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Abstract

Background: Grouping behaviour, common across the animal kingdom, is known to reduce an individual’s risk of predation;
particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for
attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance
from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg.
similar size), whilst also choosing a large group.

Methodology and Principal Findings: We used the Trinidadian guppy (Poecilia reticulata), a well known model species of
group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for
large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the
resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no
preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish
were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk
decreased. We found no effect of unmatched shoal size on preferences or activity.

Conclusions and Significance: Our results suggest that predation risk and individual body size act together to influence
shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks.
Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each
shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to
survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined
with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions.
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Introduction

Group living is widespread across the animal kingdom,

particularly in prey species, as it carries a number of proposed

anti-predator benefits. These include the dilution of individual risk

[1,2], the many-eyes theory of increased vigilance [3,4], and the

confusion effect, where a predator has difficulty in targeting a

specific individual for attack [5], all of which are increased in

larger groups. The confusion effect is also enhanced when prey are

morphologically and behaviourally similar [6], but when pheno-

typically distinct individuals occur within a group, predators

preferentially target these individuals, enhancing their success

[7,8]. This is known as the oddity effect, and is thought to select for

behaviours in prey that lead to the formation of phenotypically

assorted groups. Assortment by species [9], body size [10], colour

[11,12], and parasite load [13] are all found. Preferences for

groups containing kin [14] or familiar individuals [15] may also

act as a mechanism to reduce oddity: kin may share inherited

elements of their phenotype, while familiar individuals may have

experienced the same recent environment or diet, which can affect

phenotype [12,16,17].

Multiple factors contribute to an individual’s decision to join

one group over another, but we know little about how these factors

interact to contribute to the complex decisions made by grouping

animals. In natural circumstances, the characteristics of groups,

such as size and composition, fluctuate alongside changing

ecological variables. Some work has investigated the trade-offs

between two attractive characteristics of groups: Swordtails

(Xiphophorus spp) prefer shoals containing individuals of similar

body size over those of dissimilar body size when each contains the

same number of fish, but exhibit no preference between small size-

matched shoals and large, unmatched shoals [18], while for

mollies (Poecilia latipinna) body colouration is more important than

shoal size [19]. Preferences for familiar fish are traded off against

preferences for larger group size [20] and affected by recent diet

[17,21].

Ecological variables also play a key role in grouping decisions:

the strength of preferences for particular groups is affected by
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distance to the group [22], food availability [23] and predation risk

[23,24]. Predation risk is a key ecological factor driving the

evolution of morphological, behavioural and life-history traits.

Under the threat of predation, aggregation tendency increases

[2,25,26,27] while groups may also become phenotypically

homogenous [8,24,28,29], suggesting increased importance of

both dilution and oddity effects at increased predation risk.

Increased predation risk also acts to reduce overall activity levels,

firstly because prey movement may serve as a cue to predators and

secondly because activities such as moving between groups means

a period of isolation between shoals when risk is increased [30,31].

This may impact on an individual’s ability to sample the available

groups and make the optimal social decision (giving the largest

reduction in individual risk).

Here, we investigate how fish (Trinidadian guppies Poecilia

reticulata) trade off the benefits of shoaling with a phenotypically

similar shoal (reducing the oddity effect) against the benefits of

shoaling with a numerically large group (increasing the dilution

effect). As the benefits of both dilution and costs of oddity are likely

to increase with increasing predation risk, we carry out our

experiments on 7 populations that differ in the predation risk they

experience, to investigate the effect of risk on the balance between

dilution and oddity. We investigate preferences when individuals

are offered a choice between a shoal of similar body size to

themselves (the ‘matched shoal’) and one consisting of individuals of

a different body size (the ‘unmatched shoal’), predicting that fish

should preferentially associate with those of similar body size, and

that the strength of this preference should increase as predation risk

increases. We then increase the number of fish in the unmatched

shoal and predict that either: 1) Under increased predation risk,

dilution becomes increasingly important, and preferences for the

size-matched shoal decrease in favour of the numerically larger

shoal, or 2) under increased predation risk, the oddity effect

becomes increasingly important, and preferences for the numeri-

cally larger shoal decrease in favour of the size-matched shoal. In

addition, we investigated activity levels (moving between shoals) as

this may impact on the ability to make shoaling decisions.

