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Abstract 23 

Increasing turbidity (either sedimentary or organic) from anthropogenic sources has 24 

significant negative impacts on aquatic fauna, both directly and indirectly by disrupting 25 

behaviour. In particular, anti-predator responses of individuals are reduced, which has been 26 

attributed to a reduced perception of risk. Here, we explore the effect of turbidity on 27 

shoaling behaviour, which is known to carry important anti-predator benefits, predicting 28 

that fish in turbid water should show reduced shoal cohesion (increased inter-individual 29 

distances) and reduced responses to a simulated predatory threat. We explore both the 30 

individual and shoal level responses to a predation threat at 4 different levels of turbidity. At 31 

the shoal level, we find that shoals are less cohesive in more turbid water, but that there is 32 

no effect of turbidity on shoal-level response to the predation threat. At an individual level, 33 

guppies in turbid water were more likely to freeze (rather than dart then freeze), and those 34 

that darted moved more slowly and over a shorter distance than those in clear water. Fish in 35 

turbid water also took longer to recover from a predation threat than fish in clear water. We 36 

suggest that because fish in turbid water behaved in a manner more similar to that 37 

expected from lone fish than to those in a shoal, the loss of visual contact between 38 

individuals in turbid water explains the change in behaviour, rather than a reduced 39 

perception of individual risk as is widely supposed. We suggest that turbidity could lead to a 40 

reduced collective response to predators and a loss of the protective benefits of shoaling. 41 

Keywords:  42 
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Introduction 45 

Intensified agricultural practices, urbanisation and deforestation are increasing levels of 46 

turbidity from suspended sediment and algal overgrowth in fresh water environments 47 

(Smith et al., 2006). This can have multiple negative implications for aquatic communities 48 

and is thought to be a significant contributor to declines in aquatic fauna worldwide 49 

(reviewed in Richter et al. 1997; Henley et al. 2000). At high levels of turbidity, particles can 50 

directly affect growth and survival: sediment particles can damage gills leading to infection 51 

(Sutherland & Meyer, 2007) and large algal blooms can deoxygenate water (Bruton, 1985). 52 

Turbidity at lower levels acts indirectly by altering the behaviour of aquatic organisms due 53 

to the degradation of the visual environment. Turbidity can disrupt communication signals 54 

(Van Der Sluijs et al., 2011), impair mate choice (Engstrom-Ost & Candolin, 2007; Sundin et 55 

al., 2010) and reduce the ability to detect food resources (Aksnes & Giske, 1993; Utne-Palm, 56 

2002).  57 

Crucially, turbidity can mean that individuals can no longer accurately detect predation 58 

threats (Swanbrow Becker et al., 2012), leading to changes in anti-predator behaviour and 59 

survival. In highly turbid environments, individual Atlantic cod (Gadus morhua) display 60 

poorly timed, weakened anti predatory responses (Meager et al., 2006). Other species 61 

increase behaviours often viewed as more risky (Van De Meutter et al., 2005) and decrease 62 

use of shelter in the presence of a predator (Abrahams & Kattenfeld, 1997; Lehtiniemi et al., 63 

2005). This may indicate a reduced perception of risk for some species, suggesting that 64 

turbidity acts as a shelter for prey, affording them protection from predators (Engstrom-Ost 65 

et al., 2006; Engström-Öst & Mattila, 2008; Gregory & Northcote, 1993; Snickars et al., 66 

2004). In support of this theory, some visually-orientated predators can suffer from reduced 67 
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capture success in turbid water (Ljunggren & Sandstrom, 2007; Utne, 1997), however many 68 

do not (Abrahams & Kattenfeld, 1997; Gregory & Levings, 1998; Jonsson et al., 2013; Reid et 69 

al., 1999). Primarily, turbidity acts to shorten the distance at which predators and prey 70 

detect each other so although prey detection by predators is impaired, those prey that are 71 

detected have less time to respond. This can make escape manoeuvres less effective 72 

