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Abstract 

This paper reports upon developments in the simulation of the passive control of combustion dynamics in industrial gas turbines 

using acoustic attenuation devices such as Helmholtz resonators and perforated liners.   

Combustion instability in gas turbine combustors may, if uncontrolled, lead to large-amplitude pressure fluctuations, with consequent 

serious mechanical problems in the gas turbine combustor system. Perforated combustor walls and Helmholtz resonators are two 

commonly used passive instability control devices. However, experimental design of the noise attenuation device is time-consuming 

and calls for expensive trial and error practice. Despite significant advances over recent decades, the ability of Computational Fluid 

Dynamics to predict  the attenuation of pressure fluctuations by these instability control devices is still not well validated.  In this paper, 

the attenuation of pressure fluctuations by a group of multi-perforated panel absorbers and Helmholtz resonators are investigated both 

by experiment and computational simulation. It is demonstrated that CFD can predict the noise attenuation from Helmholtz resonators 

with good accuracy. A porous material model is modified to represent a multi-perforated panel and this perforated wall representation 

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



 

2 
 

approach is demonstrated to be able to accurately predict the pressure fluctuation attenuation effect of perforated panels. This work 

demonstrates the applicability of CFD in gas turbine combustion instability control device design. 
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1. Introduction 

Recent developments in gas turbine combustion systems, such as Dry Low Emission (DLE)[1] and Dry Low NOx (DLN)[2], have 

resulted in a significant reduction in emissions of NOx compared with traditional diffusion type combustors.  These reductions have 

largely been achieved by the combustion of the majority of fuel in a cool and fuel-lean pre-mixed combustion regime.  Burning so close 

to the lean limit can however, significantly reduce the stability of the flame and as such significant pressure fluctuations can be formed 

within the combustor.  Such pressure fluctuations can be magnified when fuel heat release is in phase with inherent combustor acoustic 

frequencies and the resultant oscillations can reduce operating efficiently and increase fatiguing of mechanical components, hence 

reducing service life and undermining reductions in operational emissions.  

Acoustic resonant devices such as Helmholtz Resonators and perforated liners can be tuned such that they attenuate these dynamics, 

recouping the efficiency gains and reductions in emissions offered by contemporary combustor technologies.  The frequencies at which 
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the magnitude of combustion instability generated pressure waves are most significant are dependent on many factors such as load 

conditions, fuel properties and the geometry of the combustor itself.  As such the successful attenuation of these instabilities through the 

use of acoustic resonators relies highly on the ability to tune the resonant device to the same frequency as the detrimental dynamic 

frequency. 

Helmholtz resonators are well proven to be effective at attenuating pressure fluctuations however, they are most effective at a single 

peak frequency and their attenuation effect decreases rapidly at frequencies away from this peak frequency. In a perforated combustor 

wall the small perforations and the periphery cooing air form a distributed Helmholtz resonator which can in turn distribute the 

attenuation of pressure fluctuations across a greater range of frequencies. 

Both passive pressure fluctuation attenuation methods still require correct tuning to the detrimental dynamics frequencies, existing 

analytical formulations cannot accurately consider all the relevant factors in a gas turbine application and experimental design is time-

consuming and expensive, often calling for many iterations before arriving at the configuration which is most effective.  The application 

of CFD has been demonstrated to be effective at predicting the pressure fluctuations and acoustic modes inside the combustor[3–6], 

however its ability to predict the attenuation effects of Helmholtz resonators and perforated walls is still open for validation.  

Numerical simulation of a gas turbine combustion system is computationally expensive and as such in this paper the simulation of 

these two resonant mechanisms are investigated independently of the combustor, so that the intrinsic properties can be analyzed more 

efficiently and validated against measurements at isothermal atmospheric conditions, before application to a full scale combustor model. 

Helmholtz resonators are relatively simple devices, essentially consisting of a neck connected to a resonant cavity, and as such the 

geometry of the Helmholtz  resonator can be readily resolved in a CFD simulation.  Simulation of different designs of Helmholtz 
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resonators can then be compared with measurements and existing analytical models to evaluate the effectiveness of each method in 

predicting the resultant attenuation of a given design.  

