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Abstract 

An important priority for any organism is to maintain internal cellular homeostasis including acid-

base balance. Yet, the molecular level impacts of changing environmental conditions, such as low 

pH, remain uncharacterised. Herein, we isolate partial Na+/H+ exchangers (NHE), carbonic 

anhydrase (CA), and calmodulin (CaM) genes from a polychaete, Platynereis dumerilii and 

investigate their relative expression in acidified seawater conditions. mRNA expression of NHE 

was significantly down-regulated after 1 h and up-regulated after 7 days under low pH treatment 

(pH 7.8), indicating changes in acid-base transport. Furthermore, the localisation of NHE expression 

was also altered. A trend of down regulation in CA after 1 h was also observed, suggesting a shift in 

the CO2 and HCO3
- balance. No change in CaM expression was detected after 7 days exposure to 

acidified seawater. This study provides insight into the molecular level changes taking place 

following exposure to acidified seawater in a non-calcifying, ubiquitous, organism. 
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Introduction  

The regulation of the acid-base balance in cells is essential for cellular homeostasis. In order to 

maintain a normal pH range, hydrogen ions (H+) are regulated in the body fluids (Siggaard-

Andersen, 2005). Most cellular processes have a small pH range within they will function, since 

protein conformations are altered by H+, and therefore the biochemical activity may be modulated 

(Petsko and Ringe, 2004). The activity of an enzyme decreases outside the optimum pH range and 

greater changes can lead to denaturation (Ochei and Kolhatkar, 2000). There are other 

consequences of acid-base imbalance, such as metabolic suppression (Guppy and Withers, 1999), 

altered oxygen binding (Jensen, 2004), muscle malfunctions (Orchard and Kentish, 1990) and 

impaired synaptic transmission, neurotransmitter function and receptor binding (Sinning and 

Hübner, 2013; Ahn and Klinman, 1983; Ryu et al., 2003). Acid-base regulation also requires energy 

and can therefore cause changes in the energy budget depending on the function of the tissue 

(Pörtner et al., 2000).  

Encountering a low pH environment can therefore potentially lead to acidification of bodily 

fluids unless cellular mechanisms, such as ion transporting or binding proteins, are able to maintain 

homeostasis (Michaelidis et al., 2005). To maintain the acid-base balance, ionic transporters are 

required to carry the excess ions out of the body (Walsh and Milligan, 1989), and these include the 

cell membrane Na+/H+ exchangers (NHEs) (Pörtner et al., 2000). NHEs are conserved throughout 

evolution, maintain pH and Na+ homeostasis, and provide an adaptation mechanism to extreme pH 

environments (Hunte et al., 2005). Relevantly, NHE activities have been reported as inhibited at 

low pH (7.5) in the marine worm Sipunculus nudus relative to worms kept at pH 7.9 conditions 

(Pörtner et al., 2000).  

Carbonic anhydrase (CA) encodes a zinc-containing enzyme that catalyses the reversible 

hydration of CO2 to HCO3
- (CO2+H2O�HCO3

-+H+) (Tripp et al., 2001), regulating H+ and HCO3
- 

levels in marine organisms such as the blue crab, Callinectes sapidus (Henry and Cameron, 1983). 
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The function of CA is well known in vertebrates, with roles in respiration, transport of CO2/HCO3
-, 

pH and inorganic carbon homeostasis and calcification (Bertucci et al., 2013). In invertebrate 

species, CA is known for its involvement in the biomineralisation process in coral, Stylophora 

pistillata (Moya et al., 2008), and is also highlighted as triggered by changing HCO3
- concentrations 

and OA stress conditions (Moya et al., 2012). In contrast, calmodulin (CaM) is a multifunction Ca2+ 

binding protein, found in all eukaryotic cells, that triggers activation of more than 20 enzymes, and 

is essential in the regulation of cell proliferation and several stages of the cell cycle (Means et al., 

1991). CaM is considered to have functions in the larval settlement and metamorphosis of the 

polychaete Hydroides elegans (Chen et al., 2012). Importantly, down regulation of CaM gene 

expression has been detected in oysters exposed to low pH seawater induced by CO2 gas flow 

(Dineshram et al., 2012). The roles that each of these; NHE, CA, and CaM in turn, play in 

maintaining acid-base balance has yet to be determined in many marine invertebrates, including 

Polychaetes. 

In this study we isolate partial NHE, CA and CaM cDNA sequences from a non-calcifying 

invertebrate, P. dumerilii, and investigate their gene expression in low pH (7.8) relative to control 

conditions (pH 8.2) following 1 h and 7 days experimental exposure. P. dumerilii is a model 

organism used for the study of molecular development, evolution, neurobiology, ecology and 

toxicology (Hardege, 1999; Hutchinson et al., 1995; Tessmar-Raible and Arendt, 2003) and, 

relevantly, can be found in, and perhaps adapted to, naturally occurring acidified habitats (Cigliano 

et al., 2010; Calosi et al., 2013). We report on significantly different gene expression profiles in 

worms maintained at low pH relative to those at normal conditions. 

 

Materials and Methods 

Animals and experimental exposure.  

P. dumerilii (mean mass ± SEM: pH 8.2 worms 1h: 13.18 ± 1.63 mg, n=10; pH 7.8 worms 1h 

11.32 ± 2.06 mg, n=10; pH 8.2 worms 1 week: 12.68 ± 1.65 mg, n=10; pH 7.8 worms 1 week: 
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10.47 ± 1.89 mg, n=10) were used from the laboratory culture from the EMBL Heidelberg 

(Germany). The gene isolation and temporal expression experiments were conducted with adult, but 

sexually immature atokus worms to reduce natural variation resulting from metabolic processes 

linked to reproduction and metamorphosis. The spatial gene expression experiments were 

conducted using larvae. Before the experiment, all specimens were kept in filtered natural seawater 

(~pH 8.2) at a light regime of 16 hrs light/ 8 hrs dark in a temperature controlled room at 18 °C. 20 

worms were transferred into closed plastic containers (2000 cm3) with approximately 800 ml 

filtered natural seawater (salinity 35ppt) of pH 8.2 (control) and another 20 worms were transferred 

into closed plastic containers (2000 cm3) with approximately 800 ml filtered natural seawater of pH 

7.8 (treatment) kept at the same light regime and temperature. The pH was adjusted using 

hydrochloric acid (1M) and sodium hydroxide (1M), and the water was changed every 24 h to 

ensure that the desired pH was maintained. After 1 h, 10 individuals from each treatment were 

transferred into RNALater solution (Sigma-Aldrich Company Ltd., Gillingham, U.K.). The 

remaining worms were kept for 7 days in the different pH seawater and then transferred into 

RNALater. Samples were stored at -80 °C until further processing. The two time points were 

selected to represent the initial stress response (1 h) and the acclimation response (at 7 days).  

