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Abstract— Dynamic Fault Tree (DFT) is a top-down deductive 

technique extended to model systems with complex failure 

behaviours and interactions. In two last decades, different 

methods have been applied to improve its capabilities such as 

computational complexity reduction, modularization, intricate 

failure distribution and reconfiguration. This paper uses Semi-

Markov Process theorem for DFT solution with the motivation of 

obviating the model state-explosion, considering non-exponential 

failure distribution through a hierarchical solution. In addition, in 

the proposed method, a universal semi-Markov process for static 

and dynamic gates is introduced that can generalize dynamic 

behaviours like functional dependencies, sequences, priorities and 

spares in a single model. The efficiency of the method regarding 

precision and competitiveness with commercial tools, repeated 

events consideration, computational complexity reduction, non-

exponential failure distribution consideration and repairable 

events in DFT is studied by a number of examples, and the results 

are then compared to those of the selected existing methods. 

Index Terms— Dynamic fault tree, functional dependency, 

hierarchical solution, reliability, semi-Markov model. 

ACRONYMS 

CDF Cumulative Distribution Function 

CTMC Continuous-Time Markov Chain 

CSP Cold Standby Spare 

DFT Dynamic Fault Tree 

FDEP Functional DEPendence 

HCAS Hypothetical Cardiac Assist System 

HSP Hot Standby Spare 

LST Laplace Stieltjes Transform 

LSH Load Sharing 

PAND Priority AND 

SMP Semi-Markov Process 

WSP Warm Standby Spare 

NOTATION 

 Dormancy Factor 

 Failure Rate (FR) 

i Failure Rate of Component i 

 1   L−
The inverse of Laplace Stieltjes Transformation 

    L Laplace Stieltjes Transformation 
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 Non-SEQ Factor 

 Non-PAND Factor 

( )tF Probability Distribution Function in Time Domain 

( )f t Probability Density Function in Time Domain 

( )*f s Probability Distribution Function in LST Domain

dC The probability of switch work correctly 

iP The probability of State i th in (Semi) Markov Model 

P Probability Vector of SMP (in LST form) 

( )R t Reliability of a system at any time t 

 Repair Rate  

i Repair Rate of Component i 

( )G t Sojourn time Matrix in SMP 

( )g t Sojourn time Matrix in SMP (in LST form) 

S States vector of CTMC 

iS State ith in CTMC 

( )Q t
Expression: Unreliability of a system at any time t 

Matrix: Transient Matrix in SMP 

( )q s Transient Matrix in SMP (in LST form) 

I. INTRODUCTION

fault-tolerant systems such as toxic and hazardous 

chemical processes, traffic control, railways and aviation 

systems, medical and surgery equipment need to be 

designed with high reliability. Reliability is the probability of a 

system completing its expected function without any failure 

during its mission time [1]. In other words, it guarantees human 

life, environmental health, and financial assurance. The 

accurate evaluation of reliability is one of the challenging 

engineering areas. three main methods and theories are applied 

for reliability evaluation; i) state-space methods such as 

Continuous-Time Markov Chain (CTMC), Semi-Markov 

Process (SMP) and Markov Regenerative Process (MRGP) [2], 

ii) numerical methods like Monte Carlo and probabilistic

expressions [3, 4, 5], and iii) combinatorial methods such as

Reliability Block Diagram (RBD) and static Fault Tree (FT)

[6].
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Static FT is a top-down graphical deductive technique, which 

is powerful in the description of systems' failures and their 

interactions. In addition, static FT has an independent reliability 

solution. However, the weakness of the static FT is in its 

inability to model the dynamic behavior of systems such as 

functional and sequence dependence, spare and backup 

systems, priority and repair. Dynamic Fault Tree (DFT) is 

introduced to model dynamic and time-dependent behavior of 

systems through the novel gates introduced. Similar to static 

FT, DFT is powerful in the graphical representation of the 

system's failure interactions..  

This paper has two main individual motivations; I) Proposing 

a hierarchical approach that can approximately evaluate the 

reliability of DFTs based on SMP theorem and without state 

explosion, and II) Introducing a universal five-state SMP in 

which different static and dynamic gates can be defined at once. 

In addition, thanks to the SMP theory dealing with non-

exponential failure distributions and complex basic events [7, 

8, 9] can be considered as a secondary objective of the paper. 

The paper presents a solution for the problems of DFTs' 

problems and introduces a novel SMP-based hierarchical 

method to solve DFTs with i) fewer states and state-transition 

explosions, ii) non-exponential failure distribution and iii) 

analytical results. Furthermore, a novel universal SMP model is 

introduced to different model types of static and dynamic gates, 

such as AND, OR, SEQ, FDEP, PAND, SPARE, and Load 

Sharing. In this model, the probability of switch functioning is 

considered to make a difference between CSP and SEQ, HSP 

and AND. Generally, the proposed approach is an approximate 

solution that can solve the DFT hierarchically limited regarding 

the existing dependencies, repeated events or repairs. However, 

after separating dependent modules, 1) In the proposed 

method, the output of SEQ, OR, and POR gates with any 

complexity in their inputs will be precise. In addition, in the 

AND and PAND gates when a complex event or a sub-tree is 

connected to the first input and a simple event connected to the 

second input, the output will be precise. Otherwise, the output 

will be approximate for other gates and other situations for 

AND and PAND gates the output will be approximate. SMP 

gives both numerical and analytical solutions. The proposed 

method uses the Laplace Stieltjes Transform (LST) to create 

analytical results which enable the user to compute other system 

parameters such as sensitivity, MTTF, etc. 

The organization of this paper is as follows. In section II, a 

brief literature on the CMTC-based solutions of DFTs is 

studied. Section III describes the SMP analytical solutions by 

an example of dynamic gates and presents a universal semi-

Markov model of static and dynamic gates for the first time. 

Section IV presents the proposed method of this paper based on 

SMP theorem and general equations. Section V provides a 

number of examples and compares the results with other 

research works. Section VI discusses the capability and 

limitation of the proposed method briefly. The paper terminates 

with some concluding remarks and future works. 

II. LITERATURE ON CTMC BASED RELIABILITY SOLUTIONS OF 

DFTS 

The dynamic nature of DFT makes solving this kind of FT 

more difficult than static ones. Therefore, a number of research 

works are conducted on different solution methods for 

reliability evaluation of DFT. The main idea behind the solving 

DFT was using CMTC, but later, diagram-based methods such 

as Decision Diagrams (BDD, SBDD, OBDD and MDD) [10], 

algebraic methods [11, 12, 13], Petri net [14], Interactive 

Markov chains [15] and Monte Carlo simulation [16] are 

presented for reliability solution of DFT's each one of which 

has its own advantages and disadvantages. 