In direct contrast, a fully resolved simulation of a multi-hole perforated liner is much more computationally demanding and in this 

paper, instead of solving for the exact geometry of a perforated liner, a porous media model is introduced and validated.  The application 

of this model allows the attenuation effects of the perforations to be represented without the additional computational cost of fully 

resolving the intricate geometry of such resonant devices.  Using this approach macro-parameters such as the plate thickness, flow 

resistivity and the porosity are all evaluated and defined in the model. Additionally semi-empirical factors such as end correction length 

are also included to take the radiation factors of the individual holes into account.  As with the Helmholtz resonator the CFD predictions 

are compared with experimental measurements and existing analytical predictions, both for validation of the CFD methods and 

evaluation of the analytical methods. 

Multi-perforated panel absorber (MPA) is chosen as the benchmark case to validate the ability of porous material models to represent 

the attenuation effects of perforated plates. MPA is a widely utilized sound absorption device in many existing practical engineering 

applications such as aerospace, buildings and vehicles.  MPAs  are easily tuneable and are able to provide high absorption coefficients 

in both low and medium frequency ranges. Generally speaking, the acoustic absorption properties of perforated plate absorber 

configuration are determined by the geometric parameters such as plate thickness, perforation size as well as  external flow field factors 

such as the sound pressure level and bias/grazing flow velocity[7,8]. Various analytical and empirical models have been developed by 

Howe, Maa et al[9–12]to predict the acoustic impedance when mean flow is present or absent.  This paper focuses upon the situation 

where the mean flow is absent.  Maa[9] is commonly cited as one of the first authors to deduce an analytical formula describing the 

acoustic impedance of such resonant devices. Atalla and Sgard[10]also proposed several formulas to predict the impedance of an MPA 
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which has been experimentally validated.  These analytical models however are different from the porous material model used in this 

paper , whose theoretical framework will be presented in next section. 

The complete solution of the Navier-Stokes Equations within CFD codes to predict the acoustic properties of a perforated plate 

absorber has only recently become possible through developments in the capability of CFD codes and computational resources. These 

recent research examples fully resolved the exact geometry of an isolated periodic element of the perforated wall and solved for each 

case using large eddy simulation (LES) [13–16].  These authors were however just simulating part of the perforated plate rather than a 

full scale device by using periodical boundary conditions.  Hence it remains that the full spatial and direct numerical CFD solution of a 

highly perforated region is still very expensive and as such there is a significant benefit to being able to sufficiently represent the 

attenuation effect of such a region on the surrounding flow field, without the need to spatially resolve the geometry. Very recently, 

Jourdain and Eriksson[17] presented a non-liner dynamic porous wall model which is able to examine the overall effect of the perforated 

panels on the flow by applying Bernoulli equation and Newton's second law at the two sides of a perforated panel.  They couple this 

model with an unsteady RANS solver however, the requirement of modification to the core CFD code to encompass analytical models 

restricts the application in general CFD codes. 

The results of this study demonstrate that CFD can be used effectively to fully resolve a discrete Helmholtz resonator and accurately 

predict the resultant impact on pressure wave fluctuation attenuation, more so to a greater effect than existing analytical methods and 

that the application of a porous wall model can successfully allow the solution of a perforated wall within a CFD simulation, without 

the cost of modelling the exact geometry. 
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2.Experimental Methodology 

The ability of a Helmholtz resonator to attenuate pressure fluctuations was experimentally determined using a classical impedance 

tube, as shown in Figure 1.  In these experiments a white noise acoustic signal was generated by an audio loudspeaker, the signal 

propagates along the impedance tube towards the measurement section, where in this case a Helmholtz resonator is located.  In this work 

the characteristic behaviour of the Helmholtz resonator is presented in terms of a frequency dependent pressure ratio, which was 

measured using a single microphone inside the resonator cavity and a single microphone in the duct wall near the neck of the resonator. 

For the MPA the normal incidence sound absorption properties may be classically represented using a transfer function method 

according to Standard ISO 10534-2[18]. In this procedure the same impedance tube apparatus was used as shown in Figure 1, with the 

end of the duct capped and the perforated plate mounted inside the duct, leaving a cavity behind the plate.  Only the duct wall mounted 

microphone probe locations were used in this procedure. 