For the in situ hybridisation investigation of gene expression localisation, 1 dpf P. dumerilii 

larvae were separated from their jelly and transferred into closed plastic containers (100 cm3) with 

approximately 80 ml filtered natural seawater at a pH of 7.8 or 8.2 for 7 days at 18 °C. The light 

regime, pH maintenance, and water change were the same as described for the adults. P. dumerilii 

larvae were then fixed in 4 % PFA for 2 h and stored in 100% methanol at -20 ˚C until 

hybridisation. 

 

Target gene isolation and characterisation.  

Nucleotide sequences for 18S ribosomal RNA (18S rRNA), alpha-tubulin (α-TUB), CA, NHE, and 

CaM were obtained from GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Blasted against the 
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worm database PLATYpopsys (http://hydra.cos.uni-heidelberg.de/pps/styled-2/) from the EMBL, 

Heidelberg. Total RNA was extracted from whole worms using High Pure RNA Tissue reagents 

(Roche Diagnostics Ltd., Burgess Hill, U.K.), according to the manufacturer’s protocol. The 

integrity of total RNA was tested on a denaturing TAE agarose gel stained with ethidium bromide 

(Life Technologies, Paisley, U.K.). cDNA was synthesised using SuperScript VILO cDNA 

Synthesis reagents (Life Technologies, U.K.), with 14 µl of total RNA (pH 8.2 1 h: 0.52 ± 0.077 µg, 

pH 7.8 1 h: 0.51 ± 0.077 µg; pH 8.2 1 week: 0.46 ± 0.069 µg, pH 7.8 1 week: 0.41 ± 0.060 µg) and 

following the manufacturer’s protocol. To degrade remaining RNA template the enzyme RNase H 

was used with its corresponding buffer (Thermo Fisher Scientific, Loughborough, U.K.) for a 

45 min, 37 °C incubation. For the generation of CA, NHE and CaM PCR products, 1 µl of cDNA 

was combined with 0.5 µl of 10 pmol/ µl forward and reverse primer (Table 1), 0.25 µl of 

Herculase cDNA polymerase (Agilent Technologies, Wokingham, U.K.), 5 µl of 5× PCR buffer 

(Agilent Technologies, U.K.), 0.5 µL 40 mM dNTP mix (Thermo Fisher Scientific, U.K.), 0.5 µL 

DMSO (Agilent Technologies, U.K.), 0.5 µL 25 mM MgCl2 (Thermo Fisher Scientific) and 16.25 

µL sterile nuclease-free water (Fisher Scientific, U.K.) to prepare a total reaction volume of 25 µL. 

For the PCR conditions an initial denaturation at 94 °C for 30 sec was used, followed by 35 cycles 

of denaturation at 94 °C for 30 sec, annealing at 60 °C for 30 sec and extension at 72 °C for 30 sec, 

finishing with a final extension of 72 °C for 2 min. The PCR products were analysed on a 1% 

agarose gel, stained with SYBR Safe DNA gel stain (Life Technologies, Paisley, U.K.), to confirm 

the presence of a single, correctly-sized band, and the PCR products were then sequenced directly 

(Macrogen Europe, Amsterdam, the Netherlands). Sequence identities were verified using a BLAST 

search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to complete nucleotide comparisons (blastn), and to 

compare the translated nucleotide sequence against the protein database (blastx). Additionally, the 

sequences were investigated on PLATYpopsys using nucleotide sequence comparison (blastn) and 

comparison of the translated nucleotide sequence against the protein database (blastx). Sequences 

were aligned using Jalview2.8.0b1 (http://www.jalview.org/). For phylogenetic analysis of the 
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partial amino acid sequence, MEGA6 was used. A Maximum Likelihood Analysis with the Nearest 

Neighbor Interchange method (1000 bootstrap replicates) was performed. 

To determine the localisation of a selected gene expression (NHE), an in situ hybridisation 

experiment was conducted in parallel. For the generation of the NHEProbe PCR product, 1 µl of 

cDNA (representing a mixture of different stages of P. dumerilii) was combined with 1 µl of 

10 pmol/µl forward and reverse primer (Table 1), 0.12 µl of HotStar Taq Polymerase (Qiagen, 

Hilden, Germany), 1.2 µl 10× PCR buffer (Qiagen, Hilden, Germany), 0.5 µl 40 mM dNTP mix 

(Thermo Fisher Scientific, Schwerte, Germany), 0.5 µl 25 mM MgCl2 (Thermo Fisher Scientific, 

Schwerte, Germany) and 17.68 µl of sterile nuclease-free water (Thermo Fisher Scientific, 

Schwerte, Germany) with a total reaction volume of 25 µl. The following PCR conditions were 

used: initial denaturation at 95 °C for 15 sec, followed by 35 cycles of denaturation at 95 °C for 30 

sec, annealing at 50 °C for 30 sec and extension at 72 °C for 1 min, finishing with a final extension 

of 72 °C for 10 min. The PCR product was analysed on a 1% agarose gel followed by a purification 

step using QIAquick PCR Purification reagents (Qiagen, Hilden, Germany) and according to the 

manufacturer’s protocol. The desired PCR product was subsequently cloned using TOPO® TA 

