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Abstract 
This paper investigates long-range dependence in fourteen commodity and three other 
financial futures returns series from 1993-2009 and shows that long memory is a pervasive 
phenomenon in contrast to the extant evidence. Utilizing a semi-parametric wavelet-based 
estimator with time windows, the results provide overwhelming evidence of time-varying 
long-range dependence in all futures returns series. Structural break tests indicate multiple 
regimes of dependence, in the majority of which the persistence parameter is statistically 
significant. The results also provide evidence of predominantly negative parameters values 
which are known as anti-persistence. The latter is consistent with investor overreaction to 
shocks and suggests temporary departures from market efficiency. 
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1.  Introduction 
 
Although early studies of commodity price movements generally supported the random walk 

hypothesis (Larson, 1960), later research demonstrated that this hypothesis can often be 

rejected by the inappropriate assumption of normal distributions of commodity prices. The 

original work of Mandelbrot (1963, 1966) showed that commodity price changes are not 

normally distributed, but fat-tailed, or leptokurtic. Since then, many others have supported his 

argument (see, inter alios,  Stevenson and Bear, 1970;  Dusak, 1973).   Recently, researchers 

also found that some commodity returns can be characterised by a long memory component 

(Barkoulas et al., 1999; Crato and Ray, 2000; Elder and Jin, 2009).1 Long memory or long 

term dependence is a special form of dynamics that describes the correlation structure of a 

series at long lags. If a series exhibits long memory, then it is characterised by distinct but 

non-periodic cyclical patterns. Long memory is interesting because the associated 

dependence in the first and /or second moments of the distribution can lead to a potentially 

predictable component in the series. This may enable investors to exploit such predictability 

and earn speculative profits, thereby casting doubt on the random walk and weak-form 

efficiency hypotheses.  

The extant research has primarily addressed the problem of whether a series exhibits 

long memory by estimating a single ‘static’ value of the long memory parameter employing 

the popular semi-parametric Geweke and Porter-Hudak (1983) (hereafter GPH) estimator. 

This single value describes the global long-range dependence and implicitly assumes a stable 

environment in financial markets. For example, Elder and Jin (2009) examined 15 

commodity daily futures return series from 1974 to 2006. Using wavelet-based global 

estimators, they found limited evidence of fractional integration in metal futures whereas 

                                                 
1 Early evidence of long memory has also been found in stock returns (see inter alios, Greene and Fieltitz, 1977; 
Lo, 1991; Barkoulas and Baum, 1996) and in exchange rates (see, inter alios, Cheung, 1993; Baillie and 
Bollerslev, 1989 and 1994).  
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agricultural commodities exhibited significant anti-persistence in approximately half the 

cases they examined. Anti-persistence is interesting as it indicates a series that is, as Elder 

and Jin comment, “choppier than white noise,” and thus implies that investors may overreact 

to shocks or new information.  

More recently, researchers such as Cajueiro and Tabak (2004) and Batten and 

Szilagyi (2007), suggest that one needs to allow parameters to evolve over time properly to 

model these dynamic systems. This can provide insights into the causes of any observed 

variation in dependence over time and any intertemporal deviations from efficiency by 

decomposing the measure of dependence into its underlying components. Fernandez (2010) 

employed a time-varying approach to assess long-range dependence in commodity markets 

instead of relying on single static measures. Employing a dataset of 20 commodity daily 

futures return series from 1991 to 2008, a series of long memory parameters were estimated 

using a rolling window and the rejection percentage of the null hypothesis of no long-range 

dependence is recorded. At conventional significance levels, the majority of the rejection 

percentages are less than 10%; however, these percentages are occasionally found to be much 

higher and indicate evidence of both persistence and anti-persistence.      

This paper continues the examination of commodity futures returns for evidence of 

time-varying long memory. Our sample of daily data covers the period 1993 to 2009 and 

comprises 17 daily futures prices, of which 14 are commodities (including storable and non-

storable agricultural commodities), as well as one stock index and two major exchange rates 

for comparative purposes. The results indicate that 9 out of 17 of futures returns display 

evidence of long memory over the full sample period based on static estimation, suggesting 

that long memory matters but is not pervasive. Analogously to Elder and Jin (2009), all of the 

significant results point to anti-persistence as the global long memory phenomenon.  
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Our first substantive contribution is to utilize the semi-parametric wavelet estimator 

developed by Jensen (1999) to produce time-varying long memory results for each asset 

series. Presenting these graphically, albeit a simple approach, has considerable advantages 

over the prior approach of recording the rejection percentage of the null of no long-range 

dependence. In particular, a rejection percentage, in aggregating the number of rejections, 

does not show the intertemporal location and persistence of any inefficiency. Interestingly, 

the graphs suggest important fluctuations in long memory for all return series. The typical 

pattern indicates longer periods of low anti-persistence that are occasionally punctuated by 

shorter periods of high inefficiency. This nuance is particularly important in the case of 

commodities that showed no long memory under static estimation, whereas all now reveal 

long memory parameters that appear significant in some periods but not in others. The 

observed variability in the long memory parameter estimates suggests that a formal test of 

time-varying parameters is required.  

Our second contribution is that the Bai and Perron (2003) test results indicate multiple 

structural breaks in the persistence parameter. They indicate that all return series exhibit at 

least one structural break in the persistence parameter and eight contracts exhibit at least 2 

structural breaks. Moreover, the persistence parameter is significant in most regimes for 

series. These novel findings formally establish that persistence is time-varying in commodity 

and other asset futures markets, long memory is far more pervasive than previously thought 

and consequently, significant periods of inefficiency exist. More importantly, the pragmatic 

implications of such time-varying dependence may widely impact on different markets such 

as the options market for futures.  

The final contribution is a tentative interpretation of the main result of anti-

persistence. The Tang and Xiong (2012) financialization of commodities hypothesis posits 

that commodities are behaving like other financial assets mainly as a result of increased index 
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investment. This implies that they may display the typical under- and overreaction patterns 

followed by stocks. Such patterns typically stem from biased beliefs about pricing on the part 

of the representative investors as in the Barberis et al. (1998) and the Daniel et al. (1998) 

models, or alternatively they could arise from the behaviour of naive relative to informed 

investors as in the Hong and Stein (1999) model. The prevalent anti-persistence patterns in 

commodity futures returns are consistent with market inefficiency caused by investor 

overreaction to shocks or news which is relatively quickly reversed.  

The rest of this paper is organized as follows. Section 2 presents the fractional 

integration testing methodology and section 3 describes the data and the analyses the results. 

Section 4 discusses and interprets our results while Section 5 concludes. 

 

2.  Methodology 

2.1  Fractional integration 

The introduction of the autoregressive fractionally integrated moving average model 

(ARFIMA) by Granger and Joyeux (1980) and Hosking (1981) allows the modelling of 

persistence or long memory via estimation of the differencing or memory parameter d. A 

time series ty  follows an ARFIMA ),,( qdp  process if 

  ,)()1)(( tt
d LyLL εµ Θ+=−Φ     tε ~ ),0( 2σiid    (1) 

where L is the backward-shift operator, and )(LΦ and )(LΘ are autoregressive and moving 

average polynomials, respectively, with roots outside the unit circle. The fractional 

differencing lag operator dL)1( − is defined by the binomial expansion 

  ∑
∞

= −Γ+Γ
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=−
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k

k
d

dk
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where )(•Γ is the gamma function. An ARFIMA process is said to be stationary and 

invertible when -0.5 < d < 0.5. For such processes, the autocorrelation function for a 
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stationary process exhibits geometric decay, whereas that for a long memory process exhibits 

slow hyperbolic decay and the autocorrelation coefficients are of the same sign as d. When 

12/1 <≤ d , the relevant series is non-stationary, the unconditional variance growing at a 

more gradual rate than when 1=d , but mean reverting.  