3 CFD Methodology 

3.1  Governing Equations and Solution Schemes 

The behaviour of a continuum fluid flow was obtained in this work by the solution of the three dimensional compressible Navier-

Stokes equations using a finite volume method (FVM) solution algorithm. For the compressible viscous flow, the continuity, momentum 

and energy equations may be presented in a Cartesian coordinate system following [19] as: 

࢚ࣔ࣋ࣔ + = (ሬሬԦܝρ)ܞܑ܌ ૙ ( 1 ) 

࢚ࣔ(࢛࣋)ࣔ + (ሬሬԦܝ࢛࣋)ܞܑ܌ = − ࢞ࣔ࢖ࣔ + (࢛	܌܉ܚ܏	ࣆ)ܞܑ܌ +  ( 2 )                                                 ࢛ࡿ

࢚ࣔ(࢜࣋)ࣔ + (ሬሬԦܝ࢜࣋)ܞܑ܌ = − ࢟ࣔ࢖ࣔ + (࢜	܌܉ܚ܏	ࣆ)ܞܑ܌ +  ( 3 )                                                  ࢜ࡿ

࢚ࣔ(࢝࣋)ࣔ + (ሬሬԦܝ࢝࣋)ܞܑ܌ = − ࢠࣔ࢖ࣔ + (࢝	܌܉ܚ܏	ࣆ)ܞܑ܌ +  ( 4 )                                               ࢝ࡿ
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࢚ࣔ(࢏࣋)ࣔ + div(ܝ࢏࣋ሬሬԦ) = ሬሬԦ࢛	ܞܑ܌	࢖− + (ࢀ	܌܉ܚ܏	࢑)ܞܑ܌ + +ࢶ  ( 5 )																																			࢏ࡿ

and the Equation of State is: 

࢖ =  ( 6 )                                                                           ࢀࡾ࣋

The above equation set may be represented in the form of a general scalar transport equation: 

࢚ࣔ(ࣘ࣋)ࣔ + (ሬሬԦܝࣘ࣋)ܞܑ܌ = (ࣘ	܌܉ܚ܏	ࢣ)ܞܑ܌ +  ( 7 ) ࣘࡿ

where ߶ represents 1, ,ݑ ,ݒ ,ݓ ݅	(or	ℎ	), ߁ is the appropriate diffusion coefficient for each physical quantity.  

To solve the discretized equations, a bounded second order implicit temporal scheme was utilised for the transient term. This implicit 

scheme is more time-consuming than first order scheme yet has much better solution accuracy, representing the transient term implicitly 

at current time level, n + 1, using the solution from the previous two time steps, n	and	n − 1. 

In terms of spatial discretization scheme, a second order upwind scheme was employed to solve for the convective terms. This 

method has been demonstrated to avoid the dissipative error of typical first order upwind schemes. The diffusion term was modelled by 

using the central differencing scheme which is of second order accuracy and is able to represent the transportiveness property of diffusion 

phenomenon. 

The pressure gradient term and velocity term coexist and are coupled in the mass and momentum equations. In the present study, a 

pressure implicit of operator splitting algorithm was employed, which is widely accepted to be appropriate for transient simulations. 

In the present work, the sound propagation field was represented as viscous laminar flow since the Reynolds number is very small and 

hence the effects of turbulence may be assumed to be insignificant.  A compressible flow solver was employed, even though the mean 

velocity is very low, because the compressibility of the fluid medium is integral to the transmission of the pressure wave signal and 

hence should be fully accounted within the CFD solver. 
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3.2 Porous Media model in CFD 

For most CFD simulations of porous material, it is not the internal flow details that are of concern. Researchers are, more often than 

not, interested in the macroscopic effect on the downstream flow. Therefore, rather than resolving every tiny detail in a porous media, 

key lumped parameters are utilised to reflect the effect of the porous region on the downstream flow. One of the most common 

parameters is the resistivity coefficient, which can be accommodated in the source term of the momentum transport equations. In the 

physical-velocity porous media model, the porosity value is accommodated into every term of the three dimensional Navier-Stokes 

equations to ensure the solution correctly reflects the effect of the true physical velocity within the holes. 

