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1. Introduction

Commodity Trading Advisors (CTAs) are managers of Managed Futures that

comprise a diverse collection of active Hedge Fund trading strategies specializing

in extremely liquid, transparent, exchange-traded futures markets and deep for-

eign exchange markets, so they can scale in and out of positions on a daily basis.

CTAs is one of the largest Alternative Investment categories. According to Barclay

Hedge/CTA, the industry’s assets under management (AUM) increased more than

tenfold over the last two decades, i.e. from BUSD 25 in 1994 to BUSD 351 in 2016.

In 2016, CTAs was the third largest asset class within the Alternative Investment

space. Only Fixed Income (BUSD 564 AUM) and Multi-Strategy (BUSD 360 AUM)

were bigger. The rapid growth of CTAs as an industry is due to the growth of the

futures markets in the 1970s and the development of technology. There are several

benefits of allocating to Managed Futures for investors: 1) They exhibit low corre-

lation to traditional asset classes. 2) They also add diversification to a portfolio of

Hedge Fund managers (Kat, 2002). 3) They are able to provide investors with a

positive crisis alpha, since they have a high degree of adaptability in their investment

style and can go both long and short. Additionally, they have the possibility of in-

vesting across an entire spectrum of assets, allowing them to capture the upside and

downside of many markets. Furthermore, futures market have lower and symmetric

costs of trading compared to spot markets or other derivative markets (Kaminski,

2011). 4) They are transparent and liquid. Futures contracts are transparent, unlike

collateralized debt obligations or over the counter swaps. In addition, the markets

that Managed Futures trade - such as energy and foreign exchange - given their

massive size, are among the most liquid in the world. Since the instruments that

Managed Futures trade tend to be exchange-listed futures or extremely deep cash-

forward markets, price risk is the main risk associated with CTAs, in contrast to

more non-directional Hedge Fund strategies that have credit and liquidity exposures.

Bhaduri and Art (2008) reveal the underestimation value of liquidity, and, Hedge

Funds that trade illiquid instruments have underperformed Hedge Funds that trade

liquidity asset. All of the above make CTAs unique in contrast to other Hedge Funds

strategies (Kaminski and Mende, 2011; Hamill et al., 2016).

Traditionally, CTAs have been technical trend following managers with a medium-

to long-term view, but as the space has grown and evolved the types of strategies

have broadened as well. Whereas academia mostly distinguishes between two types

of traders, i.e. systematic funds (mechanical/computer-driven trading) vs. discre-

tionary funds (real-time decision making by the manager), the industry has divided

the space into many more sub strategy categories such as contrarian/short-term
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trading, liquid global macro or fundamental trading, volatility traders, sector spe-

cialists etc. These sub strategies are all active in the same liquid futures markets.

That being said, even today, the CTA universe is clearly dominated by diversified

systematic trend following managers (Krohn et al., 2017). Trend following intends

to capture market trends that are commonly related to serial correlation in price

changes. A trend is a series of asset prices that move persistently in one direction

on a given time duration, where price changes exhibit positive serial correlation. A

trend follower attempts to identify developing price patterns with this property and

trade in the direction of the trend if and when this occurs. The life cycle of a trend

starts as an initial under reaction to the asset price movement caused by news, sup-

ply shocks or demand shifts. Anchoring and insufficient adjustment (e.g. Edwards,

1968 and Tversky and Kahneman, 1974), the disposition effect (e.g. Shefrin and

Statman, 1985 and Frazzini, 2006), and non-profit-seeking market participant who

fight trends (e.g. Silber, 1994) may lead to actions that slow down the process of

price discovery. Once a trend has started, the trend then over-extends due to herd-

ing effects (e.g. De Long et al., 1990 and Bikhchandani et al., 1992), confirmation

bias and representativeness (e.g. Wason, 1960 and Tversky and Kahneman, 1974),

and risk management (e.g. Garleanu and Pedersen, 2007). At the end, the trend

reverses. One of the main challenges for directional Managed Futures strategies is

to minimize losses associated with the ending of trends, so-called give-back losses,

and to preserve capital in range bound markets that do not exhibit trends, so-called

whipsaw losses.

Like any investment, using Managed Futures requires proper due diligence on the

part of potential investors. Because Managed Futures are low/un-correlated with

traditional asset classes, they can provide impressive diversification to investors’

portfolios, for example, during the financial crisis of 2008; but during years of the

stock market rebound, such as 2009-2013, gains do not automatically translate into

them. In addition, as an Alternative Investment, Managed Futures have a higher

fee structure than traditional mutual funds. Therefore, there is the need for careful

screening when looking for the right manger. CTAs, as well as other Hedge Funds,

primarily market themselves towards investors using monthly performance figures

that are voluntarily reported to different databases such as Barclay Hedge/CTA or

TASS Lipper. Table A.1 shows the eleven most often used CTAs return indices.