 The memory parameter d  can be estimated by several approaches. The most widely 

used technique is the log-periodogram GPH estimator because of its semi-parametric nature 

(Geweke and Porter-Hudak, 1983; Robinson, 1995a).2 This requires only weak assumptions 

on the short-memory process tε  in equation (1). Geweke and Porter-Hudak demonstrate that 

for frequencies near zero, d can be consistently estimated from the least squares regression 

{ } jjj dI ελβλ +−= )2/(sin4log))(log( 2
0      mllj ...2,1 ++=                    (3) 

where I ( jλ ) is the sample spectral density of ty  evaluated at the frequencies Tjj /2πλ = , 

T  is the number of observations and m  is small compared to T . One of the advantages of 

the GPH technique is that hypotheses about d  can be tested using standard t -statistics 

(Hassler et al., 2006). For the stationary range, 2/12/1 <<− d , Robinson (1995a) shows that 

the GPH estimate is consistent and asymptotically normally distributed. Velasco (1999a) 

shows that the estimate of d  is consistent for 22/1 << d  and asymptotically normally 

distributed for 4/72/1 << d  when the data are differenced.  

 

2.2  Wavelet estimator of the fractional integration parameter 

The wavelet ordinary least squares (OLS) estimator of the fractional integration parameter d 

was introduced by Jensen (1999). It is worth noting that there is a similarity between the 

wavelet OLS estimator and the popular semi-parametric GPH estimator. The GPH estimator 

utilizes Fourier analysis to decompose a time series or signal into low frequency and high 

                                                 
2 Other semi-parametric estimators like the Gaussian Semi-Parametric (GSP) estimator (Robinson, 1995b and 
Velasco, 1999b) are studied in Robinson and Henry (1999). We employ the GPH technique because of its wide 
application in the literature. 
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frequency components. In other words, a time series can be expressed as a linear combination 

of sine and cosine functions in the frequency domain. Wavelet analysis, on the other hand, 

utilizes functional transforms, known as wavelets, to decompose a signal into various 

frequencies called scales, where the scale is inversely related to frequency, and is localised in 

time. 

Although the wavelet estimator can be most simply described as functional transforms 

in the spirit of Fourier analysis, it has some distinct advantages. Firstly, Fourier analysis 

transforms a time series from the time domain to the frequency domain. Therefore it does not 

preserve information in the time domain. By contrast, wavelet analysis transforms the time 

series into different frequencies (scales) and is localized in time. Therefore, wavelets can 

zoom in on series behaviour at a particular point in time, whilst they can also zoom out to 

reveal any long and smooth features of a process. Secondly, since few economic series follow 

the smooth rhythmic cycles suggested by the sine and cosine functions underlying Fourier 

analysis, spectral analysis cannot always adequately capture abrupt changes or cusps in a 

signal. In contrast, the basis functions underlying wavelet analysis typically do not oscillate 

indefinitely and are not generally smooth. Wavelet basis functions have finite oscillations that 

can be scaled and shifted to capture events that are local in time. Finally, wavelets have been 

found to be useful in finance for dealing with multi-scale problems, in parameter estimation 

and in noise removal.3 

Consider a real-valued function )(tψ , which satisfies two basic properties 

0)()( =∫∞∞− tdtψ  and 1)()( 2 =∫∞∞− tdtψ , so that ψ  is a square integrable function )(2 ℜL  with 

finite oscillations that diminish to zero as t → ∞± . )(tψ  is a wavelet if it also satisfies the 

admissibility condition (see Percival and Walden, 2000). The wavelet )(tψ can be scaled and 

translated by integers j and k 

                                                 
3 We would like to thank an anonymous reviewer for this insight. 
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  )2(2)( 2/
, ktt jj
kj −= −− ψψ                   (4) 

where j represents scaling parameter and k represents translation (or shift) parameter. The set 

of scaled and translated wavelets )2( ktj −−ψ  form an orthonormal basis for the set of square 

integrable function )(2 ℜL . The normalization factor 2/2 j−  is maintained at different scales. 

)(tψ is called the mother wavelet, which is mother to all scales and translations of ψ  in (4). 

The wavelet transform of a signal (x) usually utilizes two orthogonal functions: the 

mother wavelet function )(tψ  and a scaling function )(tϕ .4 We follow Elder and Jin (2007) 

in ignoring the scaling function for heuristic purposes. The wavelet coefficients )( ,kjw  that 

link the original series to the scaled and translated wavelets can be obtained through the 

projection of the original series x(t) onto a sequence of the wavelet basis functions 

  ∑∑ −= −−

j k

jj
kj ktwtx )2(2)( 2/

, ψ                                (5) 

where j, k are integer indices for the finite or infinite sum. In practice, the wavelet defined in 

(5) restricts the sample size to a factor of two. To avoid boundary effects associated with the 

evaluation of (5), the sample size must be a power of two, or if not, the sample must be 

trimmed with zeros. We thus choose a sample with 122  or 4096 observations. 

Several different wavelets have been proposed in the mathematics literature including 

the Daubechies (1988) family of wavelets. 5 The Daubechies wavelet is very popular in 

empirical time series analysis since it has compact support. Such an important characteristic 

allows wavelets to more parsimoniously describe functions with cusps and spikes (Lien and 

Shrestha, 2007; Power and Turvey, 2010). We therefore apply the Daubechies wavelet.  

                                                 
4 The scaling function is also called a father wavelet. 
5 Mallat (1999), who has been a pioneer in the wavelet literature, provides a broad perspective on optimizing the 
design of the wavelet. His approach involves the usage of an effective pyramid algorithm for computing the fast 
wavelet transform. Orthonormal wavelets are considered to work particularly well with the fast wavelet 
transform computation such as Haar, Daubechies, Coiflet and Symmlet wavelets. Other wavelets such as Meyer 
wavelets may not be best suited for such fast computation due to their non-orthogonal bases. We thank an 
anonymous reviewer for this point. 
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Similar to the GPH estimator that captures low-frequency spectral behaviour, the 

wavelet estimator captures high scale wavelet behaviour. That is, the wavelet scales which 

contribute the most to the series’ variance, are associated with the wavelet coefficients with 

the largest variance. Thus, the wavelet coefficients sample variance can be used to provide a 

parametric estimate of the fractional integration parameter d. More specifically, the GPH 

estimator can be viewed as a regression of the log sample spectrum on the log frequency 

whereas the wavelet OLS estimator can be viewed as a regression of the (normalized) log 

wavelet scale spectrum on a log scale. 

To express the above algebraically, consider that Jensen (1999) demonstrates that the 

wavelet coefficients kjw ,  in Equation (5), associated with a mean zero series ARFIMA (0, d, 

0) process x(t) with d  < 0.5, are distributed approximately  )2,0( )(22 jJdN −−σ . If we denote 

the variance of wavelet coefficients at scale j by )var( ,⋅jw = )(22 2 jJd −−σ , then after taking 

logarithms, an estimate of the fractional integration parameter d can be obtained by applying 

ordinary least squares to  

  ]2ln[]ln[)]ln[var( )(22
,

jJ
j dw −−
⋅ += σ                                             (6) 

where the sample variance of the wavelet coefficients at scale j is simply the sum of the 

squared wavelet coefficients at scale j normalized by the number of wavelet coefficients 

∑ −

=−⋅

−

=
12

0

2
,,

)(

2
1)r(âv

jJ

k kjjJj ww      (7)  

Jensen (1999) demonstrates that the wavelet OLS estimate d̂  is a consistent estimator of the 

fractional integration parameter d. Additionally, Jensen also demonstrates through Monte 

Carlo experiments that the wavelet OLS estimator of d  in (6) has approximately four to six 

times smaller MSE than the familiar GPH estimator.  

 

2.3  Time-varying long memory parameters 
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Some recent literature argues that market efficiency seems to evolve over time and implies 

that a single long memory parameter cannot be representative of an entire data series. For 

comparisons sake, we therefore adopt two different approaches to evaluate the wavelet OLS 

estimates. The first approach is to estimate a static long memory parameter over the full 

sample of 4096=N observations. The second approach employs the “rolling sample” method 

following Cajueiro and Tabak (2004) and Batten et al. (2005). 