Results

Proportion of shoaling time spent with matched shoal
The proportion of shoaling time the focal fish spends with the

body-size matched shoal, as opposed to the non-matched shoal (of

increasing shoal size) is a measure of its preference for shoaling

with fish of a similar body size. We found that larger-bodied test

fish (large fish) showed a significantly stronger preference for the

size-matched shoal compared to smaller-bodied test fish (small fish)

(GLM, p,0.001, table 1, figure 1), but found only a marginal

effect of predation risk (GLM, p = 0.059), no effect of the non-

matched shoal size (GLM, p = 0.487, fig 1, table 1), and no

significant interactions.

We next tested whether the proportion of time spent with the

size-matched shoal differed significantly from random, for all

predation risk and shoal size treatments together. Fish choosing

randomly between shoals are expected to spend, on average, 50%

of their time with each shoal (illustrated by the horizontal dashed

line in figure 1), with variance decreasing with increasing sample

sizes.’’ Large fish showed a significant preference for the body-size

matched shoal (one sample t-test, all shoal size treatments together,

t = 3.44, p = 0.001, n = 63), whereas small fish showed no

preference (one sample t-test, t = 20.65, p = 0.517, n = 66).

Activity levels
We found that small fish were significantly more likely to cross

the zone lines (switch shoals) than large fish (GLM: p,0.001,

figure 1) and that shoal switching decreased with increasing

predation risk (GLM: p = 0.004, figure 1) but no effect of

unmatched shoal size treatment (GLM: p = 0.177) and no effect

of significant interactions between these variables on this response

variable (table 1).

Discussion

Our prediction that fish should trade off the relative costs and

benefits of associating with particular shoals, depending on

predation risk, is partially supported by our results. Critically,

however, we found that shoaling decisions are dependent upon

Figure 1. The proportion of time spent shoaling with the body
size matched shoal. Solid lines and filled circles represent large test
fish, dashed lines and open circles are small test fish. The dotted line at
0.5 represents no preference. Error bars represent 6 1 S.E. There is a
significant effect of body size (p,0.001), as large fish show a stronger
preference than small fish, and a marginal effect of predation risk
(p = 0.059).
doi:10.1371/journal.pone.0014819.g001

Table 1. Results of the generalized linear modelling analyses
of the effects of predation risk, body size and unmatched
shoal size on both response variables.

Response variable Estimate Std. Error t p

Proportion of time shoaling
with size matched shoal

Body size 20.646 0.118 25.492 ,0.001

Predation risk 20.056 0.030 1.897 0.059

Unmatched shoal size 20.025 0.036 20.697 0.487

Number of times zone
lines were crossed

Body size 0.290 0.071 4.075 ,0.001

Predation risk 0.051 0.176 2.923 0.004

Unmatched shoal size 0.029 0.022 1.351 0.177

Significant p-values are presented in bold font.
doi:10.1371/journal.pone.0014819.t001
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individual body size, suggesting that the anti-predator benefits to

grouping, such as a reduction in individual risk through dilution

[2], oddity [7,8] and confusion [7,32] effects are dependent upon

individual characteristics. A preference for associating with size-

matched fish can be explained through the oddity effect [8], and

has been found in previous studies [10,33,34]. Here, we found that

only large-bodied fish showed a significant preference for the size

matched shoal, suggesting an increased importance of oddity for

large fish compared to small ones. Large guppies are likely to be

preferentially targeted by their predators [25], as they have a

higher calorific value than small guppies, and major predators

such as C. frenata are unlikely to be gape limited [35]. This,

combined with their increased conspicuousness to visual predators,

may make phenotypic matching highly important for large fish.

Although small fish may be more conspicuous in groups of larger

ones, their lower value to predators may make them less likely to

be targeted. An alternative explanation is that small female fish

may be able to avoid sexual harassment by associating with larger

females who may be more attractive to males [29], although we

found no evidence that small fish preferred to shoal with larger

ones, instead finding no preference. Further work is needed to

distinguish between these two classes of explanation.

Our finding that body size influenced preferences for the size

matched shoal may also be explained by examining activity levels.

Small fish were much more likely to switch between the two

stimulus shoals than large fish, and this switching was reduced at

high predation levels. In addition to being a measure of activity

[36], moving between shoals may also represent the ‘dynamic

shoaling tendency’ of an individual, and be an indicator of how the

fish samples the available shoals (or ‘changes its mind’). Multiple

sampling of shoals by small fish may lead to more equal

distribution of time spent with each shoal, and may be explained

by two hypotheses: 1) a learning hypothesis and 2) a predation hypothesis.