Cloning® reagents following the manufacturer’s protocol (Invitrogen, Life Technologies, 

Darmstadt, Germany). Plasmids containing the desired PCR product were purified using a standard 

protocol (Qiagen). The identity of the desired NHE PCR product was confirmed by sequencing 

(GATC Biotech, Konstanz, Germany). The vector (20 µl, 14.12ng of DNA) was restriction digested 

with 4 µl of NotI enzyme (5u/µg), 5 µl of the corresponding buffer and 11 µl H2O, with an 

overnight incubation at 37oC. The vector digest was cleaned with QIAquick® Nucleotide Removal 

reagents (Qiagen) and following the manufacturer’s instructions. 1 µg of DNA was mixed with 2 µl 

100 mM dithiothreitol (DTT), 1.3 µl NTP mixture (15.4 mM each ATP, CTP, GTP, and 10 mM 

UTP), 0.7 µl 10 mM DIG-UTP, 0.5 µl RNase inhibitor (4u/µl), 1 µl of Polymerase T7/Sp6 (20u/ µl) 

and 2 µl corresponding 10× transcription buffer. The total volume was adjusted to 20 µl with sterile 

nuclease-free water and then incubated at 37 ˚C for 6 h. After the incubation, 1 µl DNase I (1u/µl) 
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was added and a further incubation at 37 ˚C for 1 h conducted. Purification was then completed 

with the RNeasy Mini Kit (Qiagen) following the manufacturer’s protocol and using 40 µl for the 

final elution step. 

 

In situ hybridization.  

The larvae were rehydrated as follows: 5 min 75 % methanol/25 % 1×PBS+0.1% Tween20 (PTW), 

5 min 50 % methanol/ 50 % PTW, 5 min 25 % methanol/ 75 % PTW, and two rinses in PTW. This 

was followed by a Proteinase K (100 µg/ml) digestion in PTW for 2 min, two rinses in 2 ml/ml of 

glycine in PTW, a 5 min wash with 1 % triethanolamine, a 5 min wash with 1 % triethanolamine 

with 0.5% acetic anhydride, two 5 min washes with PTW, a post-fixation step in 4 % PFA and five 

5 min washes in PTW. The animals were then prehybridized for 1 h in hybmix (50% formamide, 5× 

SSC, 50 µg/ml heparin, 0.1 % Tween20, 5 mg/ml Torula RNA) at 64 ˚C. Afterwards, the probe was 

denatured at 80 ˚C for 10 min and hybridised at 65 ˚C overnight. This was followed by two 30 min 

washes in 50 % hybmix/ 2× SSCT at 64 ˚C, a 15 min wash in 2× SSCT at 65 ˚C, two 30 min 

washes in 0.2× SSCT at 64 ˚C and blocked for 1 h in 5 % sheep serum in PTW. After adding pre-

absorbed anti-DIG-AP Fab antibody (in 5 % Sheep Serum/PTW) (Roche) at a 1:2000 dilution and 

anti-acetylated tubulin at 1:250 dilution, the specimens were incubated at 4°C overnight. Specimens 

were washed six times, with shaking, in PTW for 10 min and equilibrated twice for 5 min in 

staining buffer (100mM TrisCl, pH 9.5, 100 mM NaCl, 50mM MgCl2, 0.1% Tween20) while 

shaking. Larvae were transferred into a well plate and NBT/BCIP (337.5 and 175 µg/ml of NBT 

and BCIP) staining buffer was added. The staining was carried out in the dark and the staining 

process was monitored frequently under a microscope. Finally, the specimens were washed in PTW 

three times for 5 min. 
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qRT-PCR analysis of gene expression.  

Total RNA was isolated and approximately 0.5 µg used to generate cDNA as described above. This 

was followed by a 45 min incubation at 37 °C with 1 µl RNase H enzyme (5u/µl) and 10× buffer 

(Fisher Scientific, U.K.). For the qRT-PCR reactions a final volume of 20 µl containing 10 µl of 

qPCR Fast Start SYBR Green Master Rox (Roche, U.K.), 1 µl of cDNA and 2 µl of 100 nM 

primers (Table 1) and 7 µl molecular grade water (Fisher Scientific, U.S.A.) was used. To 

determine the target cDNA amplification specificity, a control lacking cDNA template was included 

in the qRT-PCR analysis. A CFX96 Real Time PCR Detection System (Bio-Rad, Hemel 

Hempstead, U.K.) was used to detect amplification. The following cycling conditions were used: 

after 2 min at 95˚C, 45 cycles at 95˚C for 10 sec, 60˚C for 1 min and 72˚C for 1 min were used. To 

generate a melt curve, a heating step of 5 sec at 60˚C and 5 sec at 95˚C was added to the end of the 

PCR run. Two established reference genes, 18S rRNA and α-TUB, were used (Zheng et al., 2011; 

Won et al., 2011) and validated: an analysis of variance (ANOVA) of the Cq values for the 18S 

rRNA and α-TUB amplifications showed no significant difference (p=0.4341) between the pH 

treatment and/or time points. For the verification of the target mRNAs, melting curves and gel 

pictures were analysed to check for amplification specificity and absence of primer dimers. The 

amplification efficiency of each primer pair was calculated using a serial dilution of cDNA. The 

efficiency for the target genes ranged from 90.4% to 98.9%. For normalisation in pH 7.8 and 

pH 8.2 tissue of P. dumerilii, the reference mRNAs 18S rRNA and α-TUB were used. To calculate 

relative expression levels of the target gene the 2-
ΔΔ

Ct method was applied (Livak and Schmittgen, 

2001).  

 

Statistical analyses were conducted using GraphPad InStat v3 (GraphPad Software Inc., La Jolla, 

U.S.A.). Significance for relative gene expression was tested using an unpaired t-test. Outliers were 

identified, and removed, if they differed by more than twice the standard deviation of the mean. For 

each NHE (pH 7.8; 1 h) and for CA (pH 8.2; 1 h) one value was identified as an outlier and 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 11 

excluded from the statistical analysis. For all analyses, statistical significance was accepted at 

p<0.05. Values are presented as means ± SE. 