Over 60% of the indexes are reported in monthly basis. Furthermore, benchmark

indices are comprised of equal-weighted average returns of up to over 400 reporting

managers.1 For the average CTA investors it is thus impossible to replicate the

1The Barclay CTA Index is a leading industry benchmark of representative performance of

commodity trading advisors. There are currently 532 programs included in the calculation of the

Barclay CTA Index for 2016. The Index is equally weighted and rebalanced at the beginning
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performance of such a broad CTA index. He or she typically has to make do with

investing in 1-3 CTA managers at a time. Moreover, many institutional investors

have learned to acknowledge the benefits of daily transparency, i.e. daily access to

a fund’s performance and positioning, especially during times of crisis like Brexit

for example. In fact, an investor’s live investment experience is often made up of

the daily return fluctuations and not so much of the monthly return stream that

was the basis for the investment decision. The need for higher resolution is even

greater today than, for example, 20-30 years ago as crises occur and spread at a

much higher frequency due to technological progress (among other things) like the

flash crash in May 2010. Unfortunately, due to a certain degree of secrecy on behalf

of the managers and some investors’ lack of sophistication, potential clients often

(have to) assess risk and reward of investing by means of analyzing the abovemen-

tioned monthly data. The problem is that a program’s performance characteristics

on a daily basis can be substantially different from the reported monthly figures,

especially during times of crisis and/or when volatility spikes. Some CTA investors

investing in multiple managers apply a strategy balancing concept combining, let us

say, one or more trend following programs with fundamental trading strategies in

order to smooth the overall return stream of their investment. These investors face

the problem of different distribution characteristics of different types of CTA strate-

gies, i.e. sometimes strategy diversification works, sometimes it does not. Finally,

CTAs themselves often combine different trading strategies with each other in order

to be able to profit from different profit sources at different times and, thus, improve

their long-term performance. Thus, what - if any - are the general differences with

regards to risk and performance depending on data frequency? Do different CTA

strategies behave differently? Obviously, daily figures are scarcer due to their pro-

prietary nature and subsequently also academic research using daily returns. To our

knowledge there exist no other studies on the differences between daily and monthly

returns for CTAs.

This study analyses the difference between daily and monthly return distributions

for CTAs using a unique dataset combining monthly figures retrieved from Barclay

Hedge/CTA which is the most complete individual database (Joenväärä et al., 2012)

and a non-public dataset of daily returns series, provided by 89 managers from

January 1990 to April 2014. We discuss the different empirical distributions and

implications for investors with regards to strategy space in general and regarding

of each year. To qualify for inclusion in the CTA Index, an advisor must have four years of

prior performance history. Additional programs introduced by qualified advisors are not added to

the Index until after their second year. These restrictions, which offset the high turnover rates

of trading advisors as well as their artificially high short-term performance records, ensure the

accuracy and reliability of the Barclay CTA Index.
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sub strategies in particular. Is it possible to generalize with regards to a particular

CTA sub strategy? What would an average investor have to expect when investing in

a certain type of manager? A wide range of methodologies are applied in this study

including ACF, GARCH, EGARCH, GJR, Hurst index estimation, and multifractal

models. We find that the return distributional properties of CTAs are non-normal,

and do exhibit stylized facts including fat tails and skewed, volatility clustering, as

well as long memory in volatility, which had been documented pervasively cf. Lo

(1991), Ding et al. (1993), Liu et al. (2007), Zheng et al. (2018).

In related literature, Groth (2009) finds a high degree of non-normality and long

memory of CTA returns in daily basis. Gregoriou and Rouah (2003), like most of

the studies use public available monthly CTA data, finds random walk behavior

of monthly CTA returns. There are a number of literatures on Managed Futures.

Rollinger (2012) and Tee (2012) find that adding Managed Futures to investors’

portfolios reduced their portfolio standard deviation to a greater degree and more

quickly than did Hedge Funds alone, and without the undesirable side effects on

skewness and kurtosis. There are other literatures modelling trend. Fung and Hsieh

(2001) apply lookback straddle to capture the general characteristics of the entire

family of trend following strategies. Fung and Hsieh (1997b) found these returns to

exhibit option-like features, they tended to be large and positive during the best and

worst performing months of the world equity markets. On the empirical study of

trend following strategy, for a large set of futures and forward contracts Moskowitz,

Ooi, and Pedersen (2012) find that the trend following strategy based on excess

returns over the past 12 months persists for between one and 12 months and then

partially reverses over longer time horizons. Asness, Moskowitz and Pedersen (2013)

highlight that strategy combines value, momentum and trend following strategies

is more profitable than each in isolation. He et al. (2017) reinforces this insight in

both a theoretical and empirical frameworks.

The rest of the paper is organized as follows: Section 2 outlines the dataset;

Section 3 reports the empirical results, Section 4 provides conclusion of the paper.

2. Data

The data set in this study consists of two parts generated in three steps, i.e.

first, daily net (of fees) US dollar-nominated return series of 89 CTA programs from

Jan-90 to Apr-14 collected by RPM Risk & Portfolio Management AB, a CTA spe-

cialist investment manager based in Stockholm, Sweden. In a second step, daily

track records are paired with the according monthly performance and AUM figures

retrieved from the Barclay Hedge/CTA database. Due to its confidential nature, the

data was first anonymized by RPM before being made available to the researchers.