(Gregory, 1993; Meager et al., 2006), although shorter distances are required to move prey 73 

out of sight of predators in turbid conditions (De Robertis et al., 2003). 74 

While changes in behaviour on an individual level have been well documented, less is known 75 

about responses to turbidity in the context of shoaling, a common and important anti-76 

predatory tactic among many fish species (Krause & Ruxton, 2002; Magurran, 1990). Groups 77 

of animals detect potential threats more quickly (Godin et al., 1988; Magurran et al., 1985), 78 

perform coordinated evasive manoeuvres (Magurran & Pitcher, 1987), dilute individual risk 79 

of predation (Godin, 1986; Treherne & Foster, 1981) and visually confuse predators, 80 

resulting in reduced targeting success (Ioannou et al., 2009; Krakauer, 1995; Landeau & 81 

Terborgh, 1986). Groups become larger, tighter and more polarised when at risk from 82 

predation (Caraco et al., 1980; Magurran & Pitcher, 1987; Seghers, 1974; Watt et al., 1997), 83 

enhancing these benefits. Thus, a reduced perception of risk in turbid water (Engstrom-Ost 84 

et al., 2006; Engström-Öst & Mattila, 2008; Gregory & Northcote, 1993; Snickars et al., 2004) 85 

could lead to reduced shoal cohesion. However, most fish rely strongly on vision for shoaling 86 

(Partridge & Pitcher, 1980) meaning reduced visual distances could also disrupt this 87 

important anti-predator tactic: at low light intensities fish shoals tend to break apart (Ryer & 88 

Olla 1998, Einfolt et al 2012, Paciorek and McRobert 2013, Miyazaki et al 2000). Increasing 89 

turbidity is therefore expected to lead to reduced levels of shoal cohesion through either 90 
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reduced perception of risk or reduced visual distances. Empirical data suggests that while 91 

moderate levels of turbidity may enhance shoaling in some species with well-developed 92 

eyes (Ohata et al., 2013), in highly turbid water, fish lose their preference for shoals 93 

composed of more individuals (Fischer & Frommen, 2012) and form looser aggregations 94 

(Ohata et al., 2013).  95 

During a predation attempt, fish in shoals perform a fast burst of motion to accelerate 96 

themselves away from the threat, leading to the flash expansion of the group (although 97 

some species remain highly cohesive during this response; Radakov, 1973). Individuals then 98 

regroup to form more cohesive shoals (Ryer and Olla, 1998). Increased cohesion reduces 99 

risk through increased predator confusion (Ioannou et al., 2009; Krakauer, 1995; Milinski, 100 

1977) and selfish herd effects, where individuals seek cover behind other shoal members 101 

(Hamilton, 1971). If turbidity disrupts shoal cohesion (Fischer & Frommen, 2012; Ohata et 102 

al., 2013) and reduces the perception of risk (Engström-Öst & Mattila, 2008; Gregory, 1993), 103 

responses to a predation event may be negatively impacted, increasing predation risk. Here, 104 

we explore how shoaling patterns of guppies (Poecilia reticulata) are influenced by 105 

increasing turbidity and in particular, how turbidity affects both individual and shoal level 106 

responses to the visual detection of a simulated aerial predation threat. Anti-predatory 107 

behaviour is well studied in this species: guppies form loose, uncoordinated shoals (as 108 

opposed to tightly polarised schools) of 2 – 47 individuals (Croft et al., 2003), and respond to 109 

predators by using escape responses or freezing, and by increasing shoal cohesion (Fischer 110 

et al., in press; Magurran, 2005). Guppies have excellent vision (Endler, 1991), responding 111 

strongly to visual predator cues (Kelley & Magurran, 2003), making them an ideal species for 112 

this study. Our aim is to assess whether increased turbidity is likely to have negative impacts 113 
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on grouping as an anti-predator response, by changing the way fish within shoals respond to 114 

a threat when they can no longer easily detect one another. 115 

Methods 116 

Study species and housing 117 

All fish used in this experiment were descendants of wild-caught guppies from Trinidad. Fish 118 

were maintained in aquaria (20 x 40 x 40 cm) on a recirculating system at the University of 119 