 

Results  

Isolation of a partial NHE-like cDNA sequence from P. dumerilii. A 110 bp PCR product was 

isolated matching an NHE2 from Physeter catodon (XM_007108520.1) and Rattus norvegicus 

(NM_012653.2), and an NHE from Rattus sp. (L11236.1) with 78% similarity in each case. The 

phylogenetic analysis divides the sequences into two main branches, whereby the P. dumerilii 

sequence clusters with Saccoglossus kowalevskii and two mammalian sequences (Supplementary 

Information Fig. 2a). 

Isolation of a partial CA cDNA sequence from P. dumerilii. A partial sequence for CA gene 

(113 bp) was obtained by PCR from P. dumerilii cDNA. The Blastx search showed 76% and 62% 

similarity of the translated nucleotide sequence with carbonic anhydrase 9-like sequence and 

carbonic anhydrase 1-like sequence, both from S. kowalevskii (XP_006811134.1 and 

XP_006822732.1 respectively). In terms of conserved features, partial coverage of the alpha-CA 

domain was identified (Supplementary Information Fig. 1b) and phylogenetic analysis showed 

clustering of the sequence with other alpha-CA sequences (Supplementary Information Fig. 2b). 

Isolation of a partial CaM cDNA sequence from P. dumerilii. A 57 bp CaM PCR product was 

sequenced from P. dumerilii, showing highest similarity to calmodulins from S. purpuratus 

(P05934.1), Hydractinia symbiolongicarpus (AGB14582.1) and Clytia gracilis (AAZ23122.1). 

Blastn searches revealed the highest nucleotide sequence similarity (93%) with calmodulin-1 of 

Trichinella spiralis (XM_003379512.1), followed by the calmodulin of Spodoptera littoralis 

(HM445737.1) (91%) and GM21351 of Drosophila sechellia (XM_002033477.1) (91%), all 

suggesting a partial CaM sequence. In terms of conserved features, two EF-hand domains with Ca2+ 

binding sites were identified (Supplementary Information Fig. 1c) and phylogenetic analysis 
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showed that P.dumerilii clusters with other invertebrate CaM sequences (Supplementary 

Information Fig. 2c).  

 

Quantitative real-time PCR analysis of NHE, CA and CaM mRNA expression in P. dumerilii. 

The expression level of each target mRNA was analysed in worms maintained in normal or low pH 

conditions using qRT-PCR (Fig. 1). NHE was significantly (p=<0.05) down-regulated after 1 h 

(p=0.0459), but subsequently up-regulated after 7 days (p=0.0480) of treatment (Fig. 1a). CA 

mRNA expression showed a down-regulated trend (p=0.0966) after 1 h treatment, yet no clear trend 

was detected after 7 days of treatment (Fig. 1b). CaM gene expression showed no statistically 

significant difference between pH treatments at any of the two time-points (Fig. 1c).  

 

In situ hybridization of NHE. The NHE transcript was localised via in situ hybridization in 7 dpf 

old larvae kept at pH 8.2 and pH 7.8 (Fig. 2). Larvae kept at pH 8.2 (Fig. 2a and b) displayed NHE 

expression in the parapodia, as well as areas of the antennae and palpi. Worms maintained at pH 

7.8, similarly displayed NHE expression in the parapodia, antennae and palpi, yet there was an 

additional expression detected in the area of the protodeum (Fig. 2c and d). 

 

Discussion 

The present study examined selected molecular-level biological effects of acidified seawater (pH 

7.8) on adult, atokus marine polychaete, P. dumerilii. NHE, CA, and CaM partial sequences were 

isolated and their mRNA expression analysed in worms kept at acidified and normal pH seawater. 

These targeted genes represent several of the four general coping mechanisms for changing CO2 

and H+ concentrations: namely passive intra- and extracellular fluids buffering; ion exchange and 

transport; transport of CO2 in the blood if respiratory pigments exist; and change to a stage of 

metabolic suppression lasting until normal environmental conditions are restored (Fabry et al., 

2008). Each of the partial sequences isolated from P. dumerilii (see: PLATYpopsys database: 
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http://hydra.cos.uni-heidelberg.de/pps/) showed similarity to a range of other species counterparts, 

as well as conserved domains, confirming their likely identities.  

 The expression of each gene was investigated in P. dumerilii kept at normal (8.2) and low 

(7.8) pH, at two times points of 1 h and 7 days. The seawater low pH treatment was achieved using 

acid adjustment, to gain a better general understanding of mechanisms involved in internal pH 

regulation. Following this simulated low pH exposure regime, NHE expression showed a significant 

initial down-regulation at 1 h, followed by a subsequent up-regulation at 7 days. CaM and CA 

showed no statistically significant changes at either time point relative to the control pH samples.  

The significant up regulation of the NHE transport protein after 7 days suggests that the 

activity of existing protein levels were insufficient to regulate the pH under low pH conditions, and 

that an increase in NHE was required to maintain the acid-base balance. Stumpp et al. (2011) report 

NHE3 expression level changes in sea urchin, S. purpuratus, pluteus larvae, kept at pH 7.7 for 2, 4 

and 7 days post-fertilization (Stumpp et al., 2011). After 2 days an up-regulation in NHE3 was 

detected followed by a down regulation of 45 % after 4 days (Stumpp et al., 2011). In contrast, a 

different study conducted on the same species showed no change in NHE expression under acidified 

conditions (pH 7.88-7.96) within <72 h (Todgham and Hofmann, 2009). In line with our result, the 

gene expression of NHE in the Japanese medaka fish, Oryzias latipes, showed an up-regulation in 

different ontogenetic stages (embryos, hatchlings, adults) as well as different tissue (gill, intestine) 

(pH 7.1-7.6) (Tseng et al., 2013). Each of these NHE expression studies discussed were, however, 

conducted using CO2 modulated pH and the molecular level changes observed may have been 

triggered through different acid-base balance mechanisms compared with the acid modulated pH 

change used in the present study. 