The momentum equations for three dimensional flow in porous media are [20]: 

࢚ࣔ(࢛࣑࣋)ࣔ + (ሬሬԦܝ࢛࣑࣋)ܞܑ܌ = ࣑− ࢞ࣔ࢖ࣔ + (࢛	܌܉ܚ܏	࣑	ࣆ)ܞܑ܌ + ࢛ࡿ)࣑ +  ( 8 ) (࢞࢖ࡿ

࢚ࣔ(࣑࢜࣋)ࣔ + (ሬሬԦܝ࣑࢜࣋)ܞܑ܌ = ࢟ࣔ࢖࣑ࣔ− + (࢜	܌܉ܚ܏	࣑	ࣆ)ܞܑ܌ + ࢜ࡿ)࣑ +  ( 9 ) (࢟࢖ࡿ

࢚ࣔ(࣑࢝࣋)ࣔ + (ሬሬԦܝ࣑࢝࣋)ܞܑ܌ = ࣑− ࢠࣔ࢖ࣔ + (࢝	܌܉ܚ܏	࣑	ࣆ)ܞܑ܌ + ࢝ࡿ)࣑ +  ( 10 ) (ࢠ࢖ࡿ

where χ denotes the volumetric porosity. 

The porous media body source term ܵ௣ can be calculated using the resistivity coefficients and the mean flow velocity at a direction: 

࢖ࡿ = ࢜ࡼ)− + ࢏ࡼ ∙ (࢖࢜ ∙  ( 11 ) ࢖࢜

where	ݒ௣ here is the superficial velocity in the source term: ݒ௣ = 	  ,ݒ߯ ௩ܲ, ௜ܲ denote the resistivity coefficients due to the viscous and 

inertial effect respectively. The velocity in the impedance tube is very small and the inertial effect is negligible. Thus we can write: 

ܵ௣ = −൫ ௩ܲ + ௜ܲ ∙ ௣൯ݒ ∙ ௣ݒ ≈ − ௩ܲ ∙ ܮ/ܲ∆ ௣. Consideringݒ = ߪ− ∗ ௣,  viscous resistivity  is basically equal to flow resistivity ௩ܲݒ ≈   .ߪ

The above model was incorporated into the full three dimensional simulation, capable of representing propagation of sound waves in all 

component directions, both within the fluid medium and the perforated liner. 
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3.3  Acoustic resistivity and End Correction 

Flow resistivity is a metric that defines how easily air can pass through a material. The static flow resistivity may be measured 

according to ISO 9053:1991[21].  For the plate with circular perforations, static flow resistivity may also be estimated by the 

expression,  σ =   .according to Stinson and Champoux[22]  (	ଶ݀߯)/ߤ32

However, static resistivity is different from the acoustic resistivity. The dynamic flow resistivity may be estimated by Atalla's method 

[10] : 

࢘ = ቀ૝ࢊ࢚ + ૡ ቁࢊࢋࢿ ࣑࢙ࡾ ࢚)/ + ૛ࢋࢿ) = ඥૡ࣓࣋ࣆ૙/(ࢊ࣑)  ( 12 ) 

where ܴ௦ = ඥߩ߱ߤ଴/2 denotes the surface resistivity due to air flow frication on the surface of the panel. When T=283K.  ߩ଴ =1.2475kg/݉ଷ	, ߤ = 1.78 × 10ିହkg/(m	s), ߱ = 2π݂,  viscous resistivity factor can be expressed as: 

࢘ = ૙. ૙૜૜૝૚ඥ( 13 ) (ࢊ࣑)/ࢌ 

Based on the above expression, flow resistivity depends only on porosity, hole size, air density and viscosity. In this research, the 

resistivity was held at a constant value and the frequency was taken to be the estimated resonant frequency of the equivalent single-hole 

Helmholtz resonator which is the dominant pressure fluctuation frequency through the holes. 