The learning hypothesis suggests that larger (and therefore older)

fish have more experience in making shoaling decisions and

therefore need to sample each shoal fewer times than small fish

before making a decision. Evidence suggests that fish do learn to

make shoal choices as they grow older, as juvenile guppies less than

18mm in length (50 days old) cannot distinguish between large and

small shoals [37]. The predation hypothesis derives from the idea

that moving between shoals increases predation risk [30,31], and

suggests that rapid decision making acts as an anti-predator tactic.

Slower decision-makers may have fallen victim to predators

meaning that large fish in natural populations are the ones that

are able to make decisions rapidly. This is supported by our finding

that activity levels are lower in the highest risk populations (figure 2),

where shoaling preferences are closer to random (figure 1). This

suggests an evolutionary pressure towards rapid decision making

associated with predator avoidance, which may influence the way

animals choose between shoals of differing characteristics and

balance conflicting preferences for dilution versus oddity effects.

Both the learning and predation risk hypotheses may provide

alternative explanations as to why smaller fish showed weaker

preferences for the size matched shoal than large fish.

We found a marginal trend towards a decreased preference for

the matched shoal over the unmatched one at higher predation

risks for both small and large fish, suggesting that as risk increases,

the oddity effect decreases in importance, and instead, simply

being in any group is important. In the wild, oddity may arise in

various ways as individuals differ in both appearance and

behaviour. Variation in these traits within a group may also affect

the strength of any oddity effects: if groups are variable in

particular characteristics, oddity may be of reduced importance, or

oddity in one trait may be of lower importance than in another.

In contrast to some previous studies we found no effect of the size

of the unmatched shoal on preferences. Sticklebacks (Gasterosteus

aculeatus) switch preferences to a larger shoal over a smaller, body-

size matched shoal [38] as the benefits of dilution begin to outweigh

the benefits of reduced oddity, and swordtails (Xiphophorus spp) show

preferences for both size-matched shoals and larger shoals, but

when faced with a conflict between these preferences, show no

preference for either shoal [18]. Fish in our study showed no change

in preference with increasing shoal size, suggesting that the

increased dilution effect in larger shoals was of limited importance

at the shoal sizes we tested. Incorporating larger shoal sizes for the

unmatched shoal may have provided greater dilution-related

benefits to associating with an unmatched shoal.

Conclusion
Our results indicate that social decisions in the guppy are

dependent upon the body size of the individual. Predation risk and

body size of individuals within a shoal act together to influence

shoaling decisions. The resolution of trade-offs in behaviour is

often complex [39,40], and while our results demonstrate that

shoaling priorities are influenced by an interaction between

predation risk, shoal characteristics and body size, other factors

may also influence these decisions. Familiarity [41], competitive

ability [42], dominance status [43], parasite load [44] and whether

foraging is a priority [23] are all known to affect social decisions,

and may interact with the factors studied here. Sex may also play a

role: larger shoal sizes are more important for female zebrafish

(Danio rerio) than for males [45], and males may join a group for

both anti-predator and reproductive reasons [15], complicating

decisions further. The effectiveness of these anti-predator tactics in

reducing predation may also depend on predator characteristics,

in particular hunger, but also sensory capabilities and physical

Figure 2. The number of times the test fish crossed the zone
lines (switched shoals). Solid lines and filled circles represent large
test fish, dashed lines and open circles are small test fish. Error bars
represent 6 1S.E. There is a significant effect of predation risk
(p = 0.004) and body size (p,0.001), but no interaction. Small fish
swap shoal more often than large fish overall.
doi:10.1371/journal.pone.0014819.g002
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condition. There is the potential for fascinating future work

understanding these complex social and anti-predator decisions.

Methods

We carried out this study at the University of the West Indies

Biology Department laboratories in Tunapuna, Trinidad, using

guppies from seven well known field sites in the rivers of the

northern mountain range (table 2), representing a range of

predation risks for the guppy [35,46]. Guppies are sympatric with

a variety of aquatic predators: the most significant of these is

Crenicichla frenata which is large enough to consume even the largest

guppies. Other, more minor guppy predators include Aequidens

pulcher, Rivulus hartii and Macrobrachium spp (a freshwater prawn)

[35,46,47]. However, the presence of waterfalls prevents the

upstream migration of the major guppy predators, providing a

range of predation environments [35]. Previous comparative work

on different guppy populations has demonstrated between-

population differences in morphology, behaviour and life-history,

and this has been largely attributed to differences in the predation

risk experienced by these populations [47]. Predation risk was

assessed in each of the seven different populations, following the

methodology described in [35] and [46], and outlined below. This

method provides a simple way of assessing predation risk, which

remains broadly consistent between years [46]). It is also consistent

with the alternative method of classifying populations as ‘high’ or

‘low’ predation based on the presence or absence respectively of

Crenicichla frenata [48].

