 stars of the observed sample
with S/N>30, RAVE DR6 ’n&o’ classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff − log(g)
diagram with the location of the plotted stars marked in red.
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