Porous media models in typical CFD software are designed for uniform porous media where the flow is even distributed in and 

around the porous region. However, for a perforated panel with a very low perforation rate, the local minor perforation will lead to flow 

distortion and sound radiation around the perforation area. This effect can be accommodated by replacing real thickness of the plate ݐ଴ 

by effective thickness ݐ which includes end correction length.  

Ingard and Norris et al[23,24] analyzed the radiation reactance of a circular pipe baffled in an infinite wall. And they approximated 

the correction length as 0.85݀(1 − 1.14√߯). The effective perforation thickness was modelled in CFD as:  
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࢚ = ૙࢚ + ૙. ૡ૞ࢊ(૚ − ૚. ૚૝√࣑)	 (	14	)	
where ݐ଴ is the real thickness of the plate and d is the diameter of the perforation and	࣑ the perforation rate.  As the end correction 

length is added to the plate, the flow resistivity was evenly distributed in the thickness of  (ݐ +  .(௘ߝ2
3.4 Non-reflecting Boundary Conditions 

In the majority of CFD simulations, it is necessary to truncate the calculation domain to a bounded size, hence to obtain an accurate 

solution of the problem, the conditions at the boundary should be carefully considered. For accurate acoustic simulations, the spurious 

wave reflection caused by pressure boundaries is of great significance and can distort the solution of the internal field. A free stream 

boundary condition, which is also commonly known as a far-field boundary condition, is one form of non-reflecting boundary condition 

and is often applied to external flows. Many alternative variations of non-reflecting boundary conditions exist, each with their own 

strengths and weakness [29].  Such boundary conditions are typically based on the assumption of irrotational, quasi-1D flow in the 

boundary-normal condition. In this study, the Hybrid Gauss-LSQ gradient method [30] is used to compute the reconstruction gradients 

and solve the transport equations at the boundary using the values from the neighbouring cells.  The free stream boundary condition 

requires the set of pressure, temperature and Mach number to be specified at the boundary.  For a typical external flow case these would 

be static values however, by specifying synchronized time dependant variations of these values, the boundary can also be used to transmit 

an acoustic signal, whilst still retaining its non-reflecting characteristics. This enables the use of the free-stream boundary condition to 

effectively represent the inlet of the impedance tube.  In this work a Gaussian white noise signal was generated by a MATLAB code, 

higher frequencies than the experimental cut-off frequency were filtered out by a low pass filter, ensuring only planar waves are 

transmitted and the resultant signal is then amplified to 110dB to emulate the experimental procedure. According to the relations between 
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acoustic pressure, density, temperature and the acoustic velocity, the  pressure, temperature and Mach number at inlet  free stream 

boundary conditions are defined as: 

ᇱ࣋ = 	ࢀ∗ࡾᇲ࢖ ; ( 15 ) 

࣋ = ᇱ࣋ + ;૙࣋ ࢖	 = ᇱ࢖ +  ૙; ( 16 )࢖

ࢎࢉࢇࡹ                 = ૛ࢉ࣋ᇲ࢖ = ࣋∗ࢀ∗ࡾ∗ࢽᇲ࢖ ; ( 17 ) 

ࢀ = ࡾ)/࢖ ∗  ( 18 ) (࣋

where ݌ᇱ, ߩᇱ denote the acoustic pressure and acoustic density; ݌଴, ߩ଴ are the atmospheric pressure and density at the experimental 

conditions; ܴ is the air gas constant, ܴ = 287	J/(Kg ∙ K)); ߛ = ݒܥ/݌ܥ = 1.4. Gaussian white noise pressure fluctuations are employed 

because it statistically represents all frequencies within the chosen bandwidth.. 

4. Results & Discussion 

4.1 CFD validation 

The experimental and CFD methodologies described in the previous sections were employed to model a total of 15 Helmholtz 

resonator cases with varying neck diameters of from 3mm to 15mm using the STAR-CCM+ CFD code [28].  A total of three cavity 

volumes were used for comparison, consisting of 71,506mm3 (Volume Case 1), 120,850mm3 (Volume Case 2) & 286,020mm3 (Volume 