Furthermore, we are restricted from reporting details on individual funds and their
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distributions. Finally, the dataset is supplemented with the in-house strategy classi-

fication from RPM distinguishing between systematic and discretionary traders on

the one hand and the three main strategy categories, i.e. trend following, short-

term trading, and fundamental, on the other hand.2 This “external” classification

avoids any self-reporting biases. With regards to sub strategies, the sample con-

tains 43 trend following programs, 27 (contrarian) short-term traders, and 19 liquid

global macro or fundamental managers. The whole sample includes only seven dis-

cretionary managers, i.e. two discretionary trend followers and five discretionary

fundamental traders. Therefore, we abstain from analyzing this group specifically

and rather incorporate the few discretionary managers in their respective sub strat-

egy group, i.e. trend following and fundamental. These ratios are generally in

line with the overall number of sub strategies in the Barclay Hedge/CTA database

(Krohn et at. 2017).
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Figure 2.1. Distribution of sample size.

To reduce the uncertainty in the statistical analysis we have focused on programs

with a track record spanning more than two years of trading. Sample sizes vary from

530 to 6,130 trading days, averaging 2,127 observations (median is 1,970), Figure

2.1 depicts the distribution of sample sizes. No pro forma results are used. As of the

time of writing, i.e. 2017Q1, the dataset includes “dead and alive” funds. Some of

2Trend following seeks to profit from large market moves in financial markets (trends) using

technical indicators (moving averages, momentum, volatility breakouts etc.) to extrapolate direc-

tion of asset price movements over future period. Short-term trading aims at exploiting short-term

price inefficiencies typically through technical analysis (trend and countertrend). Fundamental

strategies aim at capturing price trends before they occur. This is done by analyzing wide range of

fundamental data and econometric modeling in order to derive intrinsic (relative) value of security.
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the managers are well established in the industry, belonging to the ten largest CTAs

with track records spanning over several decades. Other managers can be classified

as emerging managers with regards to age and size (See Figure A.1 for distribution

of AUM in May-14). Thus, overall, a broad range of managers and trading styles is

included in our representative dataset. Acquiring daily return figures for dissolved

funds is difficult and, thus, the number of simultaneously reporting programs in-

creases with time. The scarce availability of daily performance figures for dissolved

funds could introduce a survivorship bias. Several articles investigate survivorship

bias for CTAs and Hedge Funds, see Diz (1999) and Fung and Hsieh (1997). Capocci

(2004) used the Barclay Hedge/CTA database, consisting of 1,892 individual funds,

to investigate survivorship bias and dissolution frequencies from Jan-85 until Dec-

02. The study concludes that the annual survivorship bias amounts to 5.4% over the

entire period. In our study, 13 out of the reporting 89 funds have been liquidated at

some point during the sample period, i.e. a death ratio of 14.6%. Thus, since most

managers in this study are still active the results are most likely subject to a minor

survivorship bias, but this impact is not further investigated as we are interested in

the relative differences between monthly and daily performance figures and not so

much in absolute performance of individual funds or groups of funds.

3. Empirical Findings

To empirically investigate the CTA returns across trend following, fundamental

and contrarian strategies, we start with descriptive statistics, then we study fat tail

behavior, volatility clustering and long memory in volatility.

3.1. Summary statistics. Our empirical analysis on the returns of CTAs starts

with descriptive statistics including mean, standard deviation, skewness, kurtosis,

and Jarque-Bera normality test. Table 3.1 gives a summary of CTA returns of the

full sample and all sub strategies. The average daily US dollar-nominated CTA re-

turn net of fees and in excess of risk-free rate is 0.0346% with a standard deviation of

0.0086. It is slightly positive skewed with high kurtosis. Looking at sub strategies’

daily performance, the estimation on four moments of CTA returns gives a different

picture. Contrarian strategies provide the best daily return of 0.036%, while the

average return of trend following is 0.0344% with the largest standard deviation of

0.0096. Trend following returns are negatively skewed of -0.1382 on a daily basis,

while contrarian strategies returns are positively skewed of 0.2324. This may reflects

that trend following managers suffer bigger losses in market downturns, while con-

trarian strategies gain more on upturns. All CTA returns have high kurtosis with

magnitude significantly greater than three, together with studentized range statis-

tics (which is the range divided by the standard deviation), they indicate a more
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frequent appearance of extreme events and a more peaked distribution with more

mass in the tails, i.e., the characteristic fat-tailed behavior compared with a normal

distribution. Figure A.2, A.3 and A.4 plot the distributions of mean, skewness and

kurtosis of all strategies and sub strategies, they further confirm the non-normal

feature of CTA returns across strategies. Indeed, the Jarque-Bera normality test

statistic is far beyond the critical value, which suggest that CTA returns are far

from normal distributions. Figure 3.1 shows the kernel estimates of probability den-

sity functions of returns of trend following, fundamental strategies, and short-term

contrarian strategies. Trend following shows the thickest fat tail and smallest peaked

distribution, while contrarian strategies have a thinnest tail and highest peaked dis-

tribution, and fundamental have a distribution between them. All of the above

indicate that daily CTA returns are non-normal distributed. Table 3.2 reports the

summary statistics for monthly returns. Apparently, similar to the stylized of stock

monthly returns, the monthly CTA returns are also non-normal distributed, but to

a much lesser degree comparing to the CTA daily returns.