 Perhaps surprisingly, neither gene expression of CaM nor CA changed significantly at altered 

pH in the worms studied, although CA mRNA expression did show an initial down-regulated trend 

(p=0.0966) after 1 h treatment (Fig. 1c). This agrees with a study using the coral A. millepora, using 

CO2 altered pH conditions, where membrane associated and secreted CA were expressed at lower 
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levels in elevated pCO2 conditions after 3 days (Moya et al., 2012). In contrast, CA expression in a 

second coral species, P. damicornis, was found to be up-regulated at pH 7.8 and 7.4 after a 

significantly longer exposure time of 3 weeks using CO2 driven pH changes (Vidal-Dupiol et al., 

2013).  

That no significant changes in CaM expression were detected is in contrast to a number of 

other studies using calcifying organisms, such as oyster and coral. CaM expression has been 

previously reported as down-regulated in Pacific oyster (C. gigas) larvae and coral (A. millepora), 

in response to low pH seawater exposure induced using CO2 (C. gigas: pH ~7.5 for 6 days; A. 

millepora: pH 7.8-7.9 and 7.6-7.77 for 10 days) (Dineshram et al., 2012; Kaniewska et al., 2012). In 

the commercial oyster, C. hongkongensis, CaM was found to be significantly down regulated at 

moderate low pH (7.9) and slightly up-regulated at low pH (7.6) (Dineshram et al., 2013). The 

comparison between the calcifying species, C. gigas, A. millepora and C. hongkongensis and P. 

dumerilii, a non calcifying species, may suggest that the expression of CaM under low pH 

conditions is more important for calcification / biomineralisation processes rather than any other 

stages in the cell cycle. Alternatively, the CO2 driven pH change may trigger a change in CaM 

expression, via hypercapnia induced cellular processes, that are not responsive to the acid 

manipulated pH changes used in this study. 

Possible explanations for a lack of significant changes in CaM or CA expression herein may 

relate to tolerance towards exposure to a relatively acidified environment and relative ion regulatory 

capacity or isoform differences. There is some evidence to indicate that P. dumerilii is more tolerant 

to low pH than calcifying species based on its occurrence in CO2 vents in the Tyrrhenian Sea 

(Cigliano et al., 2010; Calosi et al., 2013). It has been shown that the species reside in naturally low 

pH environments, although it remains unclear whether they spend their entire life cycle in these 

areas or just inhabit them for a period of time. Another relevant factor is that adaptability towards 

environmental changes may vary according to different life stages, whereby many studies focus on 

early life history stage (O’Donnell et al., 2010; Wong et al., 2011; Zippay and Hofmann, 2010). In 
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cuttlefish Sepia officinalis, early life stages were affected by elevated pCO2 and Hu et al. (2011) 

hypothesize that ‘hypercapnia’ causes metabolic depression, diverting energy towards ion 

regulation processes, and diverting it from embryonic growth (Hu et al., 2011). Thus, it is possible 

that P. dumerilii larvae may respond differently to low pH compared with adults, but atokous stages 

and further studies are needed to clarify such questions. A field investigation would also clarify 

whether acid-base impacts observed in the aquaria-reared worms are similar in worms sampled 

directly from the environment. Further studies would also be required to establish whether different 

isoforms of each gene exist in this, and other species, and any subsequent differing activities. 

The localization of transcripts via in situ hybridization contributes to a better understanding 

of their potential molecular mechanisms of action (Dale et al., 2012; Moya et al., 2012). This study 

examined the expression patterns of NHE in 7 dpf old larvae using the same pH treatment (pH 8.2 

and pH 7.8) regime, indicating differences in the NHE expression localization (Fig. 2). A pH-

induced localization change, of glutamate decarboxylase, has previously been reported in the 

bacterium Escherichia coli (Capitani et al., 2003). The novel NHE expression detected in larvae 

kept at low pH near the anus area (Fig. 2d) is interesting since the anal papillae from Aëdes aegypti 

larvae take up Na+ and Cl- ions by Na+/H+ and Cl-/HCO3
- exchange (Stobbart, 1971). Studies using 

the teleost fish (Opsanus beta) showed that the intestinal epithelium plays a major role in acid-base 

relevant ion transport (Wilson et al., 2009; Grosell and Genz, 2006; Grosell et al., 2009a, 2009b). It 

thus appears that such additional changes take place around the protodeum area in P. dumerilii. 

 The molecular underpinning mechanisms of internal pH regulation are largely 

uncharacterised in many marine organisms. Herein, we have isolated NHE, CA and CaM partial 

cDNA sequences from P. dumerilii and examined their expression in worms kept at normal and low 

seawater pH. After 7 days, NHE expression was higher, and localized in different tissues, in worms 

kept at low pH levels compared to worms at normal pH levels. This indicates that under low pH 

conditions at least one active proton-ion transport mechanism is affected presumably in order to 

cope with the environmental changes taking place. This study provides a first insight into the 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 
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molecular mechanisms of action involved in seawater acidification in the non-calcifying marine 

model organism P. dumerilii.  
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Figure and Table Legends 

Figure 1. Normalised average relative mRNA transcription ± standard error of the mean in P. 

dumerilii for (a) NHE (b) CA and (c) CaM after 1 h and after 1 week in sea water with pH 8.2 and 

pH 7.8. Analysis was performed by unpaired t-test.* indicates significant differences (p < 0.05) of 

mRNA transcription between pH 8.2 and pH 7.8.  

 

Figure 2. Localized NHE expression in 7dpf larvae maintained at pH 8.2 (a and b) and 7.8 (c and d). 

Bright-field images were taken on a Zeiss Axiophot microscope with a 200x magnification (Carl 

Zeiss, Jena, Germany). 