Hull at approximately 26oC (±1oC) on a 12:12hr light:dark cycle and fed daily on ZM small 120 

granular feed  (0.5-0.8mm ZM Systems, Hampshire, UK). Shoals consisting of 4 guppies were 121 

created by taking female fish of similar size (all fish in a shoal measured within 0.5cm of 122 

each other) from stock tanks and moving them to separate holding tanks 20cm x 20cm x 123 

20cm (26 shoals in total). Mean body size of individuals within shoals ranged from 1.4cm to 124 

2.5cm. Only females were used as they form the core of guppy shoals (Croft et al., 2004) and 125 

to reduce the confounding effect of sexual behaviour on association patterns. Shoals were 126 

left in these tanks for 14 days before experiments began to allow fish to become familiar 127 

with one another (Griffiths & Magurran, 1999), as familiarity can enhance anti-predator 128 

responses (Chivers et al., 1995). 129 

Experimental design 130 

Each shoal was exposed to 4 turbidity treatments (0, 50, 100 or 200 ± 10NTU) in a 131 

randomised order, with one week between exposures to allow for recovery. Thirty min 132 

before each trial, shoals of fish were moved to separate cylindrical holding tanks (diameter 133 

10cm, depth 33cm) to allow the fish to acclimitise to the turbidity level. Turbidity levels 134 

were chosen as turbidity is known to reach 200NTU during rainy seasons in Trinidad (Luyten 135 
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& Liley 1990), making the levels ecologically relevant. Turbidity was created using a 136 

bentonite clay-water solution and measured using an Oakton T100 portable turbidity meter. 137 

A concentrated bentonite clay solution was created using 100g of clay suspended in 4 litres 138 

of purified water. This was filtered through fine mesh to remove larger, heavier particles 139 

that sank faster when placed in suspension, to allow for the maintenance of turbidity levels 140 

over the course of the experiment. The resulting filtrate (>1000NTU) was further diluted 141 

with water taken from the aquarium system to obtain the desired turbidity level. Turbidity 142 

was maintained in the acclimatisation tanks by pumping air into the bottom of the 143 

cylindrical tank, which re-suspended any particles that fell to the bottom.  144 

After the acclimatisation period shoals were transferred to a white circular tank with grey 145 

sides (diameter 40cm, depth 15cm, filled to a depth of 2cm with water of the required 146 

turbidity). A monofilament fishing line ran above the centre of the tank at a 30o angle, the 147 

end of which was attached to the back of the tank 10cm above the waterline. From this a 148 

model bird predator could be dropped such that it passed over the centre and came to rest 149 

against back of the tank. This approach elicits a rapid escape response in fish (Chapman et 150 

al., 2010a, Seghers, 1974), leads them to initiate aggregation (Krause & Tegeder, 1994) and 151 

increase shoaling tendency (Krause et al., 1998). Thus, fish respond to the approaching 152 

aerial stimulus as if it were a predation threat, without the need for a predation event to 153 

occur. Guppies are predated on by a number of bird species in their natural habitat 154 

(Magurran, 2005) and preliminary trials in clear water indicated it was effective in eliciting a 155 

behavioural response in our study fish, and thus would be appropriate for investigating the 156 

effect of turbidity on responses to a visually-detected predator. It is possible fish may 157 

respond to a mechanical stimulus caused by the model coming to rest at the back of the 158 
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tank rather than the visual stimulus from flying overhead, but the majority of individuals 159 

responded when the model bird was overhead (0NTU =79%, 50NTU = 76%, 100NTU = 73%, 160 

200NTU = 77%). 161 

The water in the tank was kept at a depth of 2cm to allow for observation of the fish in 162 

highly turbid water and to minimise vertical movement (increasing accuracy in measuring 163 

inter-individual distances). Guppies are found in very shallow pools and streams in their 164 

natural environment, making the depth used ecologically relevant across at least some of 165 

their habitat (Luyten & Liley, 1985). The shallow water also ensured that guppies were not 166 

impeded significantly in the detection of the stimulus, and that any differences in 167 

behavioural response at different turbidity levels were not due to differences in the 168 

detection of the threat. Turbidity was maintained in the test tank by gently circulating water 169 