For the first time reference [21] introduced the concept of 

dynamic gates and dynamic fault trees in 1991. This tree was 

being solved through CTMC. The reference also suggested a 

systematic way for conversion of DFT to its CTMC equivalent. 

Following this, reference [22] evaluated the behavior of 

systems with imperfect coverage in 1993. The conversion of 

DFT into its equivalent CTMC as well as automatic inserting of 

imperfect coverage into CTMC is also studied in this reference. 

Two benchmarks named Fault Tolerant Parallel Processors 

(FTPP) and Mission Avoidance Systems (MAS) that used, 

later, by many researchers, were also introduced in this article. 

The reliability analysis of DFT in the presents of transient and 

permanent faults, failure dependencies, recovery of system and 

reconfiguration of FTPP benchmark were studied in [22]. In 

1995, reference [23] presented two algorithms for reliability 

analysis of fault tolerant systems with imperfect coverage. The 

first algorithm used CTMC and the second used BDD, it was 

shown that the BDD-based algorithm decreases significantly  

In 1999, reference [24] discussed the validity of methods 

introduced in previous research works and suggested a 

systematic way for improving the conversion procedure 

accuracy. This was the first reference that presented the CTMC 

model of PAND, FDEP and SPARE gates, cascaded FDEP and 

shared spares.  

In 2001, reference [25] analyzed and categorized methods for 

describing uncertainty of the model regarding reliability 

bounds, confidence intervals and probability distribution. 

Furthermore, using analytic method based on CTMC, 

uncertainty in AND gate and an example for two parallel bus 

are analyzed by considering imperfect coverage and repair. 

Monte Carlo simulation method is used besides analytical 

method for considering uncertainty in this paper and a 

comparison between these two methods are then presented. The 

final results achieved from this paper include the proximity of 

the answers with considering uncertainty in comparison with 

the answers without considering uncertainty to reality. In 2002, 

NASA prepared a report on FT and its usage in NASA's 

applications and also regarding DFT and converting it into 

CTMC. It made use of regarding imperfect coverage in DFT, 

etc. [26]. 

In 2007, reference [27] presented a scheme for decomposing 

DFT into independent modules and solving them by the use of 

CTMC and BDD. Besides, it presented a software named 

Dynamic Fault Tree Analyzer (DyFA). Among the benefits of 

the presented method, we can refer to accuracy and less time 
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consumption in DFT's solutions. Reference [28] is a thesis 

conducted on presenting a new method for evaluating 

performability and reliability of embedded and fault tolerant 

systems in airplanes and cars. It uses CTMC for modelling and 

considering dynamic behavior of the system in fault tree. 

Among the innovations of this research, one can refer to 

modeling components’ failure by CTMC as basic event, besides 

regarding associated failure rates among components. 

Reference [29] dealt with a method for computing the 

probability of top event in DFT with PAND gate and with 

repeated basic events. In this paper, it is assumed that the basic 

events occur independently with exponential distribution and 

the component whose failure corresponds to the occurrence of 

the basic event is non-repairable. This proposed method obtains 

the occurrence probability of the output event in a PAND gate 

by CTMC. Then, the top event probability is given by a cut set 

approach and the inclusion–exclusion formula. An efficient 

procedure to obtain the probabilities corresponding to logical 

products in the inclusion–exclusion formula is presented. 

Moreover, it compares its achieved results with results obtained 

from Galileo and validates its method. 

Reference [37] provides the subjects which were presented 

in a thesis [28] in an article and evaluated reliability of reinforce 

circuit for Power Factor Correction (PFC) using CTMC and 

fault tree. In 2012, reference [38] proposed a fuzzy-based 

method for reliability evaluation with uncertainty in fuzzy 

dynamic fault tree (FDFT). It makes use of fuzzy CTMC for 

solving fuzzy dynamic fault tree. This study is employed on a 

practical example of automatic hydraulic system cutting 

machine (CNC). An important point that should be noted in this 

study is that in the given dynamic fault tree example, only 

FDEP gate exists and fuzzy evaluation of other gates are left 

vague. They also use their method in another paper for 

evaluating driver in array of solar cells [39]. A year later, 

reference [40] statistically evaluated dynamic fault tree with 

PAND gate in which it proposed a method for converting 

PAND gate into AND gate along with considering some 

dependent conditional events. Moreover, in this study, an AND 

gate called CAND gate which is assumed to be dependent upon 

conditional events is introduced. In this study, CTMC for 

PAND and CAND gates are provided along with a description 

of their differences. Finally, this paper validates its method on 

FTPP's benchmark. 

In 2014, reference [41] presented a chapter of his book as 

evaluating reliability using enhanced DFT in which it divided 

solving dynamic fault tree into two sections. It solves static 

section by using BDD and dynamic section by using CTMC. 

The other type of CMTC exists which is called "Input/Output 

Interactive CTMC (IMC)" and that is used for DFT solutions. 

Because of limitation in number of pages, this paper does not 

study I/O IMCs. (Refer to [42, 43, 44, 45, 46, 15, 47, 48]). 

In 2015, regarding the Dynamic Fault Tree based reliability 

modelling and evaluation, more than one hundred and fifty 

papers, standards and tools has been reviewed by [49] . The 

paper has studied different extensions such as repairable and 

extended FTs. An adapted form of Shannon’s decomposition 

theory merged with Dynamic Binary Decision Tree (DBDT) 

has been proposed by [50] to solve DFT. The proposed method 

increased the computational efficiency. However, this PAND 

gate and the method was not generalized for other dynamic 

gates. In the same year [51] proposed a models called 

“AltaRica” to reduce the state explosion through combining the 

Dijkstra’s algorithm and notion of distance factor. An 

approximate solution for DFT through truncating Markov chain 

states has been presented in 2016 by [52] . 

An automated tool for the valuation of repairable DFT has 

been presented by [53]. The paper proposed a mapping from 

DFT entity to adaptive transition system entity, and a 

conception of failure gates for the evaluation of both reliability 

and availability has been illustrated. This paper used the SMP 

for reliability evaluation. However, their methodology of 

solving SMP and DFT is different from the methodology of this 

paper. The existing differences and categories in DFT variants 

has been studied by [54]. The research emphasized that those 

reviewed differences may affect the reliability evaluation and 

analysis. A hierarchical and approximate solution for 

availability analysis in DFTs based on equivalent two-state 

Markov models has been proposed by [55]. Their approach was 

only tailored exponential failure distribution based events. 