Table 3.1. Summary statistics of rt.

mean(%) std. skew. kurt. min max stud. range J-B

All 0.0346 0.0086 0.0035 8.0374 -0.0502 0.0510 11.626 4993

STG 1 0.0344 0.0096 -0.1382 7.3048 -0.0538 0.0533 11.084 2495

STG 2 0.0330 0.0066 -0.0012 5.8122 -0.0349 0.0344 10.329 1151

STG 3 0.0360 0.0085 0.2324 10.770 -0.0554 0.0590 13.404 11676
Note: All refers to full sample; STG1 refers to trend following strategy; STG2 refers to

fundamental strategy; STG3 refers to contrarian strategy.

Table 3.2. Summary statistics of monthly rt.

mean std. skew. kurt. min max stud. range J-B

All 0.0068 0.0399 0.3104 5.0000 -0.1028 0.1433 5.9573 153.7889

STG 1 0.0076 0.0465 0.2334 4.5015 -0.1153 0.1652 5.9341 38.4408

STG 2 0.0057 0.0336 0.1663 4.9738 -0.0973 0.1184 5.8526 51.3539

STG 3 0.0064 0.0347 0.5067 5.6997 -0.0889 0.1289 6.0551 376.3546
Note: All refers to full sample; STG1 refers to trend following strategy; STG2 refers to

fundamental strategy; STG3 refers to contrarian strategy.

It is also interesting to look at relationship between CTA returns of different

strategies and the market return represented by the S&P 500, and the market volatil-

ity represented by the VIX. We divide the S&P 500 returns equally into five groups

from the lowest 20% to the highest 20%, the first bar in Figure 3.2 from the left is

the average returns of the lowest 20% of S&P 500 returns, followed by returns of all

strategies, STG1, STG2, and STG3 at the time, so on and so forth for others. We
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Figure 3.1. Probability density functions of trend following, funda-

mental, and contrarian strategy

observe that in each state of the market, on average the CTA returns are all positive.

Trend following strategy performs very well in market down turns but not so good

in upturns. The performance of fundamental strategy improves along the market

sates, and the performance of contrarian strategy is stable and slightly better when

the whole market is in good state. We do the same for the changes of VIX and CTA

returns, and plot Figure 3.3. We observe that the CTA returns are not sensitive to

changes of VIX. For each category of strategy, the trend following strategy suffers

when VIX experiences big decrease, but performs very well when VIX experiences

big increases. The fundamental strategy perform well but returns decrease when

changes of VIX increase, and the performance of the contrarian strategy is u-shaped

across changes of VIX.
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Figure 3.2. CTA returns and the S&P 500 returns
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Figure 3.3. CTA returns and the changes of VIX

3.2. Fat tail behavior. The above descriptive statistics and Figure 3.1 indicate fat

tail behavior of CTA returns. Here we turn to further quantify the tail behavior. In

general, if fnormal is the probability density function of a normal distribution with

mean µ and variance σ2, then we have log fnormal(x) ∼ − 1
2σ2x

2 as x → ±∞. A

random variable X is said to follow a power-law or Pareto distribution with shape

parameter α > 0 and scale parameter β > 0 if Pr[X > x] = (x/β)−α, for x ≥ β. In

this case, log fPareto(x) ∼ −(α + 1) log(x) as x → +∞. Hence the difference of the

tail behavior between the normal and Pareto distribution is significant.

The estimations of tail indices have been studied in great detail in extreme value

theory. More precisely, let X1, X2, ..., Xn be a sequence of observations from some

distribution function F , with its order statistics X1,n ≤ X2,n ≤ ... ≤ Xn,n. As an

analogue to the central limit theorem, we know that, on average, if the maximum

Xn,n, suitably centered and scaled, converges to a non-degenerate random variable,

then there exist two sequences {an} (an > 0) and {bn} such that

lim
n→∞

Pr

(
Xn,n − bn

an
≤ x

)
= Gγ(x), (3.1)

where Gγ(x) := exp(−(1 + γx)−1/γ) for some γ ∈ R and x such that 1 + γx > 0.

Note that for γ = 0, −(1+γx)−1/γ = e−x. If (3.1) holds, then we say that F is in the

max-domain of attraction of Gγ and γ is called the extreme value index. In Pareto

distribution, the tail index γ := 1/α measures the thickness of the tail distribution,

the bigger the γ, the heavier the tail. The estimation of γ has been thoroughly

studied, see Beirlant et al. (2006) for a detailed account. We focus on one of the
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most often used estimator, the Hill estimator. The Hill index is defined by

Hk,n =
1

k

k∑

j=1

logXn−j+1,n − logXn−k,n.

This estimator is consistent for k → ∞, k/n → 0 as n → ∞, and under extra

conditions,
√
k(Hk,n − γ) is asymptotically normal with mean 0 and variance γ2.

The Hill index relies on the average distance between extreme observations and

the tail cutoff point to extrapolate the behavior of the tails into the broader part of

the distribution. In practice, the behavior of the Hill index depends heavily on the

choice of cutoff point k. This choice involves a tradeoff between bias and variance,

which is well known in non-parametric econometrics. If k is chosen conservatively

with few order statistics in the tail, then the tail estimate is sensitive to outliers

in the distribution and has a high variance. On the other hand if the tail includes

observations in the central part of the distribution, the variance is reduced but the

estimate is biased upward. So, we estimate the tail index over a range of tail sizes.