using an external filter. A Microsoft webcam suspended 60cm above the tank was used to 170 

record trials at 15 frames/s, and the tank was illuminated from above to ensure that a 171 

shadow passed over the tank when the predator was released. 172 

A model bird predator was used to elicit a startle response in the guppy shoals. The model 173 

predator was an oval piece of black card 10cm long and 4cm at its widest point attached to 174 

a small circular ring at its centre through which the monofilament line was threaded. At the 175 

start of the trial, the predator was positioned at the highest point of the wire, out of sight of 176 

the tank. Fish were acclimatised in the test tank for 5 min (all fish had begun swimming 177 

normally by this point) and then their shoaling behaviour was recorded for 10 min. To 178 

initiate a startle response after the 10 min of shoaling, the model predator was released. 179 

Video recording continued through the simulated predation event and for 2 min afterwards, 180 
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when trials were terminated. Water in the test tank was changed between each trial to 181 

remove any olfactory cues.  182 

Shoal cohesion was defined as the mean inter-individual distance between individuals 183 

within a group (Miller & Gerlai, 2007). As guppies form lose shoals, rather than schools, we 184 

did not measure alignment or activity synchrony, which may also component of overall 185 

cohesion. To measure shoal cohesion, videos files were converted into an image stack using 186 

VirtualDub (http://www.virtualdub.org) at 1 frame every 10 s (analysis at different frame 187 

intervals confirmed this gave an accurate representation of shoaling behaviour), which were 188 

then manually analysed in ImageJ (http://imagej.nih.gov/ij/). A scale bar drawn on the base 189 

of the tank and the tank diameter allowed accurate setting of scale for each video 190 

(pixels/cm). The XY coordinate of every fish (taken from the nose of each individual) was 191 

recorded every 10 s for 12 min (10 min before the simulated predation event, and 2 min 192 

after) and the average pairwise distance between the 4 fish calculated.  193 

At an individual level, we observed two responses to the predator: fish would either freeze 194 

immediately (‘freeze’), or dart away from their position, using a fast burst of motion, and 195 

then freeze (‘dart then freeze’), and we recorded the number of each type of response 196 

performed by each individuals. All individuals showed one of these two responses: no 197 

individuals darted without freezing, and no individuals remained swimming normally or 198 

showed another response. For fish that darted and then froze, we recorded their response 199 

in detail, by tracking individual movement of each of the 4 fish in the shoal for 15 200 

consecutive frames (1 second) immediately after the predator had passed over the tank, 201 

using the plugin MtrackJ (http://www.imagescience.org/meijering/software/mtrackj/) for 202 

ImageJ. The latency to respond to the attack (defined as the number of frames taken till the 203 
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fish responded by either darting or freezing), the distance moved (cm), the maximum speed 204 

reached (cm/s) and the time taken to regain normal swimming (when the fish had moved 205 

more than approximately one body length from the frozen position) were recorded for each 206 

fish in each shoal.  207 

Individual fish were not identifiable between turbidity treatments, although shoal 208 

membership remained constant throughout the experiment. 7 fish died during the 209 

experiments and these shoals were excluded from further treatments. 2 videos were 210 

excluded as the fish were disturbed before the startle response. 211 

Statistical analysis 212 

Shoal cohesion was measured as the mean of the inter-individual distances between each 213 

pair of fish within the shoal at each time point for 10 min before the predator release and 2 214 

min after. The effect of the appearance of a predator on shoal cohesion was assessed using 215 

a linear mixed effects model (LME) with time (before and after) and turbidity set as the main 216 

effects and shoal identity as a random effect to account for repeated measures and non-217 

independence of individuals within a shoal. No interaction between time and turbidity 218 

treatment was observed, so this was removed to give the minimum adequate model (MAM; 219 