Reference [56] focused on priority AND gate and analyzed the 

region of coherence in this gate. The outcome of the study was 

to determine the coherence bound of PAND gate and improve 

the efficiency of the dynamic dependability evaluation process.  

The method was appropriate for both reparable and non-

reparable systems. In 2017 the research work of [50] has been 

extended and published in [57]. The research has covered spare 

and sequence gates through De Morgan theorem, and for 

negating a generalized cut sequences, they have improved 

explicit formula. Reference [58] has provided a framework to 

do qualitative and quantitative analysis of the DFT through 

Generalized Boolean logic Driven Markov Processes 

(GBDMP). In 2018, a new state-space generation approach for 

solving the DFTs has been presented by [59]. The introduced 

approach has the capability of model reduction through model 

checking theories. 

In spite of intensive research works conducted so far, there is 

no reported similar research work on the hierarchical semi-

Markov based DFT solution. This paper presents a novel 

hierarchical SMP-based DFT solution for the first time with the 

following motivations. I) Providing a parametric solution that 

enables us to extract further parameters such as MTTF and 

Sensitivity. II) Considering the non-exponential failure 

distributions in a hierarchical manner. III) Reducing the 

computational complexity and especially state explosion in the 

models. IV) Considering repair events in DFT. Moreover, a 

universal SMP model for static and dynamic gates is introduced 

that can generalize dynamic behaviours like functional 

dependencies, sequences, priorities and spares in a single 

model.  

III. SMP ANALYTICAL SOLUTION 

In this section, analytical solution of SMP is addressed and 

then the reliability of PAND gate is calculated by this theorem. 
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A. Solution of SMP by the use of LST 

SMP can be modeled by different notations [60], This paper 

uses tuple (trio) (p, P, F(t)), where: p is vector of initial 

distribution, P is matrix of conditional transition probabilities 

and F(t) describes matrix of distribution functions of sojourn 

times in state i th, when j th state is next; 

Considering , 0,1,2,...iX i = as a random variable, the 

time-homogeneous SMP X is determined by a vector of initial 

state probabilities ( )    00 1,0,...,0p P X i = = =  , and the 

conditional transition probability matrix ( ) ( )
ijP t P t=   

.  

The conditional probabilities' matrix ( ( )
ijP t ) is satisfied by 

Kolmogorov-Feller's equations in (1) [61]. 

( ) ( ) ( ) ( )
0

1

t

ij ij i kj ik

K S

P t G t P t x dQ x



= − + −      (1) 

where 1ij = if i j= and 0ij =  otherwise, iG is the 

distribution of the sojourn time in state i  [62, 63], and ( )
ijQ t

describes the kernel matrix. Note that the kernel matrix has a 

Markov renewal theorem in the background [64].     

Solution of (1) an be found by applying Laplace Stieltjes 

Transformation (LST) in (2) [65]. This is a set of Voltera 

equations in (1) which is a Markov renewal equation [62]. Note 

that for non-exponential failure distributions such as Weibull 

and Gamma, some approximation is needed (Refer to [66, 60, 

2]). 

( ) ( ) ( ) ( )1  ij ij i ik kj

K s

p s g s q s p s



= − +     (2) 

Equation (2) in the matrix form can be rewritten as follows: 

( ) ( ) ( ) ( )= − +  p s I g s q s p s  (3) 

Hence, it can be rewritten as (4) through simple algebraic 

replacement. 

( ) ( ) ( )( )
1

1
−

= − −  p s q s I g s  (4) 

In (4), the inverse of ( )1 q s− can be replaced by the 

summation of powers of ( )q s . The resulted equation which is 

useful for a singular kernel matrix will be as (5). 

( ) ( ) ( )( )
0



=

 
 = −
 
 


n

n

p s q s I g s  (5) 

Having solved (5) with taking the inverse LST of ( )p s , the 

unconditional state probabilities in time domain are determined 

as follows: 

( ) ( ) ( )0P t P P t=  (6) 

Finally, the reliability of system can be achieved by summing 

of the transient probability of operational states. 

B. Reliability Evaluation of PAND Gate through SMP 

The Markov model of PAND gate has previously been 

presented in the literature. Fig 2 illustrates the semi-Markov 

model of PAND gate with any failure distribution function. It 

can be solved by SMP theorem. In this model, ( )
AF t is 

Cumulative Distribution Function (CDF) of the first input of 

PAND gate and ( )
BF t is CDF of the second input of PAND 

gate respectively. States are numbered from 1 to 5 from top to 

bottom and left to right. This model can be solved by SMP 

theorem described in the previous sub-section. 

 

 
Fig. 1. Semi-Markov model of PNAD gate 

The kernel matrix of Fig. 2 can be written in the form of (7) 

and distribution matrix of the sojourn time in each state is in the 

form of (8). 

( )

1,2 1,3

2,4

3,5

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

Q Q

Q

Q t Q

 
 
 
 =
 
 
 
 

 (7) 

The dimension of both kernel matrix and sojourn distribution 

matrix should be n by n where n is the number of states. 

( ) ( ) ( ) ( )(

( ) ( ) ( ))

, ,

                   , ,                  

A B A

B

G t diag F t F t F t

F t t t 

= 

−  − 
 (8) 

where the  operation is defined by (9). In other words this 

is a probabilistic OR algebraic operation. 

( )( )1 1 1A B A B = − − −  (9) 

In matrix (7), 1,2Q is the system failure probability up to time 

t, if B is occurred at first. It can be written as (10). Subscript 1,2 

stands for “from state one to state two”. 

( ) ( )

1,2 1 1 0

0

Pr{X 2, | 1}

       =Pr{L } 1
t

B A B A B

Q S t X

t L L F t dF t

= =  =

   = −
 (10) 

For exponential failure behavior case of A and B (10) can be 

written as (11). where 𝜆𝐴and 𝜆𝐵are the constant failure rates of 

events or inputs A and B respectively. 

( )  

( )
( )

1,2
0

0

1 1 1

1
      

A B

A B
A B

t

tt
B

B
A B

Q e d e

e
e d

   

 
   

 
 

− −

− +
− +

 = − − − 

 − 
= =

+




 (11) 

Similarly, 1,3Q is the system failure probability up to time t, 

in a case that A is occurred sooner. It means the related 

occurrence time of event A is less than related occurrence time 
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of event B.  It can be written as (12). For exponential failure 

distribution function of both inputs, (12) can be written as (13). 

1,3 1 1 0Pr{X 3, | 1}

=Pr{L }A B A

Q S t X

t L L

= =  =

  
 (12) 

Similarly, 𝜆𝐴and 𝜆𝐵are the constant failure rates of events or 

inputs A and B respectively. 