We apply three cut-off points in this study: namely, 1.0%, 1.5% and 2% of the total

observations. Results for the Hill tail index estimates are reported in Table 3.3.

The column ‘Negative’ estimates left-tail of distributions while ‘Positive’ is for the

right-tail of distributions. The Hill tail index estimates are provided on the first,

second, third and fourth rows in Table 3.3 representing all strategies, trend following,

fundamental strategies and contrarian strategies; with cut-off points ranging from

1% to 2% of the total observations. A tail index of zero is equivalent to the tail

density of the normal distribution. The results reveal the values of the Hill tail

estimates are significantly different from zero which indicates that all CTA return

distributions have fat tails. For instance, the Hill estimators of positive return at

1% cut-off point ranges from 0.2327 to 0.2658. In general, the contrarian strategies

have the thickest tail and they experienced more extreme returns, the fundamental

strategies have the thinnest tail and they experienced fewer extreme returns, and

trend following are between them.

3.3. Volatility clustering. Volatility clustering is a salient feature in financial

time series, which reflects observations that in markets big (small) movements are

more likely to be followed by big (small) movements. Engle (1982) develops ARCH

model and Bollerslev (1986) develops GARCH model for volatility clustering. Nel-

son (1991) further extends it to the exponential GARCH (EGARCH) model, which

is a GARCH variant that models the logarithm of the conditional variance process.

In addition to modeling the logarithm, the EGARCH model has additional leverage

terms to capture asymmetry in volatility clustering. Glosten et al. (1993) proposes

the GJR-GARCH model. The GJR model is a GARCH variant that includes lever-

age terms for modeling asymmetric volatility clustering. In the GJR formulation,
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Table 3.3. Hill index for returns of the whole sample, trend follow-

ing, fundamental and contrarian strategy.

Negative Positive

1% 1.5% 2% 1% 1.5% 2%

All 0.2451 0.2671 0.2798 0.2327 0.2495 0.2662

STG 1 0.2374 0.2646 0.2809 0.2277 0.2425 0.2636

STG 2 0.2260 0.2388 0.2440 0.1970 0.2264 0.2380

STG 3 0.2707 0.2910 0.3033 0.2658 0.2769 0.2903
Note: All refers to full sample; STG1 refers to trend following strategy; STG2 refers to

fundamental strategy; STG3 refers to contrarian strategy.

large negative changes are more likely to be clustered than positive changes. To

quantify volatility clustering in CTA returns, we conduct ARCH test developed by

Engle (1982), and we then estimate the GARCH-t, EGARCH and the GJR models.

Table 3.4. ARCH effect test

test stats p-value Sig.%

All 74.72 0.0349 88.76

STG 1 65.91 0.0139 86.05

STG 2 66.96 0.0788 84.21

STG 3 94.21 0.0372 96.30
Note: All refers to full sample; STG1 refers to trend following strategy; STG2 refers to

fundamental strategy; STG3 refers to contrarian strategy.

Table 3.4 reports the ARCH test results, it shows clear evidence of ARCH effects

which are strongest for contraian and comparable for trend following and funda-

mental strategies. The GARCH estimates in Table 3.5 provide further evidence of

volatility clustering, and also show evidence of fat tail. For the EGARCH estimates,

Table 3.6 reports the results, we see that the GARCH and ARCH coefficients are all

positive, and the leverage coefficient, as expected, is negative for the whole sample

and the contraian strategy. However, the leverage effect is not significant for the

trend following and the fundamental strategies. GJR estimates in Table 3.7 show

similar patterns of ARCH, GARCH, and leverage effects.

3.4. Long memory in volatility. Apart from the stylized facts of fat tail and

volatility clustering, another well known stylized fact of financial return series is

that the returns themselves contain little serial correlation, but the absolute returns

|rt| and the squared returns r2t do have significantly positive serial correlation over

long lags. For example, Ding et al. (1993) investigate autocorrelations (ACs) of

returns (and their transformations) of the daily S&P 500 index over the period 1928

to 1991 and find that the absolute returns and the squared returns tend to have
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Table 3.5. GARCH (1, 1)− t estimates

a b α0 α1 β1 DoF

All 0.0215 0.0344 0.0748 0.1914 0.7624 5.842

(0.0147 ) (0.0243) (0.0210) (0.0369) (0.0361) (1.174)

STG 1 0.0244 0.0541 0.0539 0.1811 0.7821 6.037

(0.0165 ) (0.0239) (0.0171) (0.0349) (0.0302) (1.101)

STG 2 0.0276 -0.0078 0.0343 0.1307 0.7915 7.812

(0.0137 ) (0.0272) (0.0141) (0.0278) (0.0502) (2.273)

STG 3 0.0124 0.0328 0.1367 0.2506 0.7105 4.146

(0.0125 ) (0.0231) (0.0321) (0.0465) (0.0355) (0.518)
Note: All refers to full sample; STG1 refers to trend following strategy; STG2 refers to

fundamental strategy; STG3 refers to contrarian strategy.