Crawley, 2007). Model assumptions were checked by visual inspection of plots of residuals 220 

and were found to conform to the assumptions of normality. In order to test for differences 221 

between each of the turbidity treatments, the model was repeated using each turbidity 222 

level as the main intercept (re-levelled data).  223 

To assess the effect of turbidity on the proportion of individuals freezing we used a 224 

generalised linear mixed effects model (GLMER) with a binomial error distribution. Turbidity 225 
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was set as the main effect and shoal identity as a random factor. A GLMER with a poisson 226 

error distribution was used to analyse the latency to respond, with turbidity set as the main 227 

effect and shoal identity as a random factor. An additional observation-level random effect 228 

was used to account for overdispersion of the data (Harrison, 2014). For fish that responded 229 

with the darting response, individual startle responses (distance moved, maximum speed) 230 

were analysed using LME models with turbidity included as a main effect and shoal as a 231 

random effect to account for both repeated measures and non-independence of individuals 232 

within a shoal. Fish that froze were excluded from this analysis as they did not move as part 233 

of their response. In order to assess whether there was a difference between each pairwise 234 

of the turbidity treatments, each model was repeated using each turbidity level as the main 235 

intercept. All analysis was carried out in R 2.15.1 (R Development Core Team 2011) 236 

Ethical note 237 

This project was approved by the ethical review committees of the School of Biological 238 

Biomedical and Environmental Sciences and the Faculty of Science and Engineering at the 239 

University of Hull (reference numbers U021 and U023). 240 

 241 

Results 242 

Shoal Cohesion 243 

Shoals were observed to expand and contract (decrease and increase cohesion) throughout 244 

the experiment, resulting in a large variability in shoal cohesion over time. Despite this 245 

variation, there was a significant effect of turbidity (LME: F3,142 = 4.98, P = 0.0026), but no 246 

effect of time (before or after predator simulation) on shoal cohesion (LME: F1,142 = 0.15, P = 247 
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0.7) and no interaction. The expansion of the shoals during the predator exposure was well 248 

within the normal shoaling range, with post-predator exposure shoals showing similar 249 

patterns to the pre-exposure distances. 250 

Over the course of the experiment (before and after the aerial predation attempt), fish were 251 

found to shoal more cohesively in the lowest two levels of turbidity (0 and 50NTU) 252 

compared to the highest two level of turbidity (100 and 200NTU) (Figure 1: 0NTU vs 253 

100NTU: t = 2.7, P = 0.0077; 0NTU vs 200NTU: t = 2.79, P = 0.006; 50NTU vs 100NTU: t = 254 

2.67, P = 0.0084; 50NTU vs 200NTU, t = 2.77, P = 0.0064). No significant differences in shoal 255 

cohesion were observed between 0NTU and 50NTU (t = 0.09, P = 0.93) or 100NTU and 256 

200NTU (t = 0.048, P = 0.96) 257 

 258 

Individual responses to simulated predation threat 259 

There was a significant effect of turbidity on the proportion of fish freezing (rather than 260 

darting then freezing) immediately after the predator attack (figure 2a). With a higher 261 

proportion of fish found to freeze in highly turbid water compared to clear water (0NTU vs 262 

200NTU; z = 3.05, P = 0.0023) and the 50NTU treatment (50NTU vs 200NTU, z = 2.43, P = 263 

0.015; table 1).  264 

We found no effect of turbidity treatment on the latency to respond to the predation threat 265 

(LME: F3,233 = 1.28, P  = 0.28, table 1), however, the strength of response differed depending 266 

on turbidity. Fish reached a higher maximum speed within the first second of movement 267 

when in clear water compared to turbid (LME: F3,233 = 2.95, P = 0.034, figure 2b). Fish in 268 

clear water (0NTU) moved more quickly during the escape manoeuvre than fish in 50NTU (t 269 
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= -2.60, P = 0.01) and 200NTU (t = -2.75, P = 0.0064), but not 100NTU (t = -1.85, P = 0.065). 270 

No differences were observed between the 3 turbid treatments (table 1).  271 

The total distance moved in the first second also differed between the turbidity treatments 272 