( )  

( )
( )

1,3
0

0

1 1 1

1
     

B A

A B
A B

t

tt
A

A
A B

Q e d e

e
e d

   

 
   

 
 

− −

− +
− +

 = − − − 

 − 
= =

+




 (13) 

2,4Q is the failure probability of input or event A before or at 

time t and 3,5Q  is the failure probability of input or event B 

before or at time t. 2,4Q and 3,5Q are defined by (14) and (15), 

respectively. 

2,4 1 1 0Pr{X 4, | 2}

Pr{  fails before or at time t}

=Pr{L }A

Q S t X

A

t

= =  =

=



 (14) 

Note that 2,4 denotes “from state two to state 4” and 3,5 

denotes “from state three to state five”. 

3,5 1 1 0Pr{X 3, | 5}

Pr{B fails before or at time t}

=Pr{L }B

Q S t X

t

= =  =

=



 (15) 

In exponential form (14) and (15) are written by (16) and (17), 

respectively. 

2,4
0

1A A
t

t
AQ e d e

   − −
== = −  (16) 

It should be noted that both failure rates are constant. 

3,5
0

1B B
t

t
BQ e d e

   − −
== = −  (17) 

The LST of kernel matrix is written as (18) in its general 

form. As can be seen, in this matrix, there are four nonzero 

transition.   

( )

   

( )

( )

1,2 1,3

*

*

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

A

B

L Q L Q

f s

q s
f s

 
 
 
 

=  
 
 
 
 

 (18) 

In general form, the LST of G matrix is written as (19). In 

exponential form, it is written as (20). Note that "diag" creates 

diagonal matrix from each input vector. 

( ) ( ) ( )  ( ) ( )( )* *
, , ,1,1

A BA Bg s diag L F t F t f s f s=   (19) 

It is assumed that the failure rates are constant in the 

following equation. 

( ) , , ,1,1
 

− =  + + + + A B A B

s s s
I g s diag

s s s   
 (20) 

Similarly, (21) is LST of kernel matrix for exponential 

failures. 

( )

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

B A

A B A B

A

A

B

B

q s

s s

s

s

 

   









=

 
 + + + +
 
 
 

+ 
 
 

+ 
 
 
  

 (21) 

By the use of (4) or (5), the unconditional probability vector 

of Fig. 2 is computed as (22). 

( )( ) ( )( ) 
( ) ( )( )  ( ) ( )( ) 
( ) ( )( )  ( ) ( )( ) 

1 * *

1 * 1 *
1,2 1,3

1 * 1 *
1,2 1,3

1 1 ,

1 , , 1

,

A B

A B

A B

P L f s f s

L q s f s L q s f s

L q s f s L q s f s

−

− −

− −

= − −


− −




 (22) 

Finally, reliability of PAND gate can be obtained from the 

probability of fail state (state 5 in Fig. 1) using (23). We named 

this equation as "general equation of PAND gate", Note that, 

this paper defines a general equation for each dynamic gate of 

a given DFT obtained by SMP.  Having implemented the 

general equation of all gates, a library is constructed (Fig. 3). 

This library can be used to create the reliability equation of any 

given gate with any CDF. For example, the reliability of a 

PAND gate with exponential CDF can be extracted from this 

library. If Gate Type is selected "PAND" and CDF Type is 

chosen "Exponential", the outcome will be as (27). This library 

can be used by DFT users to find the reliability of given DFT 

as explained in section IV. This library can be used as a library 

for DFT users for reliability evaluation proposes [67].    

 

 
Fig. 2. Procedure that happened inside of library of each dynamic gate  
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( ) ( ) ( ) ( )( ) 1 *
1,31 1 BR t F t L q s f s−= − = −  (23) 

The final reliability expression shows the consistency of the 

results with the existing one in the literature.   

( ) ( )

( )
( )( )
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    
= − = −    

+ + +    

−
 = +

+

 (24) 

C. The Novel Universal Semi-Markov Model of DFT gates 

Fig. 3 shows the universal representation of a dynamic or 

static gate with inputs A and S. Its SMP model with any CDF 

will be as Fig. 4. 

 
Fig. 3. Typical static or dynamic gate 

 

 
Fig. 4. Universal semi-Markov model of static and dynamic gates gate 

The universal model of Fig. 4 is a five states SMP with states 

AS, A, S, F and Op. The state AS denotes that both input of the 

gate are working correctly. The state S or A denotes that only 

one of the inputs of the gate works correctly. The state F shows 

the failing of the system and the state Op shows correct 

functioning of the system in spite of the failure of its both inputs 

(This case occurs where one of the inputs has a supportive or 

protective mechanism to the other). Note that we have assumed 

that A is the first input of the gate and S is the second. It is 

obvious that the use of this universal model (Fig. 4) speeds-up 

the modelling and solution of dynamic gates. 

This paper claims that the introduced universal model has the 

potential to describe some of the conventional static and 

dynamic gates by means of four probabilistic parameters

,  ,     , dC , and state transitions CDFs. The parameter ,

called "dormancy factor" in this paper, eliminates the lower 

states of the model (states A and Op). The parameter ,  called 

"Non-PAND factor" in this paper determines whether the 

investigated gate is PAND-type; where 0 =  the gate is 

PAND-type, where 1 = gate is semi-PAND-type [67]. The 

parameter , called "Non-Sequence factor", in this paper 

determines whether investigated gate is sequence-type gate; 

when 0 = the gate is sequential-type and when 1 =  the gate 

can be sequential-type. The parameter dC indicates the 

probability of switching mechanism of the SPARE type gates 

(CSP, WSP and HSP).  

In Fig. 4, ( )
1F t is the failure CDF of input A, ( )

2F t is the 

failure CDF of input B, ( )
TF t is the CDF of a triggered failure 

which affects failing of both A and S (will be explained in this 

paper later). In fact, the triggering event of this type is taken as 

a fatal shock [68]. ( )F t has been used in the model for 

indicating the CDF of the second input's dormancy  which is a 

time-dependent variable (named   in this paper) has a direct 

impact on ( )F t . For this reason  has not been directly used 

in the model of Fig. 4. 

D. Explanation of the Novel Model Structure  

The model starts from state AS in which gate inputs A and S 

are working correctly. By i) failing of A with failure distribution 

( )
1F t  the system transits to state S if the switching mechanism 

performs perfectly or ii) goes to state F if either the switching 

mechanism acts imperfectly or iii) the trigger event (if exists) 

affects A with the CDF ( )
TF t . 