Table 3.6. EGARCH estimates

a b α0 β1 α1 θ DoF

All 0.0233 0.0363 -0.0699 0.9041 0.3213 -0.0014 5.8527

(0.0144) (0.0235) (0.0323) (0.0302) (0.0598) (0.0375) (1.1643)

STG 1 0.0297 0.0402 -0.0418 0.9461 0.3009 0.0394 6.2121

(0.0158) (0.0230) (0.0174) (0.0160) (0.0621) (0.0412) (1.1903)

STG 2 0.0289 -0.0078 -0.1600 0.7961 0.2375 0.0000 7.6226

(0.0137) (0.0266) (0.0662) (0.0759) (0.0472) (0.0286) (1.9462)

STG 3 0.0092 0.0612 -0.0513 0.9131 0.4130 -0.0674 4.0348

(0.0126) (0.0221) (0.0321) (0.0205) (0.0652) (0.0378) (0.5500)
Note: All refers to full sample; STG1 refers to trend following strategy; STG2 refers to

fundamental strategy; STG3 refers to contrarian strategy.

very slow decaying autocorrelations, and further, the sample autocorrelations for

the absolute returns are greater than those for the squared returns at every lag up

to at least 100 lags. This kind of AC feature indicates the long-range dependence

in volatility. The autocorrelations for the CTA returns are plotted in Figure 3.4,

which clearly support the findings in Ding et al. (1993).

Besides the visual inspection of ACs of rt, r
2
t and |rt|, one can also construct

models to estimate the decay rate of the ACs of rt, r
2
t and |rt|. For instance, we can

semiparametrically model long memory in a covariance stationary series xt, t = 0,

±1, ..., by s(ω) ≈ c1ω
1−2H as ω → 0+, where 0 < c1 < ∞, s(ω) is the spectral

density of xt, and ω is the frequency. Note that s(ω) has a pole at ω = 0 for

0.5 < H < 1 (when there is a long memory in xt). When the value of H is close to

1, it reveals the greater degree of persistence or long-range dependence. For H ≥ 1,

the process is not covariance stationary. For H = 0.5, s(ω) is positive and finite



14 CTA STYLIZED FACTS

Table 3.7. GJR estimates

a b α0 β1 α1 γ DoF

All 0.0231 0.0343 0.0530 0.7785 0.1797 0.0109 6.0485

(0.0149) (0.0240) (0.0146) (0.0331) (0.0397) (0.0471) (1.3156)

STG 1 0.0281 0.0523 0.0387 0.8016 0.1795 -0.0184 6.2748

(0.0167) (0.0235) (0.0127) (0.0268) (0.0393) (0.0448) (1.1995)

STG 2 0.0284 -0.0072 0.0337 0.7936 0.1376 -0.0211 8.0235

(0.0139) (0.0271) (0.0137) (0.0489) (0.0358) (0.0413) (2.5589)

STG 3 0.0116 0.0349 0.0892 0.7311 0.2122 0.0801 4.2982

(0.0126) (0.0226) (0.0187) (0.0318) (0.0434) (0.0554) (0.5704)
Note: All refers to full sample; STG1 refers to trend following strategy; STG2 refers to

fundamental strategy; STG3 refers to contrarian strategy.

indicating uncorrelated series such as random walk. For 0 < H < 0.5, we have short

memory, negative dependence, or antipersistence. The ACs can be described by

ρk ≈ c2k
2(H−1), where c2 is a constant and 2(H − 1) corresponds to the hyperbolic

decay index.
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Figure 3.4. ACFs of the whole sample, trend following, fundamental

and contrarian strategies.

There are several techniques in the literature to estimate the Hurst index H , for

example, Hurst (1951); Hurst et al. (1965) introduce the re-scaled range statistical

analysis to estimate the Hurst exponent. This analysis can display long-run correla-

tions in random process. However, Lo (1991), Teverovsky et al. (1999), Weron and

Przybylowsciz (2000) and Weron (2002) argued that this approach lacked robustness

since it is very sensitive to the presence of short memory, heteroskedasticity, out-

liers, and multiple scale behavior. Lo (1991) modifies the rescaled range statistical

analysis by using autocovariance estimator instead of that of the standard devia-

tion. There are other ways to estimate the Hurst index, for instance, Geweke and

Porter-Hudak (1983) use the periodogram regression, Peng et al., (1994) uses the
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multi-affine analysis, Ivanova and Ausloos (1999) applies multi-fractal/multi-affine

analysis, Ausloos (2000) uses the detrended fluctuation analysis, Ellinger (2000) ap-

plies the moving-average analysis technique, and Percival and Walden (2006) uses

the wavelet transform module maxima method; but still, most of them suffer from

sensitivity and robustness as discussed above.

Recently, Di Matteo (2007) proposes a generalized Hurst exponent approach which

deals with the sensitivity issues to any type of dependence in the data. The approach

is computationally straight forward and simple to apply. The Generalized Hurst

exponent estimation provides a natural, unbiased, statistically and computationally

efficient analyzing tool for empirical studies. This method examines the scaling

properties of the data directly via the computation of the q-order moments of the

distribution of the increments. The q-order moments are much less sensitive to

the outliers than the maxima/minima and different exponents’ q are associated

with different characterizations of the multi-scaling complexity of the signal. This

method allows us to distinguish between uni-scaling and multi-scaling process. In

the case of uni-scaling process, the scaling behavior is determined by the unique

constant H that consists with the Hurst exponent where qH(q) is liner (H(q) = H).