To be clear about the latter approach, let tr  be the logarithm of futures returns. The 

wavelet coefficients of tr  can be obtained by setting trtx =)(  in (5). Next, consider a sub-

sample of continuously compounded asset returns { }nrrr ,...,, 21 , where the sub-sample consists 

of n observations. Following Cajueiro and Tabak (2004), we choose an approximately 4 year 

time-window6 where n = 1024 (i.e., 102 ). Specifically, we then calculate the wavelet OLS 

estimate for the initial period of 1024 observations and then roll the sample one data point 

forward, eliminating the first observation and including the next one, repeating this procedure 

until the end of the series. In this case, we would have (N – n +1) or 3073 wavelet OLS 

estimates. This methodology, in effect, creates a series of long memory parameter values, 

allowing any changes in those values to be assessed over time.  

 

2.4  Testing for structural breaks 
 
To test whether time-varying long memory parameters contain multiple structural breaks, we 

apply the Bai and Perron approach (1998, 2003a, 2003b, 2004). Specifically, consider the m -

breaks in mean model7 

tjty εµ +=      (8) 

                                                 
6 Cajueiro and Tabak (2004) argue that a 4 year time-window reflects political and business cycles in most 
countries and it is sufficient to give precise estimates.  
7 Choi and Zivot (2007) argue that structural breaks in the mean have a natural interpretation due to the direct 
effect of an economic shock to the forward premium. 
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where 1,...,1 += mj  and jµ  is the mean level of ty  in the thj  regime. Additionally, the 

indices ( mTT ,...,1 ) denote the breakpoints for the different regimes and we adopt the 

convention that 00 =T  and TTm =+1 . These breakpoints can be estimated via the following 

objective function 

mTTmTT ,...,1 1
minarg)ˆ,...,ˆ( = TS ( mTT ,...,1 ),  (9) 

where for each m-partition ( mTT ,...,1 ) the least squares estimates jµ are generated by 

minimizing the sum of the squared residuals 

∑ ∑
+

= += −

−=
1

1 1

2
1

1

)(),...,(
m

j

T

Tt
jtmT

j

j

yTTS µ ,  (10) 

giving jµ ( mTT ,...,1 ) as the mean estimates associated with the given m-partition that 

minimizes TS ( mTT ,...,1 ). Bai and Perron (2004) suggest the use of a specific dynamic 

programming algorithm to solve the minimization problem in equation (9).  

Bai and Perron (1998) propose a group of test statistics to choose the number of mean 

breaks (m). Let )(lSupFT  be the F statistic for testing the null hypothesis of no structural 

breaks ( 0=m ) versus the alternative that there are breaks ( lm = ). Two “double maximum” 

statistics can now be proposed to determine if a structural break has occurred, both testing the 

null hypothesis of no structural breaks against the alternative of an unknown number of 

breaks (where L is an upper bound). First, )(maxmax 1 lSupFUD TLl≤≤=  and second, the 

weighted double maximum statistic )(maxmax 1 lSupFwWD TlLl ⋅= ≤≤ , which applies different 

weights to the individual )(lSupFT  so that the marginal p-values are equal across values of l. 

Lastly, Bai and Perron also propose using )|1( llSupFT +  to test the null hypothesis of l 

breaks against the alternative of l +1 and derive appropriate critical values for each test 

statistic. 
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On the basis of several Monte Carlo simulations, Bai and Perron (2004) recommend 

the following estimation strategy to assess whether a structural change has occurred. In a 

preliminary step, use the double maximum statistics to detect if at least one break is present. 

If the double maximum statistics are significant, next select the number of structural breaks 

using the )|1( llSupFT +  statistics sequentially starting with l = 1. This procedure will be 

stopped when selection process rejects the largest value of  l. 

The Bai and Perron framework has been widely employed in empirical analysis of 

multiple structural breaks8 due to some useful characteristics. Firstly, it estimates unknown 

multiple break points in a dynamic linear regression model using the least-squares principle. 

Secondly, the Bai and Perron (1998, 2003a) method allows for general specifications when 

test statistics are calculated. In particular, specifications can allow for autocorrelation and 

heteroskedasticity in the regression model residuals, as well as different moment matrices for 

the regressors in the different regimes. To allow for all these features, the most general Bai 

and Perron (1998, 2003a) specification9 is adopted in this paper.   

 
 
3. Data and empirical analysis  
 
3.1  Data 

Our data set consists of seventeen daily futures prices to undertake a comparative analysis 

across a range of assets. These comprise Soybeans, Corn, Wheat, Cocoa, Sugar, Cotton, 

Heating oil, Gold, Silver, Copper, Live cattle, Feeder cattle, Hogs, Pork bellies, S&P 500, 

$/Pound and $/Yen. All the data are taken from DataStream International. Our data cover 

different sectors of futures markets such as agricultural, energy and metal commodities as 

                                                 
8 See, inter alios, Guo and Wohar (2006), Choi and Zivot (2007) and Kellard and Sarantis (2008).   
9 Following Kellard and Sarantis (2008), we set cor_u = 1, het_u = 1,  π = 0.15 using the notation of Bai and 
Perron (2004). π is an arbitrary small trimming value which sets the maximum number of breaks allowed in the 
series. When  π = 0.15, the maximum of 5 breaks is allowed. We set the maximum breaks L = 5, as suggested by 
Choi and Zivot (2007). Note that the Bai and Perron (1998, 2003a, b) statistics are computed using the GAUSS 
program available from Pierre Perron’s home page at http://econ.bu.edu/perron/. 

http://econ.bu.edu/perron/
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well as stocks and currencies. The choice of these contracts is based on the recent studies of 

long memory in commodity futures markets (see, inter alios, Barkoulas et al., 1999; Crato 

and Ray, 2000; Elder and Jin, 2009; Fernandez, 2010). Since the storability characteristics of 

commodities may significantly affect the price discovery performance, both storable and non-

storable commodity data are collected.   

 Daily futures contract settlement prices spanning the period October 1993 to 

December 2009 are obtained from DataStream yielding 4,096 observations per contract. The 

futures prices are those from the nearest contract but contracts are rolled over to the next 

contract on the first business day of the contract month. Yang et al. (2001) argue that it is 

appropriate to use the nearby futures contract since it is typically the most liquid and the most 

actively traded. Futures return series are calculated using the settlement price for days t and t-

1. Specifically, the continuously compounded daily returns are defined as 1lnln −−= ttt FFr . 

Most of the return distributions are negatively skewed and display a high degree of excess 

kurtosis. All return series also appear extremely non-normal from the Jarque and Bera (1987) 

test results. These significant deviations from normality (combined with our later results on 

long memory) may be an indication of non-linear dynamics (Fang et al., 1994). 

We implement the augmented Dickey-Fuller (ADF) unit root test results for futures 

returns where the number of lags is chosen through general-to-specific testing at the 5 percent 

significance level as recommended by Ng and Perron (2001). The unit root null is clearly 

rejected at all conventional significance levels. The results from the Kwiatkowski, Phillips, 

Schmidt and Shin (1992) (KPSS) test for stationarity indicate that return series are stationary 

at the 5% significance level.10 

 

3.2  Baseline static long memory results  
 
                                                 
10 The summary statistics and ADF and KPSS results are available from the authors upon request. 



13 
 

The static or global fractional integration parameter  d  is  estimated for  the futures return 

series by the wavelet OLS estimator WOLSd  and for the sake of comparison, the popular GPH 

estimator GPHd .11  Given that all return series are stationary, we test the null of no long 

memory )0:( 0 =dH against the alternative of fractional integration ( 0:0 ≠dH ). The 

Daubechies (1988) wavelet is considered to be the most suitable wavelet method for 

economic or financial series (Jensen, 1999; Tkacz, 2001).12 This wavelet is employed with 

six smoothing parameters (i.e., Daubechies-6).  In particular, Jin et al. (2006) argue that, 

although there is no metric for selecting an “optimal” value, greater distortion may be caused 

by large smoothing parameters due to boundary effects. Table 113 reports the wavelet and 

GPH estimates for the fractional integration parameters over the entire 1993-2009 sample.  