(LME: F3, 233 = 4.98, P = 0.0023, figure 2c). Significant differences were found between clear 273 

water and highly turbid water (0NTU vs 200NTU, t= -3.74, P <0.001, table 1d) and the lowest 274 

level of turbidity (0NTU vs 50NTU, t = -2.08, P = 0.038), with fish in the clear treatment 275 

swimming increased distances in response to the threat. A difference was also observed 276 

between the two highest turbidity treatments; 200NTU and 100NTU (t= -2.57, P = 0.010), 277 

with fish moving further in 100NTU compared to 200NTU (table 1).  278 

Individuals took less time to recover from the simulated predation in clear water compared 279 

to all turbid treatments (Figure 2d. LME: F3,327 = 5.01, P = 0.002). Fish recovered (began 280 

swimming normally) significantly faster in clear water compared to 200NTU (t = 3.85, P < 281 

0.001), 100NTU (t = 2.06, P = 0.046) and 50NTU (t = 2.39, P = 0.017). No differences were 282 

observed between any of the turbid treatments (table 1). 283 

 284 

Discussion  285 

Increasing levels of turbidity influenced the behaviour of guppies at both the individual and 286 

group level. Shoals were less cohesive in highly turbid water, but we found no effect of 287 

turbidity on the shoal level response to a simulated aerial predation threat. At an individual 288 

level turbidity had a strong influence on anti-predator behavioural responses. In more 289 

turbid water, individuals were more likely to freeze (rather than dart then freeze), and those 290 

that did show darting behaviour had a slower escape speed and moved a shorter distance 291 
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than those in clear water, even though there was no difference in the time to initially 292 

respond to the predator. Fish in turbid water also took longer to recover from the predation 293 

threat than fish in clear water. Our finding that turbidity reduced shoal cohesion and caused 294 

individual fish to display weaker darting responses to a predator could either be explained 295 

by either a reduced perception of risk in turbid water (Gregory, 1993; Miner & Stein, 1996) 296 

or by constraints caused by the poor visual environment (Abrahams & Kattenfeld, 1997). 297 

The finding that fish in turbid water had increased recovery times, however, contradicts the 298 

reduced perception of risk theory. 299 

Weakened anti-predator responses in turbid water displayed by fish (Abrahams & 300 

Kattenfeld, 1997; Engström-Öst & Mattila, 2008; Gregory, 1993; Meager et al., 2006; 301 

Snickars et al., 2004) have been attributed to a reduced perception of risk. This may be due 302 

to turbidity reducing the probability of encountering a predator (Gregory & Levings, 1998) 303 

indicating that individuals are safer in turbid water, or reducing the ability of individuals to 304 

detect a predator (Meager et al., 2006) meaning the level of actual risk may remain 305 

unchanged. Studies reporting the true level of risk in turbid water show mixed results; in 306 

some cases (particularly for small juvenile fish) turbidity appears to act as a refuge, 307 

protecting prey from predators (Engström-Öst & Mattila, 2008; Snickars et al., 2004), with 308 

some individuals actively seeking out turbid water (Gregory & Levings, 1998). Although 309 

perception of risk may be reduced, actual risk may not: capture rates often remain the same 310 

in clear and turbid water (Jonsson et al., 2013; Reid et al., 1999) as predators compensate by 311 

using alternative cues to locate prey (Johannesen et al., 2012) or increase searching activity 312 

(Meager & Batty, 2007), and as a result of inappropriate or less effective anti-predatory 313 

behaviours displayed by prey. 314 
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Our finding that fish in turbid water took longer to recover from a threat contradicts the 315 

predictions of the reduced perception of risk theory, which would predict a reduced 316 

recovery time in turbid water (Gregory, 1993). Instead, the reduced visual distances in 317 

turbid water may cause fish to act as individuals rather than members of a shoal, since they 318 

are no longer able to easily detect and respond to their group-mates using vision. Fish in 319 

shoals have been found to recover more quickly than individual fish (Magurran & Pitcher, 320 

1987), supporting the suggestion that longer recovery periods in turbid environments in our 321 

experiment could indicate that the guppies’ anti-predator responses are more comparable 322 

to those of lone fish. The idea that altered behaviour is due to physical constraints imposed 323 

by turbidity is further supported by our finding that, in higher turbidity, a greater proportion 324 

of individuals froze rather than darting: freezing and hiding behaviours are more often 325 

associated with lone individuals than individuals in larger groups (Magurran & Pitcher, 1987; 326 