 

Table 1. Primers designed for isolation, qRT-PCR and hybridization analysis, and their expected 

amplicon size (bp). 
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Figure 1.  

a)NHE 

                
 

b)CA 

                
 

c)CaM 
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Figure 2. 
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Table 1 

 
Target gene 
 

 
Forward primer (5’-3’) 

 
Reverse primer (5’-3’) 

 
Amplicon size (bp) 

 
18S rRNA GCGCATTTATCAGCACAAGA CTTGGATGTGGTAGCCGTTT 239 

α-TUB CTTCAAGGTCGGCATCAACT TGGCAGTGGTATTGCTCAAC 101 

NHE CGCTCTGTTGCTGTCTTGAG TGGCTACTAAGGCGAATGCT 130 

CA TAACCACCTCAACCGGAGAC ATGGTGTGCTCTGAGCCTTT 118 

CaM AAGCTTTCCGAGTGTTCGAC CCTCTTCGTCCGTCAATTTC 102 

NHEProbe TCATGACAGCCATGGTCCTA ACGTCAGGTATCCGAAGGTG 803 
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Supplementary Information  

Figure 1. a) Alignment of partial P. dumerilii, Aedes aegypti NHE (AAF80554.1) and Drosophila 

melanogaster NHE2 (NP_001137847.1) amino acid sequences. Dashes represent alignment gaps 

and asterisks represent homology. Colons represent sites with conserved amino acid substitutions 

and dots represent semi-conserved amino acid substitutions (similar shape). Light grey shaded 

regions represent functional protein domains. b) Alignment of partial P. dumerilii CA, Patella 

vulgata CA (CCJ09594.1) and Nematostella vectensis CA1 (DAA06053.1) amino acid sequences. 

Dashes represent alignment gaps and asterisks represent homology. Colons represent sites with 

conserved amino acid substitutions and dots represent semi-conserved amino acid substitutions 

(similar shape). Light grey shaded regions represent functional protein domains. Dark grey shaded 

regions represent a zinc binding site conserved domain. c) Alignment of partial P. dumerilii, 

Litopenaeus vannamei (AEK21539.1) and Bos taurus CaM (NP_001159980.1) amino acid 

sequences. Dashes represent alignment gaps and asterisks represent homology. Colons represent 

sites with conserved amino acid substitutions and dots represent semi-conserved amino acid 

substitutions (similar shape). Light grey shaded regions represent functional protein domains. Dark 

grey shaded regions represent Ca2+ binding site on conserved domain. 

Figure 2. Phylogenies of partial amino acid sequences for a) NHE, b) CA and c) CaM, using amino 

acid sequence with gaps in each case. Sequences were aligned and edited in Jalview and for the 

Maximum likelihood analysis Mega6 was used. The Jones-TaylorThornton (JTT) model was 

applied and for the heuristic search the Nearest Neighbour Interchange (NNI) method was 

performed. The numbers in the nodes represent bootstrap probabilities with 1000 replicates. 
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Figure 1.  

a)NHE 

A.aegypti_NHE        MVAHSLQQEVNLSRRACRIPKWPLSGAQQEEENDEEVLEEQLLNGANQSPASEVAAFRLG 60 
D.melanogaster_NHE2  ---MSIRTEQDYDS---------ATPALAQQMN-----LARRACWRIKSYSSESLFKTYA 43 
P.dumerilii_NHE      ---------------------------MLVPVN-----RALLICVICLSCTK-------- 20 
                                                     *               * :.         
 
A.aegypti_NHE        PVHSENSPGGIDEDPLSFRNRRMHDGRMGSVVDFSCDLVAHVFLLVKALVMGVLRFDLTS 120 
D.melanogaster_NHE2  SVITDTSANEIDAEAPPPPRDKTKT-----------------------------RIEPQI 74 
P.dumerilii_NHE      LVYSGTTPGDVTPDSVTVDG-----------------------------------LVVNL 45 
                      * : .:.. :  :. .                                      :     
 
A.aegypti_NHE        PKRASSSSSSSSSYGSQFSKNLVKWCTWAIVLSVLLANHGGFVLARPKNGVVTADGVDAA 180 
D.melanogaster_NHE2  APAKRNSSCTSSDWRGMFSKRTLLICALALILGSAQARPNTSAVGVAPR-KVSQDIVDAV 133 
P.dumerilii_NHE      TTAAPHSVTSQTDHHGNYTN------------GHKHSNSSG-----------DAHTDDAH 82 
                     .     *  :.:.  . :::            .   :. .              .  **  
 
A.aegypti_NHE        SVASGQWELLTPQPVSSDGAGGGQISGSLSSVKQQDDQSHGGELGDASHGEGHEVERYPV 240 
D.melanogaster_NHE2  TQLN----LGQSAPIDAVDVG---LDPTPSARVPRPEPLKSGDE-NAKGDEGHKMERYPL 185 
P.dumerilii_NHE      SDDN-----HSGQGHDSQGQG--------HAGGQGHSDGGQGHSGDDHDSHGPSFERFPV 129 
                     :  .           .: . *         :     .    *.  :   ..* ..**:*: 
 
A.aegypti_NHE        AQVEFSRVETPFVIGVWILSASIAKIGFHMTPKLSKIFPESCLLIVVGVIIGVLLRYATN 300 
D.melanogaster_NHE2  SSVDFARVKTPFIIGIWILSASIAKIGFHMTPKLHLIFPESCLLIVVGVVIGVVLYFCTD 245 
P.dumerilii_NHE      AYLKWHHVMYPYIPFLWIIIACIARLALEYNPNLTEYMPEGCYMVILGVLIGICLWFS-K 188 
                     : :.: :*  *::  :**: *.**::.:. .*:*   :**.* ::::**:**: * :. . 
 
A.aegypti_NHE        LHVSPLTPNTFFFYMLPPIILDAGYFMPNRMFFDNIGTILLMAVIGTIFNIATIGVSLWA 360 
D.melanogaster_NHE2  VAVSPLTPNTFFFYMLPPIILDAGYFMPNRLFFDNLGTILLMAVVGTIFNIATIGGSLYA 305 
P.dumerilii_NHE      ISQESLNSEHFFIFLLPPVIIEAGYFMPKRAFFDQIGTILWYAIVSTLFSTFAIGFSLWG 248 
                     :  ..*..: **:::***:*::******:* ***::****  *::.*:*.  :** **:. 
 