[Insert Table 1 about here] 

Some interesting findings emerge. First, the Daubechies-6 wavelet OLS estimator results 

strongly support fractional integration for many commodity futures returns. The null of no 

long memory is rejected at the 5% level for 8 commodity returns (Wheat, Cocoa, Sugar, 

Heating oil, Silver, Live cattle, Hogs and Pork bellies). Such results are consistent with recent 

work by Elder and Jin (2009) who analogously report evidence of long memory in 

commodity futures returns using a wavelet OLS estimator. 

The GPH results with an estimation window of 5.0N  indicate that the null can be 

rejected at the 5% for 5 of the 14 commodity return series (Sugar, Copper, Live cattle, Hogs 

and Pork bellies). Although a little less supportive than the wavelet analysis, these results still 
                                                 
11 The computations are implemented using  OX 4.1 and Matlab 7.8. 
 
12 Since the Daubechies (1988) family of wavelets has more desirable properties for time series such as 
improved frequency localization and the ability to represent continuous signals (see Section 2.2 for detailed 
discussions), it is commonly utilized in the analysis of economic and financial series. 
 
13 As the wavelet OLS estimator is employed under the assumption of normal standard errors, we also used test 
statistics robust towards autocorrelation and heteroskedasticity by utilising the Newey-West (1987) estimator in 
the wavelet OLS regression. The details of the results are not reported, as they are quantitatively similar to those 
of the wavelet OLS with normal standard errors, but they are available upon request. 
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contrast with Crato and Ray (2000) who found no evidence of long memory. In any case and 

as noted earlier, Jensen (1999) demonstrates that the wavelet estimator has a significantly 

smaller MSE than the GPH estimator. Jin et al. (2006) argue that this may imply considerably 

lower sampling variability which may translate into greater power against the null of no 

fractional integration.  

Table 1 indicates that little evidence of long memory in the stock index is found both 

from the (Daubechies-6) wavelet or GPH estimator. These findings are line with the 

Barkoulas et al. (1999) and Crato and Ray (2000) results for returns on US stock index 

futures series. In contrast, the foreign exchange rate futures series display persistence using 

the wavelet OLS estimator, but not with the GPH estimator. Interestingly, Jin et al. (2006) 

have also reported similar results for the British Pound and Japanese Yen. Finally, most 

significant estimates of d from both wavelet and GPH estimators are negatively signed and, 

as such, are suggestive of anti-persistence. Again, our results are consistent with much of the 

extant literature including Jin et al. (2006), Elder and Jin (2009) and Fernandez (2010).14 We 

return to the interpretation of anti-persistence later. 

 

3.3       Time-varying long memory results  
 
Following Tabak and Cajueiro (2007), we use the Daubechies-615wavelet OLS estimator for 

overlapping rolling windows of 1024 observations each across the entire sample. Figures 1-

1716 depict the time-varying long memory parameter and corresponding 95% confidence 

intervals (CI).  

                                                 
14 Our results can also be interpreted in terms of the Hurst exponent H. The negative estimate of d indicates that 
a negatively correlated long memory process can be characterized by a Hurst exponent in the interval (0, 0.5). 
The positive estimate of d shows that the Hurst exponent falls in the interval (0.5, 1), suggesting positively 
correlated long-range dependence. 
15 We also estimate the time-varying long memory parameters with the Daubechies-4, 8 and Haar wavelets. 
They indicate that our results are robust (the results are not reported but are available from the authors).  
16 Since the wavelet OLS estimator is employed under the assumption of normal standard errors we also re-
estimate time-varying long memory parameters with the Daubechies-6 wavelet OLS estimators with HAC 



15 
 

[Insert Figures 1-17 about here] 

The date on the x-axis shows the beginning of the sample window used in the estimation. 

Thus, for October 1993, the wavelet OLS estimate was evaluated for the sample beginning in 

October 1993 and ending four years later (i.e., October 1997), and so forth. Overall, the 

typical pattern in our figures indicates longer periods of zero or low anti-persistence that are 

occasionally punctuated by shorter, sharper periods of even greater anti-persistence.  

The dynamics of the wavelet estimates for the commodity futures returns series 

(Figures 1-14) are striking and show dramatic fluctuations over time in their long memory 

parameters. Although the d̂ point estimates for a few commodities such as Soybeans and 

Corn occasionally display positive persistence ( d̂  > 0), the majority of estimates d̂  tend to 

move between zero and negative dependence. In other words, the parameters d̂  exhibit anti-

persistence ( d̂  < 0) for non-trivial periods of time, suggesting that these markets are 

inefficient in these periods due to under- and overreaction patterns. In other periods, the d̂ are 

insignificantly different from zero, indicating the markets are locally efficient. Moreover, it is 

found that the time-varying d̂ estimates for some series (e.g., Soybeans, Corn, Wheat) appear 

to have an upward shift whilst others (e.g., Cocoa, Feeder cattle and Hogs) exhibit a 

downward shift over time. The plots in  Figures 15-17 also presents that long memory 

parameters vary over time for the S&P 500, $/Pound and $/Yen futures returns. They suggest 

such markets are less efficient in the early and middle of the sample period, but tend to 

increase in efficiency after the late 1990s.  

Although no long memory is found in the previous analysis with a fixed window, 

Figures 2, 6, 8 and 15 for Corn, Cotton, Gold and the S&P 500 futures returns, respectively, 

                                                                                                                                                        
standard errors. The results are similar to the graphs obtained from the Daubechies-6 wavelet OLS with normal 
standard errors. Details are available upon request. 
 



16 
 

show that the long memory parameters are significant in some time periods but not in others. 

This indicates a formal test of time-varying parameters is required.  

We test stability formally by applying the Bai and Perron test of multiple structural 

breaks to the time-varying persistence parameter (d) and the results are reported in Table 2. 

[Insert Table 2 about here] 

The main points to emerge are as follows. First, the UDmax and WDmax provide strong 

evidence of structural changes in all the time-varying persistence parameters implying that d 

has at least two distinct regimes over the sample period. Second, the persistence parameter 

exhibits multiple (i.e., at least 2) structural breaks for all softs and grain (excluding Soybeans) 

contracts, and the Heating oil, Hogs and $/Pound contracts. These findings shed new light on 

the recent studies by showing that long memory parameters vary significantly over time.  

Table 3 gives details of the regimes implied by the structural break test and the 

associated persistence parameters with t-statistics that use robust standard errors.  

[Insert Table 3 about here] 

The results are striking. First, the persistence parameters are statistically significant in almost 

all regimes for all commodities. There is only a handful of exceptions in the whole sample: d 

is insignificant in just 8 out of 44 regimes but all commodities exhibit persistence in at least 

one regime. This result contrasts sharply with the results in Table 1 which assumed one static 

persistence parameter over the full sample period and where only 8 series exhibited 

significant evidence at the 5% critical value. Once one allows for structural breaks, the 

persistence parameter becomes statistically significant within regimes for all series making it 

a pervasive feature of futures contracts. This is an extremely striking result since it implies 

deviations from market efficiency for all return series.  

Second, almost all the persistence parameters are significantly negative, indicating 

anti-persistence. Only 1 (Soybeans Regime 2) out of the 44 persistence parameters is 
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significantly positive while 3 others are insignificantly different from zero. This is in line 

with the graphical evidence in Figures 1-17. Anti-persistence is consistent with patterns of 

overreaction to news or shocks as indicated by the blips in Figures 1-17. 

Third, the timing of the breaks is also interesting. Some 6 contracts experienced their 

first significant break in 1995-96 and these range from Gold to Live cattle and Wheat. A 

further 7 series had their first break in the late 1990s (e.g., S&P 500, heating oil and hogs). 