Rangeley & Kramer, 1998), although Fischer et al (in press) found lone fish were more likely 327 

to dart in response to a simulated predation threat compared to fish in a shoal. In a shoal, 328 

the darting response may add to predator confusion (Ioannou et al., 2012), reducing 329 

predator attack success and decreasing risk to prey. For lone fish, however, freezing or 330 

hiding may help an individual reduce risk by avoiding detection (Magurran & Pitcher, 1987). 331 

In high turbidity, the combination of reduced visual range and more dispersed shoals 332 

suggests fish are no longer able to easily detect conspecifics causing them to switch anti-333 

predatory tactics to those more commonly associated with isolated individuals.  334 

In contrast to previous work, we did not see an increase in shoal cohesion after the 335 

simulated attack in any of the groups (selfish herd effect: Hamilton, 1971, Krause et al., 336 

1998). This may have been because guppies tended to move to the edges of the tanks (pers. 337 
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obs.), which could potentially be used or perceived as a possible refuge location by the fish, 338 

as the grey colour of the sides of the tank made individuals more cryptic against the 339 

background (Rodgers et al., 2013). In a more open environment, we may have seen different 340 

effects. However, the shallow streams that guppies inhabit in Trinidad mean that use of 341 

refuge areas is likely to be a component of their anti-predator response. Guppies may also 342 

have received directional cues from the over-head predator stimulus and moved away from 343 

a possible attack location (Viscido et al., 2001), rather than towards their shoal-mates. An 344 

individual at risk from predation would need to balance the relative costs and benefits of 345 

protection in a group (e.g. through dilution, confusion and selfish herd effects; Krause & 346 

Ruxton 2002) against the benefits of seeking refuge as an individual. The low number of 347 

guppies in the shoal (n=4) may have also influenced behaviour within the group, although 348 

small shoals are commonly found in guppies (Croft et al., 2003). To our knowledge the 349 

interaction between group size and turbidity on anti-predatory behaviours has not been 350 

investigated, and represents an interesting avenue for future study. 351 

In turbid water, the benefits of shoaling may be reduced as the distance at which predators 352 

can detect prey is shortened (Utne-Palm, 2002), reducing the benefits of coordinated 353 

evasion and resulting in weakened shoaling preferences (Fischer & Frommen, 2012) and the 354 

reduced shoal cohesion observed here and in previous studies (Ohata et al., 2013; Ryer & 355 

Olla, 1998). Poor visual environments may cause predators to rely more strongly on 356 

olfactory cues (Chapman et al., 2010), meaning that the anti-predator benefits of grouping 357 

as a means of avoiding detection (the encounter-dilution effect; Wrona & Dixon, 1991) are 358 

reduced (Kunin, 1999; Treisman, 1975; Whitton et al., 2012; Wilson & Weissburg, 2012). The 359 

reduction in shoal cohesion in turbid water may thus be an adaptive response to changed 360 
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predation tactics, although some evidence suggests that aggregation could beneficial in 361 

avoiding detection even in turbid water (Johannesen et al., 2014). 362 

Our study focuses on anti-predatory responses mediated by the visual detection of an over-363 

head threat. In turbid water, however, fish may rely on alternative senses such as olfaction 364 

and the lateral line to detect and respond to both conspecifics and predators (Brown & 365 

Godin, 1999; Stewart et al., 2013, Partridge & Pitcher, 1980). The cues used and the 366 

responses shown will also depend on the type of predator encountered, as aquatic 367 

predators will produce different cues and may be detected at different times by members of 368 

a shoal. Spiny damselfish (Acanthochromis polyacanthus), for example, respond more 369 

strongly to the olfactory cues of an aquatic predator in turbid water compared to clear 370 