A.aegypti_NHE        CGLTGIFG-VDLP--FLHVFLFSSLISAVDPVAVLAVFEEIHVNEVLYIVVFGESLLNDA 417 
D.melanogaster_NHE2  CGKMGIYGESETPG-LMDVFLFASLISAVDPVAVLAVFEEIHVNEILYIVVFGESLLNDA 364 
P.dumerilii_NHE      FSNSGGIGAIDLDLDMIHCLAYGGLIAAVDPVAVLATFEEIHVNEILHSVVFGESLLNDG 308 
                      .  *  *  :    ::. : :..**:*********.********:*: **********. 
 
A.aegypti_NHE        VTVVMYHMFESYNEIGASNIQVVDIVSGVASFFVVALGGTIIGVIWGFLTGLVTRFTDHV 477 
D.melanogaster_NHE2  VTVVMYHMMESYNEIGLDKIIAQDIASGVGSFFVVALGGTAIGIIWGFLTGLVTRFTDHV 424 
P.dumerilii_NHE      VTVVLFNLFNGFSIIGGSNITAQDIASGVGSLFLVGIGGTLIGIFVAIIGAFIIRFTQKA 368 
                     ****::::::.:. ** .:* . **.***.*:*:*.:*** **:: .:: .:: ***::. 
 
A.aegypti_NHE        RVIEPIFIFVMAYLAYLNAEIFHMSGILAITFCGITMKNYVEQNVSHKSHTTIKYALKML 537 
D.melanogaster_NHE2  RVIEPIFIFVMAYLAYLNAEIFHMSGILAITFCGITMKNYVESNISQKSHTTVKYALKML 484 
P.dumerilii_NHE      PLVQPIIILTFGYLTYITPELFNLSAILGCTFGCITLNKYCEPNISKKSHTTVKYFLKMV 428 
                      :::**:*:.:.**:*:..*:*::*.**. **  **:::* * *:*:*****:** ***: 
 
A.aegypti_NHE        SSSAETIIFMFLGVATVNNRHIWNTWFVILTIVFCSVFRIIGVLILSAMANRFRIHKLSK 597 
D.melanogaster_NHE2  SSSAETIIFMFLGVATVNNMHVWNTWFVVLTIAFCSVFRVIGVILLSALANRFRLHKLSR 544 
P.dumerilii_NHE      AAVCETIIFLFLGTFVVNNVNEWNTAFILLCLIFCLVWRSVAVLSLTFIANMFRNNRLTF 488 
                     :: .*****:***. .*** : *** *::* : ** *:* :.*: *: :** ** ::*:  
 
A.aegypti_NHE        VDQFVMSYGGLRGAVAFALVLLVSTDHIPLQPMFVTTTIAVIYFTVFLQGITIKPLVRVL 657 
D.melanogaster_NHE2  VDQFVMSYGGLRGAVAFALVLLVDENVVKQKNMFVTTTIAVIYFTVFLQGITIKPLVKIL 604 
P.dumerilii_NHE      MDQFIMAYGGIRGGIAFALVASMDAKIFPQKKLFMTSTIFVIYYTIFVMGITIKPLVMFL 548 
                     :***:*:***:**.:*****  :. . .  : :*:*:** ***:*:*: ******** .* 
 
A.aegypti_NHE        NVKRANKRKPTMNERIHERFMDHTMAGIEDIVGKTGNYNIRDKFKRFDNRFIRPYLIKNL 717 
D.melanogaster_NHE2  NVKRANKRKPTMNERIHERFMDHLMAGIEDIVGKTGNYNVRDKFKRFDNRFIRPLLIRDL 664 
P.dumerilii_NHE      KVKKADKHKPSMGEKIGTRVIDHLMAGIEDIAGLHGHNDARMKYKQFDEKFMKPLLLKTT 608 
                     :**:*:*:**:*.*:*  *.:** *******.*  *: : * *:*:**::*::* *::   
 
A.aegypti_NHE        QGPEPK-ILETYSKLTMRDAMDYMRRNPSTIGQ-MSGTESMSALFRNYTG-VFGGSPSFS 774 
D.melanogaster_NHE2  KGAEPK-IIETYSKLTMRDAMEVMRRNPSTIGQ-MTGTESMSALFRNYTNNYIGGSPSLT 722 
P.dumerilii_NHE      ARIRNKSILNVYQKLLEKDAMDYIAKNQSFVSQSIPTAESLTQLVRNHSTGQLSTHSQSS 668 
                        . * *::.*.**  :***: : :* * :.* :. :**:: *.**::   :.  .. : 
 
A.aegypti_NHE        NLEN---STRNLDMQELDYNPSKKDLTDARIHHLLSVELKPYRR----TRRLSYSRHAVD 827 
D.melanogaster_NHE2  NLDNT--CSRNLDMAELDYNPSKKDLTDARIHHLLAEELKPYRR----HRRLSYSRHAVD 776 
P.dumerilii_NHE      GAVPIGEGTSVLDMRVLDVEGGDKTTNDAELHHILSENMFDRRRKNAPQRRLKVG--HSE 726 
                     .       :  ***  ** : ..*  .**.:**:*: ::   **     ***. .    : 
 
A.aegypti_NHE        DRDLSTQVNYKMQMNIRRMISE-KKHKRSKRGKDGK------TQNHVSFPELPQNGSAKQ 880 
D.melanogaster_NHE2  DRDLSTQVNYKMQMNFRRMFNDRKHHKRSKRGASNKEAKENVKQNHVSFHDFQQNGTTKQ 836 

Na_H_Exchanger 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 28 

P.dumerilii_NHE      DAQQDSIIRHKAKLHLRSLAKQKRPSGMRKR--------------HSNMKNAGKKHDKKH 772 
                     * : .: :.:* ::::* : .: :     **              * .: :  ::   *: 
 