Similarly, the system goes from state S to state F with failure 

distribution ( ) ( )
2 TF t F t . The system goes from state AS to 

A if the second input S is either i) underworking condition and 

subjected to fail with failure distribution ( )
2F t or ii) partly 

underworking with ( )F t . The performance of sequence gate 

can clarify this issue. The parameter  represents the existence 

of occurrence sequence for gate inputs such that 0= : 

sequence exists and 1 = : no sequence exists. The parameter

 represents the existence of priority for gate inputs such that

1= : no priority exists and 0 = : priority exists. 

E. Examples of Universal Usage 

In this subsection, we show how to extract the model of a 

given gate from the universal gate model. 

1) Static OR gate 

This gate has: 

• No switching mechanism, thus 1dC = . 

• No sequence for the failure of its inputs, thus 1 = . 

• No dormancy for its second input thus, 0 = and ( )F t

exists 

• No priority for the failure of its inputs, thus 1 = . 

• No dependency on external trigger for the failure of its 

inputs, thus ( ) 0TF t = . 

Therefore, the universal model of Fig. 4 is simplified as Fig. 5 
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for OR gate. 

 

 
Fig. 5. Obtained Static OR gate from universal Semi-Markov model and its 

simplification  

It is obvious that the reliability of this gate is

( ) ( )
OR ASP t P t= , where ( )

ASP t is the probability of state AS 

at the time interval t. 

 

2) Dynamic SEQ gate 

This dynamic gate has: 

• No switching mechanism thus 1dC = . 

• No sequence for the failure of its inputs thus 0 = . 

• No dormancy for its second input thus 0 = and

( ) 0F t = . 

• No priority for the failure of its inputs thus 1 = . 

• Dependency on external trigger for the failure of its inputs 

thus ( )
TF t  exists. 

Therefore, the universal model of Fig. 4 is simplified as Fig. 6 

for SEQ gate. 

 

 
Fig. 6. Semi-Markov model of dynamic SEQ gate with triggered inputs 

achieved from the universal semi-Markov model 

F. Discussion on Universal Model  

In the literature, in spite of considerable attempts there is no 

universal semi-Markov model for dynamic and static gates. 

This paper introduced, for the first time, a universal semi-

Markov model for static and dynamic gates in which by 

assigning model parameters the model of any given gate can be 

obtained. TABLE I indicates this issue. It shows that by 

selecting 0= , 1= , 1= and 1=dC the universal gate 

model is converted to OR gate model. Other possibilities for 

selecting model parameters to extract the model of different 

known gates are shown in this table. In the introduced model 

(Fig. 4) ( ) ( ) ( ) ( )
1 4 2 3 and = =F t F t F t F t except for Load 

Sharing gate (LSH).    

In this table, it is assumed that the switching mechanism is 

perfect except SPARE gates (CSP, WSP and HSP). In addition, 

 factor is used to describe PAND gate. For PAND gate both

 and  are zero. The LSH gate has been defined to reshape 

and solve DFT with shared SPARE gates. In LSH gate 

transition CDFs ( ) ( ) ( ) ( )
1 2 3 4, ,  and F t F t F t F t can be chosen 

independently. i.e. ( )
1F t may take Weibull form while ( )

2F t

can be exponential form (see appendix). Reliability of OR gate 

is obtained by probability of state AS (denoted here 1SP ) and 

the reliability of other gates is achieved by 41 SP−  in which 4SP  

is the probability of state F of the model. In TABLE I, "X" is 

used to represents cases in which a parameter has no impact on 

the model. 

Note that this table does not consider FDEP gate because we 

have inserted directly the "functional dependency" property of 

FDEP gate into the universal model. In other words, we claim 

that it is not necessary to build a separated Markov model for 

FDEP gate, instead we have considered the functional property 

of this gate directly into the model. See Fig. 7, how we 

considered ( )
TF t CDF in the state transitions of universal 

model. 

 
Fig. 7. Consideration of trigger effect of event in universal model 

This idea is depicted in Fig. 8. Fig. 8-a. is replaced by Fig. 8-

b. The symbol A|T denotes the event A.(A+T) = A+AT. 
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Fig. 8. The idea of FDEP gate omission in DFT  

To clarify this issue, we show how in Fig. 9 Markov model 

of PAND gate with ordinary inputs and Markov model of a 

PAND gate with triggered inputs (via a FDEP gate) both 

extracted from universal model. The idea of universal gate is 

also extendable for Probabilistic Dependency (PDEP) gate.  

 

 

 
Fig. 9.  (a) PAND gate without triggered event, (b) PAND gate with triggered 

event. 

 
TABLE I 

PARAMETER OF UNIVERSAL GATE 

Reliability CDF  
Switching 

Factor ( dC ) 

Sequence 

Factor (  ) 

Priority 

Factor (  ) 

Dormancy 

Factor ( ) 
Gates 

( )
1SR t P=  ( ) ( ) ( ) ( )

1 4 2 3,F t F t F t F t= =  1 1 1 0 OR 

( )
41 SR t P= −  ( ) ( ) ( ) ( )

1 4 2 3,F t F t F t F t= =  1 1 1 0 AND 

( )
41 SR t P= −  ( ) ( ) ( ) ( )

1 4 2 3,F t F t F t F t= =  1 1 0 0 PAND 

( )
41 SR t P= −

 
( ) ( ) ( ) ( )

1 2 3 4, , 1F t F t F t F t= =
 

1 1 0 0 POR 

( )
41 SR t P= −  ( ) ( ) ( ) ( )

1 4 2 3,F t F t F t F t= =  [0 1] 0 X X CSP 

( )
41 SR t P= −  ( ) ( ) ( ) ( )

1 4 2 3,F t F t F t F t= =  [0 1] 1 1   WSP 

( )
41 SR t P= −  ( ) ( ) ( ) ( )

1 4 2 3,F t F t F t F t= =  [0 1] 1 1 0 HSP 

( )
41 SR t P= −  ( ) ( ) ( ) ( )

1 3 2 4,, = =F t F t F t F t X  1 0 X X SEQ 

( )
41 SR t P= −  ( ) , 1,...,4iF t i = are independent 1 1 1 0 Load Sharing 

 

G. General Reliability Equation of Dynamic Gates 

It is now obvious that by the use of TABLE I and universal 

Markov model (Fig. 4), we can build the Markov model of any 

gate. For example, for SEQ gate, according to TABLE I: the 

Markov model will be as Fig. 10 extracted from Fig. 4. 