(Leahy et al., 2011). Interestingly, the guppies in our study were able to maintain similar 371 

shoal cohesiveness and anti-predatory responses to that of clear water until relatively high 372 

levels of turbidity, suggesting individuals can use alternative cues to compensate for the 373 

poor visual environment. Olfactory cues may be important in maintaining cohesive shoals; 374 

disruption to olfactory cues through pollution interferes shoaling behaviour (Ward, 2008) 375 

and alters individual responses to predators (Dixon et al., 2010), and therefore may affect 376 

group level responses to predators. The lateral line may also compensate for the lack of 377 

vision, by providing cues to the speed and direction of other shoal members (Partridge & 378 

Pitcher, 1980), although to our knowledge this remains untested in guppies, and warrants 379 

further investigation. 380 

Our study suggests that the reduced visual distances in turbid water constrains individual 381 

responses to an aerial predation threat and may result in a reduced collective response to 382 

predators and a loss of protection gained by shoaling. This may have implications for 383 
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individual survival during a predation event and for other behaviours linked to the benefits 384 

of grouping, such as anti-predator vigilance (‘many eyes effect’), enhanced foraging success, 385 

transfer of information and energy conservation (reviewed in Krause & Ruxton, 2002). How 386 

predators respond to the combination of changed prey behaviour and changed 387 

environmental conditions represents an interesting avenue for future study. 388 
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Table 1. Individual level responses of guppies to a simulated aerial predation threat at the 4 585 

levels of increasing turbidity (0, 50, 100, 200NTU) 586 

Turbidity 
(NTU) 

 DF z- or t-value P-value 

Proportion of individuals freezing   
0 50 3 0.86 0.38 
0 100 3 1.86 0.063 
0 200 3 3.03 0.002 
50 100 3 -1.10 0.27 
50 200 3 -2.42 0.015 
100 200 3 -1.17 0.24 
Latency to respond (frames) 
0 50 3 -0.63 0.49 
0 100 3 -0.99 0.73 
0 200 3 -0.96 0.15 
50 100 3 1.59 0.28 
50 200 3 -0.59 0.47 
100 200 3 -1.88 0.078 
Maximum speed (cm/s) 
0 50 3, 233 -2.60 0.01 
0 100 3, 233 -1.85 0.065 
0 200 3, 233 -2.75 0.006 
50 100 3, 233 0.61 0.54 
50 200 3, 233 -1.45 0.15 
100 200 3, 233 -0.83 0.41 
Total distance travelled (cm) 
0 50 3, 233 -2.43 0.015 
0 100 3, 233 -1.03 0.30 
0 200 3, 233 -3.77 <0.001 
50 100 3, 233 1.034 0.21 
50 200 3, 233 -0.25 0.80 
100 200 3, 233 -2.61 0.01 
Recovery time (s) 
0 50 3, 327 2.23 0.027 
0 100 3, 327 1.96 0.05 
0 200 3, 327 3.64 <0.001 
50 100 3, 327 -0.23 0.88 
50 200 3, 327 1.46 0.14 
100 200 3, 327 1.55 0.12 
 587 

Pairwise comparisons from the GLMER (proportion of individuals freezing and latency to 588 
respond) and LME (maximum speed, total distance travelled and recovery time) models for 589 
the individual level responses of guppies to a simulated aerial predation threat at the 4 590 
levels of increasing turbidity. Bold P-values represent significant results. 591 
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Figures 592 

 593 

Figure 1: Mean shoal cohesion (cm) of fish within a shoal, measured every 10 s for 12 min in 594 

increasing levels of turbidity (±S.E.). Asterisks indicate p <0.01 595 

 596 

  597 
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 598 

Figure 2: Individual level responses. a) Proportion of fish freezing in response to a simulated 599 

predator attack. b) Maximum speed (cm/s) reached in the first second of movement, c) 600 

Total distance moved (cm) within the first second of response and d) Time taken to recover 601 

normal swimming (s) after the predator simulation (±S.E.). Asterisks indicate significance: * 602 

= P < 0.05, ** = P <0.01, *** = P<0.001. 603 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 


	Turbidity influences individual and group level responses to predation in guppies (Poecilia reticulata)
	Helen S. Kimbell & Lesley J. Morrell
	Abstract
	Methods
	Statistical analysis
	Results
	Shoal Cohesion
	References