Case 3).  The results of the extreme cases of neck diameter and cavity volume are shown in Table 1, where the analytical models are as 

described by Ingard[23].  From this it is clear that the CFD simulations agree very well with the measured results, whereas the basic 

analytical prediction, is in considerable error across all cases.  This is because the analytical model lacks any consideration of the detailed 

fluid dynamics at the neck of the resonator, which is why the predictions are always greater than the measured values.  By applying the 
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common practice of an end correction equal to 0.85d a reduction in the prediction error can be seen across all cases, however interestingly 

the more detailed end correction presented by Ingard[23], which considers the impact of diameter ratio of the neck and cavity volume, 

which should improve the accuracy of the analytical predictions further, demonstrates only a small improvement for the 3mm neck case 

and a decrease in the accuracy is actually apparent for the 15mm neck case.  This is because this model does not consider the impact of 

the length of the neck (27mm in all cases) or the relationship between the neck length to diameter ratio, and as a result can result in 

significant error for these cases, when the effect of the length of the neck cannot be neglected.    

In Figure 2 it can be seen that the CFD simulations are not sensitive to such factors as they fully resolve the fluid dynamics of the 

resonator system and therefore can be shown to accurately predict the response for all cases regardless of geometrical factors.  Once the 

CFD has been validated against the measured cases it can then be used to investigate the intrinsic properties of the resonator in more 

detail.  Once such example of how CFD can be used in this way can be seen in Figure 3, where it can be seen that by plotting the time-

averaged velocity magnitude against the location in the system (X=0m is the entrance to the neck, Y=0m is the axial centreline) it can 

be clearly shown that there is a notable difference in the flow regime within the neck and surrounding volume between the two cavity 

volume cases.   Existing analytical methods do not consider such factors, the CFD methods however, can be shown to accurately capture 

such phenomenon. 

The absorption coefficients and acoustic impedance of three perforated  plates backed with an air cavity were experimentally 

measured and numerically predicted using ANSYS Fluent [20]. The porosities range from rather low porosity 0.38% to medium porosity 

1.23% and to high porosity 3.41%. Higher porosities were not considered due to their relatively low attenuation capabilities. The 

experimental data for Plate#1 to Plate #3 was acquired using the experimental facilities described in Section 2. The experimental results 

for Plate#4 and Plate#5 were obtained from [25,26] 
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Figure 4 presents the absorption coefficients results comparison between CFD, experimental and analytical methods. While all three 

methods yield similar change trends of absorption coefficient as a function of frequency, there are also some remarkable differences.  It 

is suggested by Figure 4(a) that the empirical method of Atalla and Sgard[10] provides very good agreement with the experimental 

result. Maa's theory[9] is also accurate in terms of overall trend, but the frequency at a given absorption coefficient is 25-30Hz lower 

than the frequency with the same absorption coefficient in experiment. CFD predicted absorption coefficient demonstrates a good 

agreement with experimental results at frequencies lower than the resonant frequency, but the overall absorption band-width tend to be 

slightly larger than the experimental results. Similar trends can be seen in Figure 4(b), where, compared with experimental data, the 

absorption band-width predicted by the analytical models is narrower. Both Maa's method and Atalla's method underestimate the 

absorption coefficient at the resonant frequency by a magnitude of 0.06. The result acquired by CFD simulation is in better agreement 

with the experimental data compared with those of analytical methods in terms of the absorption band-width. The absorption coefficient 

at the resonant frequency is 0.05 larger than the experimental result. Different findings are observed in Figure 4(c). Absorption 

coefficients obtained by the methods of both Maa and Atalla are noticeably lower than those of experiment and CFD.  Also the absorption 

coefficient at the resonant frequency acquired by Atalla’s model is only 0.28 while the experiment and CFD give this value of 0.35. This 

significant error is likely the result of the large perforation diameter (3mm) which will decrease the effectiveness of the analytical 

models. In comparison, the results from CFD simulation agrees with experimental result much better. Figure 5 compares two different 

panel absorbers from other references [25,26], it also demonstrates that CFD is able to give generally better agreement with experimental 

results compared with analytical models.   