Finally, there is a clustering of breaks in 2002-2004. Some 4 commodity futures series 

experienced their second structural break in 2002-03, including Cocoa, Heating oil, Hogs and 

Wheat. The Corn and Wheat series experienced their third structural break in 2004. This 

would be consistent with the Tang and Xiong (2012) financialisation of commodities 

hypothesis. They argue that after the collapse of equity market in 2000, institutional investors 

and wealthy individuals discovered that a small negative correlation between commodity 

returns and stock returns could be used to reduce portfolio risk. However, significant 

commodity index investment started to flow into commodity markets after 2002 and all the 

above commodities are members of the two well-known, traded commodity indexes.17  

 

4.  Discussion and interpretation of the results18 

4.1 Key results 

Our results highlight three distinctive features of persistence in futures returns. Static 

measures of long memory dependence in futures returns indicate only limited evidence of 

persistence. By contrast, our first key finding is that the rolling sample wavelet method 

results indicate that persistence is pervasive across futures returns. These results indicate 

departures from efficiency in all series. 

                                                 
17 These are the SP-GSCI and DJ-UBS indexes. 
18 We are grateful to two anonymous reviewers whose helpful comments and suggestions inspired a substantial 
redrafting of this section and, in particular, the new sub-section. 
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 The second key finding is negative dependence or anti-persistence with d < 0. This 

has negative auto-covariances and unbounded variance at high spectral frequencies. Figures 

1-17 show a general pattern of longer periods of zero or low anti-persistence punctuated by 

shorter, sharper periods of even greater anti-persistence. Campbell et al. (1997) state that a 

series with d < 0 is still called long-range dependent since its autocorrelations decay much 

more slowly than those of more conventional time series even though d eventually collapses 

to zero. Thus if the negative long-range dependence exhibits an increasing past trend, it is 

followed by a decreasing future trend and vice versa, consistent with overreaction in returns. 

 Our results are in line with recent studies on financial asset returns. Mulligan (2000), 

Muniandy et al. (2001) and Jin et al. (2006) find foreign exchange returns exhibit anti-

persistence. Mulligan (2000) argues that the more negative persistence in exchange rates, the 

less stable the economy. A negatively dependent series in exchange rates should also have 

much shorter cycle lengths than random walks. They argue that one source of negative 

persistence behaviour may be suboptimal policy rules that delay intervention. Batten and 

Szilagyi (2007) argue that a negative long memory parameter for a foreign currency links to 

episodes of one currency decline/appreciation, or vice versa. They also claim that a 

negatively dependent series would be consistent with the long-term actions of arbitrageurs 

whose attempts to profit from a deviation of covered interest parity cause disequilibria to 

reverse. Avramov et al. (2006) argue that the presence of negative autocorrelations in 

individual security returns makes it difficult for investors to profit from predictability. 

However, Mulligan and Lombardo (2004) find strong evidence of anti-persistence in some 

maritime equities and argue that this is because market participants habitually overreact to 

new information, and never learn not to. 

Evidence of anti-persistence in commodity markets has also been reported in recent 

research (Elder and Jin, 2009; Fernandez, 2010). Elder and Jin (2009) found evidence of anti-
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persistence in grain and meat commodity futures returns while Fernandez report this 

phenomenon in the 20 DJ-AIG commodity futures indices. Like Mulligan and Lombardo 

(2004), Fernandez (2010) interprets these price dynamics as implying that returns tend to 

overreact to new information. Therefore, commodity futures returns would have considerable 

periodic high-frequency variation. Our negative persistence estimates for commodity futures 

returns provide additional evidence on this. Moreover, the finding may also imply that 

investors’ overreaction to new information causes commodity futures prices to temporarily 

swing away from their fundamental values, which leads to a violation of weak form 

efficiency. Several studies such as Irwin et al. (2009), Tang and Xiong (2012) and Singleton 

(2014) argue that commodities experienced a price bubble in the run up to 2008, i.e., the 

prices drifted above their fundamental values. Our results indicate that investor overreaction 

may play an important role in creating such a phenomenon. As anti-persistence in the futures 

returns are more established, it would be interesting to further explore its impact on pricing 

forecasting and optimal hedging. Overall, given the much lower MSE for the wavelet 

estimator, our results suggest that anti-persistence in futures returns is more prevalent than 

previously recognized. 

  The third key finding is that persistence fluctuates dramatically over time. The Bai 

and Perron structural break tests confirm the existence of at least two regimes for all return 

series and the persistence parameters are significant in most regimes. Thus, long-range 

dependence in futures returns is best conceptualized as time-varying. It tends to shift between 

positive and negative values (i.e., d > 0 and d < 0) even if it is invariably negative on average 

in all commodity/asset regimes. Alvarez-Ramirez et al. (2008) obtained a similar finding in 

US stock markets. A possible explanation for this may lie in changes in market participants’ 

behaviour. Manzan and Westerhoff (2005) develop a behavioural exchange rate model in 

which speculators’ perception of news is based on the psychological principle and argue that 
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over- and under reaction to news drives the evolution of the exchange rate via the agents’ 

orders. More specifically, Daniel et al. (1998) suggests that investor overconfidence drives 

overreaction (and this manifests itself as negative autocorrelation of short-term returns at long 

lags), where the overconfidence itself is represented, via biased self- attribution, as a function 

of investments outcomes. Our results may also imply investors’ behaviour in commodity 

futures markets is analogous to those in other financial markets. In other words, commodity 

futures prices display positive persistence and anti-persistence over different time periods due 

to under- and overreaction respectively. This new finding challenges the focus of previous 

studies only on a single value of long memory parameter, as our statistical evidence clearly 

shows that long memory parameters vary over time periods for all futures returns.   

 

4.2 Explaining our results 

Given that financialization implies that commodities behave more like traditional financial 

assets (see Tang and Xiong, 2012 and Singleton, 2014), we suggest some possible financial 

covariates to examine potential sources for the uncovered time-varying long range 

dependence in commodity futures returns.  Firstly, recent work (see Rostek, 2014) has 

suggested that lower volatility is commensurate with overreaction, and likewise, higher 

volatility is linked to underreaction. For a possible behavioural explanation, we posit that a 

positive shock to volatility may reduce biased self-attribution, given investment outcomes are 

less certain. In the Daniel et al. (1998) framework, this would lead to less investor 

overconfidence and hence decrease overreaction. This provides a possible link between time-

varying long memory and futures volatility. 

Secondly, researchers such as Singleton (2014), Hong and Yogo (2012), Kellard et al. 

(1999) and Fama and French (1987) suggest the futures basis (difference between the nearby 

futures price and spot price) may explain some of the behavior of commodity market returns. 
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This is because variation in the basis is caused by variation in expectations about the future 

spot price, the expected risk premium or investor sentiment. Some prior studies have found a 

negative association between returns and the basis showing (Singleton, 2014) and other a 

positive association (Kellard et al., 1999). A negative sign suggests that such markets are 

consistent with the theory of backwardation.  

We estimate the following model to assess the effect of the basis and futures volatility 

on futures returns time-varying long memory parameters: 

,      (11) 

where  is the time-varying value of d for futures returns,  and  is either 

white noise or an MA(1) error process.19 The least-squares results are presented in Table 4: 

[Table 4 around here] 

The results show that the majority of  coefficients (10 out of 17) on the futures volatility are  

significantly positive except those on sugar (significantly negative). This overwhelmingly 

positive relationship between persistence and futures volatility suggests that investors 

overreact less in volatile markets, as might be expected when investment outcomes are less 

certain and confidence is lower. Furthermore, most of the basis coefficients in Table 4 are 

also statistically significant. As in the more traditional return-basis relationship, the estimated 

parameter signs for the long memory-basis association are also mixed. Specifically, they are 

negative for eight (predominantly financial and livestock) futures markets, suggesting that 

persistence is higher (underreaction or less overreaction) the greater the degree of 

backwardation in these markets. By contrast, the coefficient sign is positive in six 

(predominantly grain and metals) markets, implying less anti-persistence as contango 

increases.  