 

 
Fig. 10. Semi-Markov model of SEQ gate with two inputs 

The general reliability equation of this model, by the use of 

SMP theorem explained in section III is obtained as follow: 

( ) ( ) ( ) 

( )( ) ( )( ) 

1
1,2 2,3

1 * *

1

1

−

−

= −

= − A B

L q s q s

L f s f s

R t
 (25) 

The second term of this equation is indeed the CDF of gate 

output. Similarly, general equation of SPARE gates for 

reliability evaluation is achieved by 

( )

( ) ( ) ( )( ) ( ) ( )( ) 1 * *
1,4 1,3 1,2

1

A SL q s q s f s q s f s

R t

−

= −

+ +
 (26) 

The general reliability equation of other gates can be easily 

obtained in a similar way, explained above. 

IV. A HIERARCHICAL SMP-BASED DFT SOLUTION 

Dynamic Fault Trees (DFTs) was introduced, for the first 

time, by Dugan and Boyd (Ref. [21]) in which the whole DFT 

converted into a Markov model, and consequently, model 
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explosion is resulted in. The problem was that the solution of 

this model was difficult and time-consuming. Later, a number 

of techniques based on Bayesian Networks, Petri Nets, 

Algebraic and etc. are presented for solving DFTs. In this article 

we present a hierarchical solving method for DFTs, based on 

SMP theorem. 

A. The Basic Idea 

First, the given DFT divided into a number of layers (n). The 

lowest layer includes basic events and their associated gates. 

The outputs of the lowest layer form the inputs of first layer. 

The first layer contains a number of gates, the outputs of these 

gates form the input of second layer … the outputs of (n-1)th 

layer give the inputs of (n)th layer (Top layer). Starting from 

first layer, the gates of each layer are solved based on the 

method explained in previous sections to find their output CDF. 

The CDFs are used as ( )F t of inputs of the next layer. This 

procedure continuous until the CDF of Top event is obtained. It 

is now obvious that ( ) 1  = −R t output CDF . The procedure is 

depicted in Fig. 11. 

 

 

 
Fig. 11. An example of solving DFT through proposed method   

The following issue most be considered in the 

implementation of this procedure for decreasing the volume of 

computations.  

• Dynamic gates are separated from static gate. This is 

because solving static gates does not need SMP theorem. 

They can be easily solved by the use of conventional 

probability theorem. 

• The solution of first layer gates can be easily carried out if 

their inputs have exponential CDF because gates with 

inputs with exponential CDF are solved with Markov 

theorem rather than SMP theorem. This consideration 

decreases the volume of computations. 

Based on these issues the flow chart of SMP-based DFT's 

reliability solution will be as Fig. 12. 
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Fig. 12. Flow chart of SMP-based DFT's reliability solution (the proposed method of this paper) 
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V. EXAMPLES 

In this section, six examples are given to indicate the 

capabilities of the proposed method. The first example makes a 

comparison between the results of the proposed method and 

those obtained from the Windchill Quality Solution (WQS) 

software. The challenge point in this example is precision of the 

result in comparison with commercial tools. The second 

example studies the ability of this method applied in a DFT with 

repeated events. So, the challenge point of this example is about 

dealing with repeated events. In the third example, we will 

apply the proposed method on HCAS and compare the 

maximum number of states and transitions in three selected 

Markov-based DFT’s solution approach. The robustness to 

state and transition explosion will be the challenge point of this 

example. The fourth example solves a selected DFT with event 

with exponential and non-exponential CDF, and then compares 

the results taken from the proposed method, and algebraic 

technique. Dealing with non-exponential CDF can be a 

challenge in reliability evaluation that is considered in example 

four. As the repair consideration can be a challenging issue in 

DFT, the fifth example discusses on the possibility of using 

proposed method for repairable DFTs. The final example deals 

with a case study of Aircraft Fuel Distribution System (AFDS). 

A. Example 1. DFT with a PAND Gate and Static Gates 

From the DFT in Fig14. it can be seen that this DFT consists 

of a PAND gate, two static gates and 10 basic events. Solving 

this DTF by the use of Markov theorem requires solving a 

CTMC with 160 states [3, 34]. In contrast, the proposed method 

can solve this DFT through SMP theorem with only 5 states, it 

can even provide the parametric expression for reliability. 

Metrics such as sensitivity and MTBF can easily be evaluated 

through parametric results of the proposed method. 

 

 
Fig. 13. DFT of the example 1. A tree with PAND gate, two static gates and 

10 basic events [3]. 

The failure rates of the above DFT’s events have been listed 

in Table II. In this table, failure rates are “failure per hour”. 

 
TABLE II 

UNITS FOR MAGNETIC PROPERTIES [34] 

Failure Rates  Basic Events Failure Rates  Basic Events 

0.0011 H  0.0110 A  

0.0012 I  0.0120 B  

0.0013 J  0.0130 C  

0.0014 K  0.0140 D  

0.0015 L  0.0150 E  

 

According to the result obtained in reference [34], the 

amount of unreliability of the system in 1000 hours of the 

mission time is 0.363. The value obtained from our proposed 

method (0.363024069761471) is completely coinciding with 

this result. 

B. Example 2. DFT with Repeated Basic Event 

This example examines the capability of the proposed 

method to model a DFT with repeated events. To do this the 

DFT of references [29, 3] which is shown in Fig. 14 is selected. 

This DFT consist of 9 basic events in which the event E2 is 

repeated. The failure rate of all basic events is set 0.01 failure 

per hour. 

 

 
Fig. 14. DFT of example 2. A DFT with the repeated event [29] 

Solving the above DFT in the time interval 0-300 hours has 

been provided through three methods in reference [29], using 

Galileo software, Monte Carlo simulation and a Yuge's method. 

Of these methods Galileo a more exact solution because its 

underlying approximation in the solution process of DFT is less 

than the others. This is why research works like [29] take the 

outcomes of Galileo as a reference. We solve the mentioned 

DFT through our proposed method, and the results are given 

along the results from the considered reference. The accuracy 

and precision of our method are then analyzed. Table III 

indicates the results. As seen the results of our method is closer 

to those of Galileo’s results than other two methods (Yuge’s 

method and Monte Carlo simulation). 

 
TABLE III 

COMPARING THE RESULTS OBTAINED FROM SOLVING DFT IN FIG. 14 OF 

REFERENCE [29] AND THE PROPOSED METHOD OF THIS PAPER 

Proposed method Monte Carlo Yuge’s Method Galileo Time 

0.00000 0.00000 0.00000 0.00000 0 
0.19526 0.25647 0.25653 0.21418 50 
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0.45148 0.59970 0.59960 0.49318 100 
0.64738 0.80212 0.80196 0.68751 150 

0.78226 0.90120 0.90114 0.81010 200 

0.86873 0.94869 0.94864 0.88519 250 
0.92168 0.97215 0.97213 0.93066 300 

 

Fig. 15 shows the results graphically. 