The relative high absorption frequency range for each MPP is evaluated and listed in Table 3. CFD works as well as Atalla's method 

in terms of high absorption frequency range for 1mm sized holes perforated panels, but the advantages of CFD over analytical models 
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are obvious for the 3mm perforated panel. Absorption bandwidth predicted by Maa's approach are narrower and more low-frequency 

inclined. This may be a result of an overestimation of reactance term  and underestimation of the resistance term in the Maa's model. 

Some authors already used larger resistivity term in Maa's equation [26,27]. The high-absorption bandwidth and maximum absorption 

coefficient acquired by CFD are slightly larger than the experimental one, absorption coefficient and bandwidth obtained by experiment 

are in turn slight higher than the analytical prediction. This implies that the flow resistivity specified in the CFD simulations is somewhat 

larger than the real value which is frequency dependent.  

In spite of the error which is within reasonable range, CFD has good capability to predict MPAs  pressure fluctuation absorption 

properties with sufficient accuracy. 

4.2 Application of CFD on other MPAs 

The successful prediction of absorption coefficients on the previous three plates is encouraging. Its application to other cases is 

undertaken which is listed in Table 4 .  Figure 6 and Figure 7  illustrate that CFD and analytical models predict similar trends in which 

the absorption coefficient changes against frequency. The resonant frequencies acquired by CFD and Atalla and Sgard[10] method agree 

well. However, as mentioned previously, higher absorption coefficients are predicted by CFD at most frequencies compared with 

analytical results. Experimental absorption-frequency curves are supposed to lie in between CFD and Atalla's curves. This difference is 

more clear when the perforation size is large as is shown by Figure 7.    

Figure 8 illustrates the variation of absorption coefficients for three panels with the same perforation size (1mm) and different 

porosities. Both CFD and analytical models predict that the absorption coefficient would decrease and resonant frequency would increase 

when porosity goes up.  The same trend is shown in two cases where the perforation size is 3mm. From another point of view, plate#7 

and #10 or  plate#2 and #9  or plate #3 and #8 have the same porosity but with different perforation size. Corresponding comparisons 
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demonstrate that the increase of perforation size will lower the resonant frequency and decrease the overall absorption effect of the 

MPA. This can be explained because larger perforation size leads to a proportionally larger correction length, which would in turn 

increase the effective length of the plate. On the other hand, larger perforation size brings about lower flow resistivity which brings 

down the overall absorption effect. 

 

5. Conclusions 

The direct geometrical representation of several Helmholtz resonator cases have been simulated, yielding very good agreement with 

measured data.  Geometrically resolved CFD simulations have been shown to produce significantly more accurate peak absorption 

predictions than existing analytical models and additionally can be used to highlight key differences in the flow regime within the 

oscillating mass in the neck and radiated regions, which when incorrectly considered in the analytical models is the greatest source of 

error. 

The absorption effect of three perforated panels with low porosity(0.38%), medium porosity(1.23%) and high porosity(3.41%) has 

been experimentally, numerically and analytically evaluated. The results have demonstrated the capability of CFD in combination with 

a porous media model in predicting the acoustic properties of MPAs. CFD has been shown to give a good prediction about the absorption 

band-width and resonant frequency. It has also been demonstrated that CFD can reflect the impact of  the panel porosity, perforation 

size on the resonant frequency and absorption coefficient of a perforated panel absorber. Analytical models provide satisfactory 

agreement when the hole diameter is small, but their prediction for absorption effect of MPA with large size perforation is less accurate.  
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In summary, the capability of CFD in predicting the pressure fluctuation absorption effect of Helmholtz resonators and perforated 

panels has been validated in this paper.  
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Nomenclature  