Assessment of predation risk
Stimulus guppies were caught from a downstream site in each

river using a hand seine net. A female stimulus guppy (25–30 mm)

was restrained in a clear container (diameter: 80 mm, height:

110 mm) pierced with approx 50 holes (2 mm diameter) providing

both visual and olfactory cues to potential predators. The container

was weighted with gravel to hold it in position on the river bed was

attached to a monofilament line attached to allow for positioning

and removing the bottle while minimizing disturbance. The

container was placed in a pool (over 30 cm deep) in the river, and

after a 10 minute acclimatization period, we recorded approaches

by all non-guppy fish. An approach was defined as an individual

moving to within three body lengths of the bottle, with the head

orientated towards it. Observations were made every 10 seconds for

a 10 minute period. Fish species and number were recorded. The

observer was positioned on the river bank over 2 m from the

container prior to the acclimatization period, with a recorder

positioned further away. Observations took place in daylight,

between the hours of 12:00 and 17:00. To estimate risk over the

whole river, five pools in each river were observed on the same day,

each one at least 5 m upstream from the previous, and a different

stimulus female was used in each pool. The ‘abundance’ measure

here is certainly more than the number of separate individual

predators observed, and repeats of individuals at different time

points are recorded as separate counts. We assume that a predator

which remains near the stimulus guppy, or returns to it represents a

greater threat, and this is reflected in the risk ranking.

Predation risk was assessed according to the abundance of the

various predators observed, in order of risk to guppies [35,46,49]: C.

frenata is considered the most dangerous, followed by A. pulcher, R.

hartii and finally Macrobrachium spp. Predator abundances and ranks

assigned to each river are shown in table 2. Rivers were first ranked

according to abundance of the most dangerous predator, C. frenata

(the mean number of approaches to the stimulus guppy recorded

across the 5 pools for each river; ‘mean abundance’ in table 2). The

river with the highest mean abundance (the Lower Aripo) was

ranked as 1, and so on until the river with the lowest abundance of

C. frenata, the Arouca, ranked 5. In the remaining 2 rivers, C. frenata

was not observed and so these were given rankings according to the

abundance of R. hartii, as none of the rivers observed contained A.

pulcher in the absence of C. frenata. Other fish species approaching the

container but thought to pose no or a very low risk to guppies [47]

were Astyanax bimaculatus, Hemibrycon spp. and Hypostomus robinii.

Although this method uses a ranking system to assess risk rather

than providing a specific measure of risk, it allows a graded

assessment of predation risk which provides greater insight than

classification as ‘high’ or ‘low’, as it takes into account possible

variation in predator numbers within a class [35,46].

Table 2. Study sites (rivers), their geographical location, the predator species observed approaching the confined stimulus female,
the mean number of predator approaches to the container (mean abundance) of the predator across 5 pools, and the predation
risk rank assigned to the river with 1 as the highest risk.

River Grid Reference Predators present Mean abundance Predation risk rank

North West

Lower Aripo 10o409 61o149 Crenicichla frenata
Aequidens pulcher
Astyanax bimaculatus

77.2
1.6
71.0

1

Tacarigua 10o419 61o229 Crenicichla frenata
Aequidens pulcher

48.0
8.2

2

Lower Turure 10o409 61o109 Crenicichla frenata
Aequidens pulcher
Astyanax bimaculatus

12.6
3.0
26.0

3

Arima 10o419 61o179 Crenicichla frenata 11.0 4

Arouca 10o409 61o199 Crenicichla frenata
Astyanax bimaculatus

2.2
0.2

5

Upper Turure 10o419 61o109 Rivulus hartii
Macrobracium spp.

23.8
0.2

6

Upper Aripo 10o419 61o149 Rivulus hartii 2.8 7

doi:10.1371/journal.pone.0014819.t002
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Fish Capture and husbandry
At each of the seven field sites, we collected approximately 60

small (17–22 mm) and 60 large (27–32 mm) female guppies from a

100 m continuous stretch of river (containing no barriers to guppy

dispersal, such as waterfalls). We collected fish from the same

stretch of river that had been used to assess predation risk, but on a

subsequent day. Fish were caught with small seine and hand nets,

and transported back to the laboratory where they were placed

into large holding aquaria (approx. length x width x height

90635650 cm) and allowed to settle overnight to reduce stress.