 

 
Fig. 15. The unreliability of the DFT in example 3 and comparing the results of 

the proposed method of this paper with results from reference [29].  

Table IV indicates the results in terms of norm function. In 

this table, QS stands for the unreliability results obtained from 

Monte Carlo simulation. QG is the unreliability results obtained 

from Galileo and QP denotes the unreliability results obtained 

from our proposed method. P GQ Q− shows the difference 

between the unreliability of our proposed method and Galileo 

software.  
TABLE IV 

COMPARING DIFFERENCE NORM OF THE RESULTS IN RELIABILITY SOLUTION OF 

DFT (EXAMPLE 3) 

infinity-norm 2-norm 1-norm d 

0.11461 0.20080 0.45951 S GQ Q−  

0.11445 0.20062 0.45918 R GQ Q−  

0.04169 0.06951 0.15401 p GQ Q−  

 

Table IV shows the superiority of our method to the others. 

C. Example 3. DFT of HCAS 

Hypothetical Cardiac Assist System (HCAS) is a benchmark 

in validating different methods applied to DFT reliability 

solution which has also been discussed in various references. 

The DFT of HCAS as shown in Fig. 16. including CPU module, 

motors module, and pumps module. This DFT consists of a 

shared CSP in the pump section. In another word to obtain a 

more exact output for this module of the DFT by means of our 

proposed method, this module must be reshaped. The new DFT 

after reshaping the pump module will be as Fig. 18 (see 

Appendix A. for related explanation). The new DFT uses an 

LSH gate which has been defined in section III of this paper. 
 

 
Fig. 16. DFT of HCAS with shared CSP gates in the pump module 

 
Fig. 17. DFT of HCAS with LSH gate in the pump module 

The failure rates of basic events for this DFT have been 

assigned in Table V. Reference [69] has solved this DFT based 

on Bayesian Networks for 100000 mission time, and the system 

unreliability obtained 0.36501. 

 
TABLE V 

FAILURE RATES OF BASIC EVENTS IN DFT OF HCAS IN EXAMPLE 4 [69] 

Failure Rates 

( )6
10  F/hr

−
 

Basic Events 
Failure Rates

( )6
10  F/hr

−
 

Basic 

Events 

5 1Pump  1 CS  

5 2Pump  2 SS  

5 BackupPump  4 P  

5 Motor  4 B  

  1 MotorC  

 

The unreliability of this system computed from our proposed 

method is 0.363500847376541 which is more precise and in 

agreement with other research works’ results. Another 

significant point in solving this model using the proposed 

method is decreasing the size of the corresponding Markov 

model of this DFT to clarify this consider Table VI. This table 

presents the number of states and the number of transitions of 

the corresponding Markov model of the largest module in DFT 

when solving by DIFtree, Coral and proposed method. As seen 

from the table, our proposed method possesses the lowest 

number of states and transitions. Generally speaking, the 

proposed method enables to decrease the number of states by 

the use of a reshaped model with load sharing gate. 
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TABLE VI 

A COMPARISON BETWEEN DIFFERENT MARKOV-BASED METHODS FOR DFT 

SOLUTION OF HCAS [69, 15] 

Max. Transitions Number Max. States Number Analysis Method 

10 8 DIFtree or Galileo 
119 36 Coral 

5 5 Proposed method 

  

As shown in Fig. 17, the DFT has eight gates and based on 

the proposed algorithm in each iteration only one gate will be 

solved through SMP and the CDF of the result will be stored to 

be used as an input for the next level gates. It means in each 

iteration the maximum number of states will never be higher 

than five based on the provided universal gate. Similarly, the 

maximum number of state transitions will never be higher than 

five as well. In other words, in HCAS DFT, there are two 

PANDs, one LSH, one AND, one WSP, one FDEP and three 

OR which means the maximum number of states will be used 

for evaluation of PAND gate (as shown in Fig. 9-a). In addition, 

the maximum number of state transition will be used for 

evaluation WSP with FDEP on its inputs (similar to Fig. 7). 

The computational complexity of the Semi-Markov Reward 

Processes has been studied by [70] and if we consider the 

reward zero for operational states and reward one for failed 

state(s), the computational complexity of SMPs can be 

described as O((x[00]+x[01])n) where n is the number of states, 

x[00] is the number of nonzero transitions between operational 

states and x[01] is the number of nonzero transitions from 

operational states to failed state(s). The proposed approach has 

a loop that evaluates the SMPs for each gate in the DFT. Thus, 

the computational complexity of the proposed method will be 

O((x[00]+x[01])kn) where k is the number of gates in the fault tree. 

Based on the proposed universal gate, the maximum value of 

x[00]+x[01] can be five and the maximum number of state can be 

also 5. Therefore, because of bounded value in both number of 

states and number of transitions, the computational complexity 

of the proposed method is only depends on the number of 

iterations and can be simplified in O(k). On the other hand, the 

computational complexity of CTMC can be described as O(n2) 

[70] where n is the total number states. It is clear that the 

proposed approach has less computational complexity as it was 

expected than a traditional CTMC based approach. 

D. Example 4. DFT with PAND gate and non-exponential 

failure distribution in its events 

This example contains events with non-exponential CDF 

(Weibull CDF) to show the capability of the proposed method. 

The CDF of Weibull can be described by (27). 

( ) ( )/1 tF t e


−= −  (27) 

where  is the shape and  denotes the scale parameter of 

the Weibull CDF. First, consider the DFT of Fig. 13. The failure 

rate of basic events in this tree obeys exponential CDF with the 

values of Table II values except for J, K, and L. It is assumed 

that the failure distribution of J, K, and L obeys Weibull CDF 

and the value of  is 0.1 and  is 20. Fig. 18 shows the 

reliability of this DFT. As seen from this figure, both methods 

(proposed method and Algebraic method) gives exactly the 

same results. 

 

 
Fig. 18. Unreliability evaluation of the DFT of Example 4. 

E. Example 5. Repairable DFT 

The first generation of DFT was unable to repair modeling. 

References [71, 14, 72]  presented an extended DFT able to 

model repair actions and solved it by the use of Generalized 

Stochastic Petri Net (GSPN) and Dynamic Bayesian Networks 

(DBN). This paper addresses the modelling of repair gate by a 

hypothetical example. It should be noted that in the current state 

we cannot guarantee that the proposed approach will work for 

any other repairable DFTs. In fact, this example is only a sign 

that there might be an opportunity to improve the proposed 

approach for   repairable DFTs. The complete development of 

this modelling remains as future research work.  