݀    equivalent diameter of the perforation 

f     frequency 

ℎ    enthalpy 

݅     internal energy 

  ᇱ   acoustic pressure݌

 ଴  average environment pressure݌

௩ܲ   viscous resistance 

௜ܲ    inertial resistance 

 dynamic flow resistivity    ݎ

ܴ௦  surface resistivity 

ܴ   gas constant of air 

௜ܵ   internal energy source term 

ܵ௣, ܵ௣௫, ܵ௣௬, ܵ௣௭  porous medial body force term 

ܵ௨, ܵ௩, ܵ௪  velocity source term 

ܵథ  source term for scalar	߶ 

 effective thickness of the plate    ݐ

 ଴   real thickness of the plateݐ

ܶ    Temperature 

 density of the medium   ߩ

 ሬሬԦ    the vector of velocityܝ

,ݑ ,ݒ ,ݔ velocity at  ݓ ,ݕ  .directions of coordinate system ݖ

 ௣    superficial velocityݒ

 dynamic viscosity    ߤ

߶    general scalar( 1, ,ݑ ,ݒ ,ݓ ݅	) 
 general diffusion coefficient    ߁

 flow resistance of porous material at low flow velocities    ߪ

߯    perforation rate 

 ௘   end correction length at each side of perforationߝ
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߱   angular frequency 

 ᇱ   density change due to acoustic pressureߩ

 ଴   average environment air densityߩ

 ℎ   Mac Numberܿܽܯ
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Fig. 1. Impedance tube apparatus used to measure Helmholtz resonator attenuation properties: (1) Box mounted loudspeaker, (2) 

Transition duct/Anechoic Section, (3) Square section duct, (4) Duct wall mounted measurement microphone ports, (5) Near-neck, duct 

wall mounted measurement microphone port, (6) Resonator wall mounted measurement microphone port, (7) Resonator Neck, (8) 

Resonator cavity, (9) Adjustable resonator cavity wall piston   
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Table.1: Helmholtz resonator configurations and predicted peak absorption frequencies  

    Peak Absorption Frequency (Hz) 

Neck Diameter 
(mm) 

Volume Case Measured 
Basic 

Analytical 

0.85D End 
Correction 
Analytical 

Ingard End 
Correction[23] 

Analytical 
CFD 

3 Case 01 98.42 106.59 101.81 101.30 96.59 

3 Case 14 47.61 53.30 50.91 50.20 47.15 

15 Case 01 444.64 534.35 438.94 471.63 445.56 

15 Case 14 214.54 267.18 219.47 235.77 214.84 
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Fig. 2. Experimentally measured and CFD calculated pressure ratio; (a) 6mm Neck Diameter (b) 12mm Neck Diameter  

 

(a) 

 

(b) 

Fig. 3. Comparison of time-averaged velocity magnitude for 9mm neck diameter; (a) Volume Case 01 (b) Volume Case 14 

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 

24 
 

Table. 2: Perforated panel structure parameters  

Plate Hole diameter 
(mm) 

Thickness 
(mm) 

Perforated ratio Cavity Depth(mm) 

#1 1 2 0.38% 55 

#2 1 2 1.23% 55 

#3 3 2 3.41% 55 

#4 0.6 1 0.9% 15 

#5 1 1 1% 30 
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(a) 

 

(b) 

 

(c) 

Figure.4 Absorption coefficient results comparison; (a) porosity=0.38%  (b) porosity=1.23% (c) porosity=3.41% 
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Table.3 Absorption band -width comparison 

Plate Hole diameter Porosity Absorption 
coefficient 

Experiment  CFD Atalla&Sgard Maa 

#1 1mm 0.38% >0.5 220-370Hz 210-385Hz 220-360Hz 200-340Hz 

#2 1mm 1.23% >0.5 360-650Hz 360-680Hz 375-630Hz 360-580Hz 

#3 3mm 3.41% >0.2 460-850Hz 430-850Hz 520-780Hz 530-770Hz 
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(a) 

 
(b) 

Figure.5 Absorption coefficient results comparison for the samples (a)Spec#1 in Ref. 36, (b) Ref.37
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Table.4 Perforated panel structure parameters and viscous resistivity 

Plate Hole diameter 
(mm) 

Thickness  
(mm) 

Perforated ratio 

#6 1 2 0.72% 

#7 1 2 2.4% 

#8 1 2 3.41% 

#9 3 2 1.23% 

#10 3 2 2.4% 
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(a) 

 

(b) 

 

(c) 

Figure.6 Absorption coefficients comparison for plate#6(a), plate#7(b) and plate#8(c) 
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(a) 

 

(b) 

Figure.7 Absorption coefficients comparison for plate#9(a) and plate#10(b) 
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Figure.8 Experimental, CFD and analytical results of absorption coeffcients at resonant frequency  
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