A.aegypti_NHE        FANDYINEVLHEDNEDEDKLPTAAGDDWDGGGLTFTAKSSLDEKSEQPKNDKRMSKDLRD 940 
D.melanogaster_NHE2  LTN--AEECQQNPNEIN---VVGPSDDWDDG-LTFTAKSSLAEHP-IPEEDRNLSRES-- 887 
P.dumerilii_NHE      KSG-------HHSDKHDDDKLSVASSGSDGGIVFYVPQNEEEEDS------KGKKKEP-- 817 
                      :.       :. :: :      .... *.* : :..:..  *..      :  .::    
 
A.aegypti_NHE        LEAAENRVTTPTAIEAVLPWKRVDEDDENGAIKQNEFPSWASNKEYLAYNSPSATFLGGL 1000 
D.melanogaster_NHE2  --DGERRVATPTATESQLPWKRQG-DECTDAVQQNEFPAWASNKEYLAYNSPSATFLGGI 944 
P.dumerilii_NHE      ----PEQIEEEPSATQTLPWRRET---VQEPESRASWPTWWRKTNHKSH----------- 859 
                          .::   .:    ***:*        . .: .:*:*  :.:: ::            
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b)CA 

P.dumerilii_CA      --METSLVFIACILLS----------ATQAADWSYKGANGPSNWKNDYSTCGGSKQSPIN 48 
P.vulgata_CA        -MAKISLMFLLSLMRQQD-----PSHKAQNYHWSYLGTEGPSSWQKHYEHCAGKRQSPIN 54 
N.vectensis_CA      MSLVCRFLFFFCLIVFILGALERVEAADPMGDWSYDEATGPSTWPNHFPHCGGKMQSPIN 60 
                          ::*: .::                 .***  : ***.* :.:  *.*. ***** 
 
P.dumerilii_CA      IVSGDVVKDENLANIKVSASYSTKPSGS---WSIKNNGHSVGVTTSTGDYTLSEGG-LGA 104 
P.vulgata_CA        IDTNTVVYDETLQDFDLSEFHLLRGSQHPMIVNVTNNGHSASARVP-GEIHCSGGG-LSG 112 
N.vectensis_CA      INTEEAKYDGSLTDLDIKYPNTT------DVLLVNHHGHAIEADILSSEPFVATGADLSS 114 
                    * :  .  * .* ::.:.               :.::**:  .    .:   : *. *.. 
 
P.dumerilii_CA      TYKLAQFHFHWGSTDSKGSEHTMDGKEYPLEIHFVHYNSKYADLTTAIDKSDGLAVLGFF 164 
P.vulgata_CA        AYRTAEFHFHWGSIDNRGSEHGINGRVYPLEMHVVQYAVKYGSLAKAKTKPDGLAVLGTM 172 
N.vectensis_CA      RYRLAQFHFHVGSSDIQGSEHHIHGVKYPLEMHLVHYNDKYPNASSAQGLLDGLAVISVL 174 
                     *: *:**** ** * :**** :.*  ****:*.*:*  ** . :.*    *****:. : 
 
P.dumerilii_CA      FEVDGSDNAAMQPIVDKLSSVTNKDDTATIDPMILLDLMGGDAATFSEFYRYSGSLTTPG 224 
P.vulgata_CA        YEISEQDNPSFEPVVAALKNIKHEGNEDSITNLDLRNLLPKDS---SKFYRYEGSLTTPP 229 
N.vectensis_CA      FESSSTDNPALNEIIDNLQNASYKDEEITVQNVPVGKIIPTDT---EKFYRYNGSLTTPP 231 
                    :* .  **.::: ::  *.. . :.:  ::  : : .::  *:   .:****.******  
 
P.dumerilii_CA      CYESVTWTVFEKTVKISS------------------------------------------ 242 
P.vulgata_CA        CFESVIWTVFAIPQKISAPQLAVLRSLFLEAHGDAGLKPTDGHSHTVNVQSQPGSSTTNS 289 
N.vectensis_CA      CFETVKWIVLKKTASISEKQLRQFRSVFSTSR--QATKPNS------------------- 270 
                    *:*:* * *:  . .**                                            
 
P.dumerilii_CA      ------------------------------------------------------------ 
P.vulgata_CA        VKYLVDNFRPFQVLNGRVVKKSFKELHPISNTAPTTSLTQADIKQVNTAMESSHPVGSSP 349 
N.vectensis_CA      ---LVDNFRPTQSLNGRIIRKNFGKLLKYIIY---------------------------- 299 
                                                                                 
 
P.dumerilii_CA      ------------------------------------------------------------ 
P.vulgata_CA        SNNIGNFNLENGHKTILSGANAVPGFNAASDTKAAATRTQISVPEQQLTSIKLGSANEAI 409 
N.vectensis_CA      ------------------------------------------------------------ 

alpha_CA 

# # # 
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c)CaM 

 
P.dumerilii_CaM       MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADG 60 
L.vannamei_CaM        MADQLTEEQIAEFKEAFSLFDKDGNGTITTKELGTVMRSLGQNPTEAELQDMINEVDADG 60 
B.taurus_CaM          MADQLTEEQIAEFQEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADG 60 
                      *************:**********:*********************************** 
 
P.dumeriliiP_CaM      NGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGFISAAELRHVMTNLGEKLTDE 120 
L.vannamei_CaM        NGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGFISAAELRHVMTNLGEKLTDE 120 
B.taurus_CaM          NGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDE 120 
                      ***************************************:******************** 
 
P.dumeriliiP_CaM      EVDEMIREADIDGDGQVNYEEFVTMMTSK 149 
L.vannamei_CaM        EVDEMIREADIDGDGQVNYEEFVTMMTSK 149 
B.taurus_CaM          EVDEMIREADIDGDGQVNYEEFVHMMTAK 149 
                      *********************** ***:* 

 

EF-hand 

EF-hand 
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Figure 2.  

a)NHE 

 

b)CA 

 

c)CaM 
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