In the case of multi-scaling process, H(q) depends on q where qH(q) is non-liner.
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Figure 3.5. Hurst index plot for returns of the whole sample, trend

following, fundamental and contrarian strategies.

Figure 3.6 shows the curves of qH(q) as a function of q not linear in q, but signif-

icantly bending below the linear trends. This reveals the returns of CTAs exhibit

evidence of multi-scaling behavior which is a sign of deviation from the Brownian,

fractional Brownian, Levy and fractional Levy models. The same behavior holds

for the case of all CTAs, trend following, fundamental strategies, and contrarian

strategies.
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Figure 3.6. (q, qH(q)) plot.

3.5. Markov-switching multifractal model. Financial markets volatility dis-

plays some similarities to fluid turbulence. For example, both turbulence and fi-

nancial fluctuations are characterized by intermittency at all scales. A cascade of

energy flux is known to occur from the large scale of injection to the small scale

of dissipation, cf. Mandelbrot (1974) and Harte (2001). In statistical physics, such

“cascades” are modeled by multiplicative operations on probability measures.

Mandelbrot et al. (1997) first introduced the multifractal apparatus into financial

markets, adapting the approach of Mandelbrot (1974) to an asset-pricing framework.

This multifractal model of asset returns (MMAR) assumes that asset returns rt

follow a compound process, in which an incremental fractional Brownian motion

is subordinate to the cumulative distribution function of a multifractal measure.

However, the practical applicability of MMAR suffers from the non-causal nature

of the time transformation and non-stationarity due to the inherent restriction to

a bounded interval. These limitations have been overcome by the development of

an iterative version of the MF models, including the Markov-switching multifractal

model (MSM), cf. Calvet and Fisher (2004) and Lux (2008). In this approach, asset

returns are modeled as:

rt = σ

(
k∏

i=1

M
(i)
t

)1/2

· ǫt, (3.2)

with ǫt drawn from a standard Normal distribution N(0, 1) and instantaneous

volatility being determined by the product of k volatility components or multipliers

M
(1)
t , M

(2)
t ..., M

(k)
t , and a constant scale parameter σ. Each volatility component is

renewed at time t with probability γi depending on its rank within the hierarchy of

multipliers or remains unchanged with probability 1− γi. Calvet and Fisher (2004)

propose to specify transition probabilities as

γi = 1− (1− γ1)
(bi−1), (3.3)

with parameters γ1 ∈ (0, 1) and b ∈ (1,∞); and Lux (2008) assumes γi = 2(k−i).

Both specifications guarantee convergence of the discrete-time multifractal process
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to a limiting continuous-time version with random renewals of the multipliers. Ad-

ditionally, E[M
(i)
t ] or E[

∑
M

(i)
t ] equal to some arbitrary value is usually imposed

for the sake of normalizing the time-varying components of volatility. Both Calvet

and Fisher (2004) and Lux (2008) assume a Binomial distribution with parameters

m0 and m1 for the volatility components, which means, whenever there is volatil-

ity component updated, either m0 or m1 will be drawn. In addition, they further

assume m1 = 2−m0 and thus guaranteeing an expectation of unity for all M
(i)
t .

With this rather parsimonious approach, one preserves the hierarchical structure

of MMAR while dispensing with its restriction to a bounded interval. While this

model is asymptotically “well-behaved” (i.e. it shares all the convenient proper-

ties of Markov-switching processes) it is still capable of capturing some important

properties of financial time series, namely, volatility clustering and the power-law

behaviour of the autocovariance function of absolute moments:

Cov(|rt|q, |rt+τ |q) ∝ τ 2d(q)−1. (3.4)

The Markov-switching MF model is rather characterized by only ‘apparent’ long-

memory with an approximately hyperbolic decline of the autocorrelation of absolute

powers over a finite horizon and exponential decline thereafter. In particular, ap-

proximately hyperbolic decline as expressed in eq. (3.4) holds only over an interval

1 ≪ τ ≪ bk with b the parameter of the transition probabilities of eq. (3.3) and k

the number of hierarchical levels.

Various approaches have been employed to estimate multi-fractal models. The

parameters of the combinatorial MMAR have been estimated via an adaption of the

scaling estimator and frequency spectrum approach of statistical physics. However,

this approach has been shown to yield very unreliable results (cf. Lux (2004)). A

broad range of more rigorous estimation methods have been developed, including

maximum likelihood (ML) estimation by Calvet and Fisher (2004) and simulation

based ML by Calvet et al (2006), and GMM (Generalized Method of Moments) by

Lux (2008).