                                                 
19 To match with the length of the time-varying d series, the basis and futures volatility are selected from 
27/10/1997 to 31/12/2009, providing 3073 observations. 
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 Other transformations of volatility and the basis may also provide explanatory power 

for long memory in futures returns. Recent papers (Elder and Jin, 2007; Coakley et al., 2011) 

provide evidence of long memory in both our suggested covariates. A natural extension of 

model (12) is therefore to estimate the following regression: 

                                        (12) 

where  is the is the time-varying value of d for futures volatility and the basis. The results 

are presented in Tables 5 and 6: 

[Tables 5 and 6 around here] 

Table 5 indicates a significantly positive relationship between the time-varying persistence 

parameters of futures returns and those of futures volatility for all but cocoa. Table 6 shows 

significant relationships (8 positive and 7 negative) with the futures basis persistence. The 

results newly demonstrate that long range dependence parameters in commodity futures 

returns, future volatility and the basis are time-varying and correlated with each other.  

 Finally, given commodity futures are well known as a hedging instrument to reduce 

commodity price risk, we also test whether the effect of hedging pressure20 is one of the 

drivers of persistence/anti-persistence in commodity futures returns. First, a joint error-

correction and multivariate GARCH (EC-BEKK) approach that accounts for the effect of the 

basis and heteroscedasticity is applied to estimate time-varying, optimal hedging ratios 

(OHRs). Second, we regress the time-varying long memory parameter d of the futures return 

on the dynamic time-varying hedge ratios (b*):  

  (13) 

 The results are presented in Table 7: 

[Table 7 around here] 

                                                 
20 We thank an anonymous reviewer for this suggestion. 
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The results suggest that all  are statistically significant with eight positive and eight 

negative coefficients (one insignificant). The positive coefficients indicate that hedging 

pressure increases persistence in commodity futures returns and again implies irrational 

behavior in the form of over/underreaction. Our finding is in line with those in Basu and 

Miffre (2013) who find that hedging-pressure and commodity futures links are significant. 

To sum up, the time-varying found persistence in commodity futures returns can be 

linked to relevant drivers. Volatility has a positive relationship with time-varying persistence 

and this might be explained within a Daniel et al. (1998) type behavioural framework, where 

increased volatility makes investment outcomes less certain and therefore overconfidence and 

overreaction are diminished. Both the futures basis and the hedge ratio have significant but 

mixed sign relationships with futures return persistence. This sign difference might be due to 

heterogeneous agents and limits to arbitrage and could be the subject of future research.   

 

5. Conclusions  

This paper investigates evidence of time-varying long memory in commodity futures returns 

by applying a rolling version of the semi-parametric wavelet estimator developed by Jensen 

(1999) to a large sample of daily futures returns from 1993 to 2009. The results reveal that 

the long memory is pervasive and that the parameters vary over time. Structural break tests 

show that all sample commodity and asset series exhibit at least one significant structural 

break or two regimes in the persistence parameter. Moreover, the persistence parameter itself 

is statistically significant in the majority of  regimes for series. These results contrast sharply 

with the findings of no long memory established for many commodities using static 

estimation, both in this paper and the extant literature. Long memory in futures returns is 

more pervasive and more variable than you might think! 
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Our results are striking because, to our knowledge, this is the first time that a 

significant and pervasive deviation from market efficiency has been formally identified for so 

many commodities and other markets. Moreover, most series display evidence of negative 

fractional integration (-0.5 < d < 0), indicating that commodity futures return series are 

characterised by anti-persistence. These results are in agreement with other recent studies that 

find evidence of anti-persistence in the spot stock market and exchange rate returns and in 

commodity futures returns (Jin et al., 2006; Elder and Jin, 2009). Anti-persistence is 

consistent with investor overreaction to news and shocks, a return pattern that have been 

posited in the behavioural finance literature.  
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Table 1 
Wavelet OLS and GPH estimates of daily futures returns 

 
 d̂   D-6 d̂  GPH( 5.0N ) 

 
Soybeans -0.103* 

(-1.68) 
0.045 
(0.51) 

Corn -0.056 
(-1.56) 

0.023 
 (0.26) 

Wheat -0.172** 
(-2.04) 

-0.049 
(-0.54) 

Cocoa -0.105** 
(-2.01) 

0.054  
(0.60) 

Sugar -0.070** 
(-2.37) 

0.185** 
(2.07) 

Cotton -0.031 
(-1.45) 

-0.036 
(-0.40) 

Heating oil -0.068** 
(-2.65) 

0.117 
(1.31) 

Gold -0.093 
(-1.46) 

-0.113  
(-1.27) 

Silver 
 

-0.067** 
(-3.14) 

-0.141 
(-1.57) 

Copper 
 

0.011 
(0.36) 

0.220** 
(2.46) 

Live cattle -0.126** 
(-2.87) 

-0.220** 
(-2.46) 

Feeder cattle -0.015 
(-0.72) 

0.054 
(0.61) 

Hogs -0.311** 
(-3.09) 

-0.302** 
(-3.38) 

Pork bellies 
 

-0.188** 
(-2.99) 

-0.176** 
(-1.99) 

S&P 500 0.004 
(0.13) 

0.074  
(0.83) 

$/Pound -0.069** 
(-1.97) 

0.036 
(0.40) 

$/Yen -0.052* 
(-1.94) 

0.053  
(0.60) 

Notes: 1. d̂  D-6 column represents the Daubechies-6 wavelet OLS estimate for the entire   
               1993-2009 sample.  dˆGPH column represents the GPH estimate for the entire  
               1993-2009 sample.  

               2. The values in parentheses are t-statistics.  
                  ** indicates that the null of d = 0 is rejected at the 5% level; * indicates at the 10%  
                    level.            
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Table 2 
Bai and Perron statistics for tests of multiple structural breaks in the time-varying persistence parameter d 

 UDmaxa WDmax(5%)b F(1|0)c F(2|1)d F(3|2)e F(4|3)f F(5|4)g 
Soybeans 49.93*** 55.96** 49.93*** 6.75 2.18 - - 
Corn 62.50*** 113.26** 45.43*** 43.83*** 27.38*** 6.68 6.84 
Wheat 53.37*** 84.76** 46.60*** 48.79*** 18.18*** 6.17 - 
Cocoa 26.25*** 44.38** 22.65*** 10.52*** 2.68 2.32 2.69 
Sugar 94.88*** 208.20** 27.16*** 38.36*** 8.16 13.44** 0.46 
Cotton 31.29*** 37.18** 8.14* 42.20*** 4.13 4.20 - 
Heating oil 42.84*** 56.16** 13.76*** 30.75*** 5.37 5.35 7.16 
Gold 35.87*** 35.87** 35.87*** 4.17 1.61 2.01 1.14 
Silver 10.08** 13.99** 10.08** 4.45 9.49** 4.73 0.10 
Copper 10.85** 11.58** 10.85** 6.43 2.71 0.69 - 
Live cattle 34.82*** 34.82** 34.82*** 8.90* 3.19 3.29 - 
Feeder cattle 38.63*** 39.97** 38.63*** 6.67 2.83 13.10** - 
Hogs 51.38*** 61.05** 47.71*** 18.31*** 4.68 - - 
Pork bellies 19.53*** 28.17** 10.27** 3.27 38.65*** 1.87 0.04 
S&P 500 38.69*** 38.81** 38.69*** 2.13 2.51 0.67 - 
$/Pound 97.74*** 97.74** 97.74*** 21.57*** 7.54 2.64 1.38 
$/Yen 12.79*** 17.40** 12.79*** 4.10 1.62 1.05 - 
Notes: 1. The time-varying persistence parameter d is estimated using the Daubechies-6 wavelet OLS estimator for overlapping rolling                        
               windows of 1024 observations each across the entire sample. 
          2.    a 10, 5 and 1 percent critical values are 7.46, 8.88 and 12.37, respectively. 