The day following collection, we sorted the fish into ‘large’ and

‘small’ size classes. Fish were measured (61 mm) using electronic

callipers. We used only female guppies in these experiments, as

they form the core of naturally occurring shoals [15]. Male guppies

display less shoal fidelity [50] and using only female fish controls

for any confounding effect of sexual behaviour.

Once sorted, fish were held in glass tanks (60630630 cm)

divided into two with green square mesh (hole size 1 mm). One

side of each tank contained large fish, and the other contained

small fish from a single population. The mesh screen ensured

that the fish were physically separated, but remained in visual

and olfactory contact with each other. Each population was

divided into two separate tanks, one containing test fish and the

other containing stimulus fish. In total we used four holding

tanks, allowing fish from two populations to be held and tested at

once. Further populations were collected and tested once

experiments on each pair of populations were completed. Tanks

were covered on three sides with black opaque material to ensure

no visual contact between fish in separate tanks, and to reduce

stress. Fish were housed in three day aged aerated water to a

depth of 15 cm, and fed ad libitum on dry flake food at the end

each day to avoid the effects of satiety on response [51]. Trials

were conducted on the three days following size sorting.

Laboratory conditions were maintained at a 12 h light: 12 h

dark cycle at 25uC to replicate conditions in the wild.

Binary Choice Trials
Trials were conducted in glass aquaria (60630630 cm) filled

to a depth of 10 cm with aerated three day aged water, covered

with black opaque material on all four sides. We used a standard

binary choice design [51], where two shoals of stimulus fish were

contained in transparent plastic cylinders (7 cm diameter)

placed in the test aquarium. These cylinders were perforated

to allow chemical cues from the stimulus shoals to pass through,

and positioned at opposite ends of the choice tank, so that their

centres were 15 cm from the tank end and two sides. Each

contained white gravel to a depth of 1 cm to ensure that they

did not move during the trial. Circular preference zones were

marked on the underside of the tank 4 cm and 6 cm from the

edge of the cylinder (equivalent to approx. 2 standard body

lengths for small and large fish respectively) which results in a

conservative estimate of shoaling tendency [52].

Both large and small fish test fish were presented with two

stimulus shoals, one consisting of large fish, and one of small fish.

We defined the shoal of fish of similar body size to the test fish as

the ‘matched shoal’ and the shoal that differed in body size to the

test fish as the ‘unmatched shoal’. Thus for small fish, the matched

shoal consisted of other small fish, and the unmatched shoal

consisted of large fish, and vice versa for large fish. The matched

shoal always contained 4 fish, and we investigated three different

shoal sizes for the unmatched shoal: 4, 6 or 8 fish, giving a total of

6 different treatments overall (three shoal sizes for two body size

classes of the focal fish). These are summarised in table 3. Twenty

focal fish of each size class from each river were tested in each

shoal size treatment.

In each trial, stimulus shoals were placed into the cylinders with

hand nets and the test fish was introduced to the centre of the tank,

equidistant from both stimulus shoal cylinders. The fish were given

15 minutes to acclimatize before the trial began. Trials lasted 10

minutes, and were observed by a stationary observer from above,

to ensure that the point at which zone lines were crossed could be

accurately observed, and to reduce disturbance to the fish.

Cumulative time in each preference zone was measured using

stopwatches. We also recorded the number of times the test fish

moved between preference zones, as a measure of their activity

levels or dynamic shoaling tendency. Half of the water in the

binary choice tank was changed after each trial, to reduce the

build up of olfactory cues. After the trial, fish were returned to

holding tanks. Test fish were used in only one trial, and were then

added to the pool of stimulus fish. Stimulus fish were chosen

randomly from this pool for each trial.

Statistical Analysis
Data were analyzed using the statistical analysis program ‘R’ (v.

2.6.0; R Core Development Team 2007). We analyzed two response

variables: the proportion of shoaling time spent with the body size-

matched shoal and the number of times zone lines were crossed. For

each response variable, we investigated the effects of body size,

unmatched shoal size and predation risk, and their two- and three-

way interactions on the behaviour of the test fish using generalized

linear modelling (GLM). In each case, we used suitable error

distributions (quasi distributions were necessary for each to account

for over-dispersion; Poisson errors for number of zones crossed, and

binomial errors for the proportion of shoaling time spent with the

matched shoal). Non-significant interactions were dropped from the

analysis to produce the minimum adequate model.
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