In this paper we adopt the GMM approach formalized by Hansen (1982), which

has become one of the most widely used methods of estimation for models in econom-

ics and finance. With analytical solutions of a set of appropriate moment conditions

provided, the vector of parameters, say β, can be obtained through minimizing the

differences between analytical moments and empirical moments:

β̂T = argmin
β∈Θ

M̄T (β)
′WTM̄T (β). (3.5)

Θ is the parameter space, and in our case the parameters to be estimated β ∈
{m0, σ}. M̄T (β) stands for the vector of differences between sample moments and
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analytical moments, and WT is a positive definite weighting matrix, which con-

trols over-identification when applying GMM. Implementing Eq. (3.5), one typically

starts with the identity matrix; then the inverse of the covariance matrix obtained

from the first round estimation is used as the weighting matrix in the next step;

and this procedure continues until the estimates converge. We use Newey-West

covariance matrix within our study.

As is well-known, β̂T is consistent and asymptotically Normal if suitable ‘regularity

conditions’ are fulfilled (sets of which are detailed, for example, in Harris (1999)).

β̂T then converges to

T 1/2(β̂T − β0) ∼ N(0,Ξ), (3.6)

with covariance matrix Ξ = (F̄ ′
T V̄

−1
T F̄T )

−1 in which β0 is the true parameter vector,

V̂ −1
T = TvarM̄T (β) is the covariance matrix of the moment conditions, F̂T (β) =

∂M̄T (β)
∂β

is the matrix of first derivatives of the moment conditions, and V̄T and F̄T

are the constant limiting matrices to which V̂T and F̂T converge.

We have estimated the Markov-switching multifractal model with three trading

strategies returns, the sample sizes for STG 1 trend following, STG 2 fundamental

and STG 3 contrarian strategies are 42, 19 and 27 respectively. We observe estimates

of m0 = 1 for all time series are significant except with one return series in trend

following strategy. We present the empirical GMM estimates for the three different

investment strategies as summarized in Table 3.8, including the summary statistics

for overall samples estimates. We observem0 of each strategies are apparenty deviate

from 1,3 and the varieties across three different strategies, namely, results on trend

following strategy showing less degree of long memory, while results from contrarian

strategy showing the highest m0 estimates.

4. Conclusion

Previous work finds random walk behaviour of monthly CTA returns. In this

paper we use a unique dataset of daily returns of 89 programmes of Commod-

ity Trading Advisors (CTA), we investigate the distributional properties of CTA

strategies including trend following, fundamental and contrarian strategies. We find

that daily CTA return behaves quite differently from that of monthly return. Daily

CTA return exhibits strong features of fat-tail, volatility clustering, and long mem-

ory in volatility. Our findings are robust to different measures of fat-tail, volatility

clustering and long memory in volatility. Our study contributes to the literature of

stylized facts of financial markets, it also provides insights to practitioners because

3
m0 = 1 is the borderline cases in multifractal processes which the volatility process collapses

to a constant, and therefore implies long memory does not exist.
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Table 3.8. Empirical estimates for returns of the three trading

strategies returns.

all STG 1 STG 2 STG 3

m0 σ m0 σ m0 σ m0 σ

mean 1.363 0.009 1.331 0.010 1.362 0.007 1.415 0.008

s.d. 0.134 0.004 0.121 0.004 0.139 0.002 0.136 0.004

min 1.102 0.002 1.102 0.005 1.131 0.004 1.173 0.002

max 1.730 0.020 1.597 0.019 1.568 0.010 1.730 0.020

Note:This table reports the statistics of the Markov-switching multifractal models estimates for

overall strategies, and three separate trading strategies, respectively. N is the sample size for

each trading strategy, ret1 refers to returns from trend following strategy; ret2 refers to returns

from fundamental strategy; ret3 refers to returns from contrarian strategy

the information from monthly data might be misleading. Investors are usually pro-

vided with monthly CTA performance data, they should be cautious when making

investment decision and selecting programmes of CTA.
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Appendix A. Additional Tables and Figures
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Table A.1. Most often used CTAs return indices.

Rebalance Frequency Constituents Reformed Reporting Frequency

Altegris 40 Index Monthly Monthly Monthly

Barclay BTOP50 Index Annually Annually Daily

Barclay CTA Index Annually Annually Monthly

Barclay Systematic Trader Index Annually Annually Monthly

CISDM CTA Equal Weighted Index Monthly Monthly Monthly

CISDM CTA Equal Weighted Index Monthly Monthly Monthly

Credit Suisse Managed Futures Hedge Fund Index Monthly Quarterly Monthly

ISTOXX Efficient Captial Managed Futures 20 Index Monthly Annually Daily

Newedge CTA Index Annually Annually Daily

Newedge CTA Trend Index Annually Annually Daily

STARK 300 Trader Index Monthly Monthly Monthly

STARK Systematic Trader Index Monthly Monthly Monthly
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Table A.2. Sample divided by sub strategy.

Trend following Short-term trading Fundamental

Systematic 43 27 19

Discretionary 2 0 5
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Figure A.1. Distribution of AUM of the whole sample, trend fol-

lowing, fundamental and contrarian strategy.
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Figure A.2. Distribution of mean of returns of the whole sample,

trend following, fundamental and contrarian strategy.
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Figure A.3. Distribution of skewness of returns of the whole sample,

trend following, fundamental and contrarian strategy.
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Figure A.4. Distribution of kurtosis of returns of the whole sample,

trend following, fundamental and contrarian strategy.
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