   3.  bCritical value is 9.91. 
   4.   c10, 5 and 1 percent critical values are 7.04, 8.58 and 12.29, respectively. 
   5.  d10, 5 and 1 percent critical values are 8.51, 10.13 and 13.89, respectively. 
   6.  e10, 5 and 1 percent critical values are 9.41, 11.14 and 14.80, respectively. 
   7.   f10, 5 and 1 percent critical values are 10.04, 11.83 and 15.28, respectively. 
   8.  g10, 5 and 1 percent critical values are 10.58, 12.25 and 15.76, respectively. 
   9.  *, **, *** indicate 10%, 5% and 1% significance, respectively. 
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Table 3: Bai and Perron regime means and end dates for the time-varying persistence parameter d 
 

  Regime 1 Regime 2  Regime 3  Regime 4  
Soybeans Mean (t-ratio) 1 -0.0924(-6.42) 0.0327(3.17)    
 End date2 25/04/2000    
      
Gold Mean(t-ratio) -0.0752 (-7.52) -0.1528(-18.41)   
 End date 05/03/1996    
      
Silver Mean(t-ratio) -0.1667(-21.93)  -0.0975(-4.78)    
 End date 07/11/2003    
      
Copper Mean(t-ratio) -0.0593(-6.74) 0.0174(0.81)   
 End date 03/01/2003    
      
Live cattle Mean(t-ratio) -0.2011(-20.52)  -0.1212(-13.03)   
 End date 20/11/1996    
      
Feeder cattle Mean(t-ratio) -0.0099(-0.51) -0.0802(-5.81)   
 End date 03/08/1995    
      
Pork bellies Mean(t-ratio) -0.0607(-5.62) -0.1501(-6.79)   
 End date 24/09/1999    
      
S&P 500 Mean(t-ratio) -0.1831(-14.3) -0.0734(-6.07)   
 End date  22/06/1998    
      
$/Yen Mean(t-ratio) -0.0197(-2.03) -0.0686(-7.15)   
 End date 21/12/2000    
      
Cocoa Mean(t-ratio) -0.1278(-5.65) -0.0488(-5.42) -0.17(-10.83)   
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 End date 18/06/1996 25/06/2002   
      
Sugar Mean(t-ratio) -0.1144(-4.89) -0.0103(-0.79)  -0.286(-12.33)   
 End date 08/03/1996 10/12/1999   
      
Cotton Mean(t-ratio) -0.1124(-8.26)  -0.0142(-1.67) -0.1162(-8.80)  
 End date 26/10/1998 04/10/2002   
      
Heating oil Mean(t-ratio) -0.0468(-4.63)  -0.1781(-16.19) -0.0343(-1.46)  
 End date 12/01/2000 15/09/2003   
      
Hogs Mean(t-ratio) 

End date 
-0.0317(-3.27) 
24/04/2000 

-0.1031(-7.47) 
29/08/2003 

-0.181(-15.21)  

      
$/Pound Mean(t-ratio) -0.162(-12) -0.246(-20.5) -0.0624(-7.09)  
 End date 31/08/1995 28/07/1997   
      
Corn Mean(t-ratio) 0.0061(0.32)  -0.1929(-14.5)  -0.0594(-5.55) 0.0113(1.36) 
 End date 09/09/1996 19/04/2000 13/02/2004  
      
Wheat Mean(t-ratio) -0.0407(-2.99) -0.1771(-22.71) -0.0862(-7.12)  -0.0011(-0.07) 
 End date 16/10/1995 28/01/2002 13/02/2004  
Notes: 1. The time-varying persistence parameter d is estimated using the Daubechies-6 wavelet OLS estimator for overlapping rolling    
               windows of 1024 observations each across the entire sample.             
           2. The mean is the average time-varying long memory parameters (d) in each regime; t-ratios are reported in parentheses.             
           3. The end date shows when each regime ends.             
           4. Breaks are identified at the 5% significance level using robust standard errors (see Table 2). 
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Table 4: Persistence and the basis and volatility 
 
We report the results of estimating: 

 
                                      
where  is the time-varying value of d for futures returns,  is the basis and  is the futures 
volatility. The basis and futures volatility are selected from 27/10/1997 to 31/12/2009 to match the 
length of the time-varying d series. This provides some 3073 observations. As equations (1) and (2) 
give qualitatively similar results, only the results from (2) are reported.  
     R2 

Soybeans -0.044** 0.326** 0.041** 0.745** 0.589 
t-statistic (-16.29) (4.83) (3.57) (61.88)  

Corn -0.114** 0.53** 0.008 0.765** 0.612 
t-statistic (-24.8) (10.14) (0.68) (65.65)  

Wheat -0.14** 0.326** 0.021* 0.687** 0.606 
t-statistic (-60.38) (21.13) (1.79) (52.17)  

Cocoa -0.092** 0.177** 0.013 0.744** 0.582 
t-statistic (-23.65) (2.84) (1.62) (61.46)  

Sugar -0.098** 0.018 -0.001** 0.794** 0.623 
t-statistic (-24.02) (0.62) (-3.25) (72.14)  

Cotton -0.08** -0.03 0.009 0.704** 0.537 
t-statistic (-23.87) (-0.63) (1.05) (54.87)  

Heating oil -0.083** -0.373** 0 0.699** 0.555 
t-statistic (-41.29) (-7.4) (0.06) (54.03)  

Gold -0.138** -0.047 0.041* 0.654** 0.484 
t-statistic (-73.41) (-0.38) (1.68) (47.82)  

Silver -0.155** 0.214* 0.026** 0.62** 0.451 
t-statistic (-75.09) (1.8) (2.74) (43.72)  

Copper -0.046** 0.298 0.026** 0.72** 0.558 
t-statistic (-28.46) (2.81) (3.05) (56.88)  

Live cattle -0.139** -0.402** 0.106** 0.679** 0.531 
t-statistic (-70.44) (-9.65) (3.84) (51.3)  

Feeder cattle -0.075** -0.133** 0.038 0.716** 0.526 
t-statistic (-38.61) (-2.33) (0.84) (56.86)  

Hogs -0.078** -0.084** 0.002 0.742** 0.581 
t-statistic (-41.95) (-4.48) (0.98) (61.22)  

Pork bellies -0.082** -0.115** 0 0.696** 0.548 
t-statistic (-44.79) (-9.23) (-0.12) (53.73)  

S&P 500 -0.102** -4.627** 0.046** 0.684** 0.573 
t-statistic (-45.13) (-14.9) (3.52) (51.42)  

$/Pound -0.109** -0.662* 0.268** 0.68** 0.517 
t-statistic (-47.31) (-1.84) (2.26) (51.18)  

$/Yen -0.038** -0.344** 0.07** 0.777** 0.597 
t-statistic (-22.76) (-1.98) (2.5) (68.24)   

Notes: 1. *, **  indicate 10% and 5%  significance, respectively. 
         2. Hogs are not included due to lack of the spot rates as wavelet estimation requires 4096   
               observations.
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Table 5: Time-varying long memory in futures returns and volatility 

 
We report the results of estimating: 
 

                                         

                
where is the time-varying d for the futures returns and   is the time-varying d of the futures 
volatility. As equations (1) and (2) give qualitatively similar results, only the results from (2) are 
reported.  
    R2 

Soybeans -0.095** 0.379** 0.728** 0.635 
t-statistic (-27.55) (20.82) (58.73)  

Corn -0.08** 0.297** 0.765** 0.615 
t-statistic (-34.5) (11.43) (65.82)  

Wheat -0.149** 0.439** 0.672** 0.627 
t-statistic (-63.92) (25.94) (50.11)  

Cocoa -0.1** -0.007 0.747** 0.58 
t-statistic (-35.48) (-0.34) (62.27)  

Sugar -0.119** 0.26** 0.756** 0.636 
t-statistic (-39.16) (11.19) (60.06)  

Cotton -0.072** -0.255** 0.679** 0.578 
t-statistic (-37.48) (-17.67) (51.11)  

Heating oil -0.115** 0.327** 0.683** 0.596 
t-statistic (-47.24) (19.38) (51.75)  

Gold -0.133** -0.038** 0.654** 0.485 
t-statistic (-44.28) (-1.97) (47.92)  

Silver -0.169** 0.084** 0.624** 0.451 
t-statistic (-32.38) (2.95) (44.2)  

Copper -0.058** 0.105** 0.727** 0.562 
t-statistic (-23.17) (6.57) (58.71)  

Live cattle -0.151** 0.17** 0.681** 0.525 
t-statistic (-68.07) (8.23) (51.58)  

Feeder cattle -0.067** -0.052** 0.717** 0.526 
t-statistic (-18.38) (-2.48) (56.92)  

Hogs -0.075** 0.151** 0.745** 0.591 
t-statistic (-39.88) (9.64) (61.69)  

Pork bellies -0.102** 0.177** 0.692** 0.552 
t-statistic (-45.34) (10.45) (53.05)  

S&P 500 -0.155** 0.205** 0.698** 0.567 
t-statistic (-43.4) (13.32) (53.96)  

$/Pound -0.163** 0.462** 0.651** 0.586 
t-statistic (-51.54) (23.04) (47.55)  

$/Yen -0.042** 0.024* 0.778** 0.597 
t-statistic (-21.47) (1.67) (68.71)   

Notes: 1. *, **  indicate 10% and 5%  significance, respectively. 
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Table 6: Time-varying long memory in futures returns and the basis 

 
We report the results of estimating: 
 

 
                 
where is the time-varying d for the futures returns and  is the time-varying d for the basis. As 
equations (1) and (2) give qualitatively similar results, only the results from (2) are reported.  
    R2 

Soybeans 0.242** -0.443** 0.731** 0.632 
t-statistic (17.3) (-19.96) (59.41)  

Corn 0.025 -0.136** 0.773** 0.602 
t-statistic (1.17) (-4.67) (67.45)  

Wheat -0.021* -0.129** 0.707** 0.557 
t-statistic (-1.75) (-7.96) (55.31)  

Cocoa 0.022** -0.222** 0.738** 0.604 
t-statistic (2.42) (-13.7) (60.63)  

Sugar -0.514** 0.672** 0.748** 0.731 
t-statistic (-43.75) (35.84) (62.25)  

Cotton -0.133** 0.089** 0.702** 0.541 
t-statistic (-13.68) (5.42) (54.58)  

Heating oil -0.196** 0.218** 0.698** 0.561 
t-statistic (-17.09) (9.9) (54.02)  

Gold -0.138** -0.057** 0.654** 0.485 
t-statistic (-74.8) (-2.84) (47.93)  

Silver -0.137** -0.124** 0.622** 0.456 
t-statistic (-38.59) (-5.97) (44.05)  

Copper -0.055** 0.023** 0.724** 0.557 
t-statistic (-13.87) (2.61) (58.11)  

Live cattle -0.234** 0.161** 0.682** 0.523 
t-statistic (-18.56) (7.38) (51.67)  

Feeder cattle 0.062** -0.301** 0.695** 0.573 
t-statistic (8.18) (-18.57) (53.55)  

Pork bellies -0.161** 0.18** 0.696** 0.553 
t-statistic (-22.92) (10.85) (53.65)  

S&P 500 -0.225** 0.267** 0.682** 0.604 
t-statistic (-42.31) (22.03) (51.61)  

$/Pound -0.199** 0.264** 0.675** 0.531 
t-statistic (-20.71) (9.87) (50.68)  

$/Yen -0.036** -0.01 0.778** 0.596 
t-statistic (-12.64) (-1.39) (68.72)   

Notes: 1. *, **  indicate 10% and 5%  significance, respectively. 
         2. Hogs are not included due to lack of the spot rates as wavelet estimation requires 4096   
               observations. 
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Table 7:  Time-varying futures return persistence and optimal hedging ratios 

 
We report the results of estimating: 
 

 
       
where  is the time-varying d for the futures returns and   are the time-varying, optimal hedging 
ratios. As equations (1) and (2) give qualitatively similar results, only the results from (2) are 
reported.  
    R2 

Soybeans 0.035** -0.083** 0.744** 0.59 
t-statistic (3.34) (-6.76) (61.68)  

Corn -0.12** 0.054** 0.771** 0.602 
t-statistic (-11.17) (4.51) (67.02)  

Wheat -0.255** 0.155** 0.692** 0.583 
t-statistic (-28.36) (16.23) (52.87)  

Cocoa -0.075** -0.031** 0.744** 0.581 
t-statistic (-7.05) (-2.51) (61.44)  

Sugar -0.04** -0.108** 0.785** 0.629 
t-statistic (-4.73) (-7.59) (69.67)  

Cotton -0.058** -0.029** 0.704** 0.538 
t-statistic (-7.3) (-3.13) (54.92)  

Heating oil -0.003 -0.09** 0.699** 0.553 
t-statistic (-0.19) (-6.43) (54.14)  

Gold -0.156** 0.031* 0.655** 0.484 
t-statistic (-14.99) (1.8) (47.99)  

Silver -0.151** -0.005 0.623** 0.45 
t-statistic (-9.59) (-0.26) (44.19)  

Copper -0.094** 0.052** 0.723** 0.558 
t-statistic (-7.54) (3.93) (58.06)  

Live cattle -0.128** -0.094** 0.683** 0.517 
t-statistic (-34.17) (-4.23) (51.89)  

Feeder cattle -0.08** 0.027** 0.716** 0.527 
t-statistic (-31.27) (3.13) (56.84)  

Hogs -0.078** -0.167* 0.742** 0.579 
t-statistic (-40.14) (-1.64) (61.18)  

Pork bellies -0.085** -0.009* 0.702** 0.537 
t-statistic (-40.62) (-1.91) (54.61)  

S&P 500 -0.444** 0.344** 0.702** 0.552 
t-statistic (-10.95) (8.1) (54.67)  

$/Pound -0.386** 0.356** 0.669** 0.547 
t-statistic (-20.22) (14.72) (49.89)  

$/Yen -0.201** 0.183** 0.776** 0.602 
t-statistic (-8.29) (6.67) (68.27)   

Notes: 1. *, **  indicate 10% and 5%  significance, respectively. 
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Notes: Figures 1-17 depict the time-varying long memory parameter d for 17 futures returns with the 
corresponding 95% confidence intervals (CI). The parameter is estimated using the Daubechies-6 
wavelet OLS estimator for overlapping rolling windows of 1024 observations each across the entire 
sample.  
 
 

 
Fig 1. The time-varying long memory parameter d         Fig 2. The time-varying long memory parameter d 
           for Soybeans                                    for Corn 
 

 
Fig 3. The time-varying long memory parameter d         Fig 4. The time-varying long memory parameter d 
           for Wheat                                        for Cocoa 
 

 
Fig 5. The time-varying long memory parameter d         Fig 6. The time-varying long memory parameter d 
           for Sugar                                        for Cotton 
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Fig 7. The time-varying long memory parameter d         Fig 8. The time-varying long memory parameter d 
           for Heating oil                                        for Gold 
 
 

 
Fig 9. The time-varying long memory parameter d        Fig 10.The time-varying long memory parameter d 
           for Silver                                       for Copper 
 
 
 

 
Fig 11.The time-varying long memory parameter d       Fig 12.The time-varying long memory parameter d 
           for Live cattle                                      for Feeder cattle 
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Fig 13.The time-varying long memory parameter d       Fig 14.The time-varying long memory parameter d 
           for Hog                                                   for Pork bellies 
 

 

 
Fig 15.The time-varying long memory parameter d       Fig 16.The time-varying long memory parameter d 
           for S&P 500                                     for $/Pound 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 17. The time-varying long memory parameter d    
              for $/Yen   
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