Through an example, we show that this modeling method is 

a good solution for finding the reliability of repairable DFT. 

Fig. 19 illustrates a repairable DFT with failure and repair rates 

of table VII. 

 
TABLE VII 

FAILURE RATES AND REPAIR RATES OF BASIC EVENTS IN REPAIRABLE DFT OF 

EXAMPLE 6 – EVENT C IS A NON-REPAIRABLE EVENT 

Repair Rates 

(R/hr.) 

Basic 

Events 

Failure Rates 

(F/hr.) 

Basic 

Events 

0.01 A  0.001 A  

0.01 B  0.002 B  

0.00 C  0.003 C  

 

Repairable DFT is shown in Fig. 19 illustrates that in the case 

of finding the output of AND gate, events A and B can be 

repaired. In this system, it is assumed that event C is non-

reparable. 
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Fig. 19. A hypothetical repairable DFT with a repair gate. 

The CTMC of this tree is illustrated in Fig. 20. It is assumed 

that the repair actions carry out immediately after failing the 

related events. This issue has been shown in the figure by dash 

transitions with repair rate  . In order to avoid model 

complexity in this figure, some self-transitions are not depicted. 

 

 
Fig. 20. CTMC of the repairable DFT of Fig. 19. 

Recall that our hierarchical method solved the given DFT 

layer by layer in a bottom-top manner. For examples the DFT 

of Fig. 20 consists of two layers. First, the bottom layer (AND 

gate with repairable events; AND and repair gates) is solved. Its 

output is delivered to the left-hand-side input of PAND gate (up 

to a layer of the DFT). The semi-Markov model of this gate with 

an input for which the impact of repair has been considered is 

shown in Fig. 21. The dashed transitions defer the semi-Markov 

model of the PAND gate with repairable events from a simple 

PAND gate (a PAND gate with non-repairable events). The 

general equation of this gate is achieved through solving tits 

semi-Markov model by SMP theorem as follows. It should be 

noted that in this model G represents repair distribution function 

of the input's components which is equal to 1 tG e −= − , if 

repair distribution is considered exponential. 

( )
( ) ( )

( ) ( )

1,2 2,41

1,2 2,1

1
1

q s q s
R t L

q s q s

−
  

= −  
−  

 (28) 

where the ( )
,i jq s is the LST form of ( )

,i jQ t  explained in 

section III. 

 

 
Fig. 21. Semi-Markov model for PAND gate with reparability in the first input 

This procedure for solving DFT with repair gate (gates) can 

be applied for any other gates. This work is still under research 

by us. 

Regarding both two presented models (CTMC and semi-

Markov models), the unreliability behavior of the supposed 

DFT will be as Fig. 22 for 700 hours mission time. As seen from 

this figure, our method gives results very close to those 

achieved by the CTMC method. This verifies the correctness of 

our method. 

 

 
Fig. 22. The unreliability of repairable DFT in two states of solving by CTMC 

and solving by SMP theorem 

F. Example 6. Aircraft Fuel Distribution System 

As a case study, the Aircraft Fuel Distribution System 

(AFDS) has been chosen from [73] and its DFT from [74]. Fig. 

23 illustrates the schematic of AFDS and Fig. 24 shows the DFT 

of the system that has been derived by HIP-HOPS tool [75, 74]. 

This system has two engines, seven bi-directional fuel pumps, 

five fuel tanks, and eleven valves enables the control system to 

choose active paths for fuel distribution in different conditions. 

The system also has six flow meters for fuel flow rate 

measurement. To refill the thanks, there is a refueling point and 

there are two jettison points for releasing the fuel in some 

situations. 
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Fig. 23. Schematic of Aircraft Fuel Distribution System (Modified from [73]) 

The AFDS has been divided into three parts for performing 

the compositional analysis including Starboard Feed (SF), 

Central Reservation (CR) and Port Feed (PF) as delineated in 

Fig. 23. As can be seen, two SF and PF have identical 

components and each one of them has some subsystems. For 

instance, the SF includes Starboard Inner Subsystem (SIS), and 

Starboard Outer Subsystem (SOS). Through further 

decomposition of those subsystems, we have some components. 

For example, the SIS contains Starboard Inner fuel Level sensor 

(SIL), the valve (SIV) and Tank (SIT). Distribution of the fuel 

throughout the system and storing the fuel in the thanks are two 

main functions of AFDS and each function can be divided into 

two phases of refueling and consumption for different situations 

such as taxiing, take-off, cruising, approaching and landing. 

The fuel will be injected into Central Reservation Tank (CRT) 

in the refueling phase and then automatically distributed to 

Starboard and Port tanks. Moreover, the fuel will be consumed 

by both Starboard and Port engines in he consumption phase 

and certain level of fuel will be fed to engines. For more details 

regarding the ADFS please read [74]. In DFT of AFDS, It 

should be noted that “O- CompX“ stands for omission of 

functionality of component X, “I-CompX” refers to the internal 

failure of component X and “Hi-CompX” includes erroneous 

high reading from component X. 

 

 
Fig. 24. Dynamic Fault Tree of Aircraft Fuel Distribution System [74] 

The DFT of AFDS has twelve identical basic events (twenty 

two basic events counting the repeated events). Table VIII 

provides the failure rates and also short descriptions for the 

basic events.   
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TABLE VIII 
FAILURE RATES AND BASIC EVENTS IN DFT OF AFDS [74] 

Descriptions Failure Rates (F/hr.) Basic Events 

Internal Failure of Starboard-

Central Pump 
5.84267E-5 I-SCP 

Internal Failure of Central-
Starboard Pump 

5.84267E-5 I-CSP 

Internal Failure of Starboard 

Outer Valve 
1.65633E-3 I-SOV 

Internal Failure of Starboard  

Inner Valve 
1.65633E-3 I-SIV 

Internal Failure of Starboard  
Central-Starboard Valve 

1.65633E-3 I-CSV 

Internal Failure of Starboard  

Starboard-Central Valve 
1.65633E-3 I-SCV 

Internal Failure of Central 

Reservation Level Sensor 
2.21127E-6 I-CRL 

Internal Failure or High Reading 
From Starboard Outer Feed 

4.06861E-5 I-HiSOF 

Internal Failure  or High 

Reading From Starboard Inner 

Feed 

4.06861E-5 I-HiSIF 

Internal Failure or High Reading 

From Starboard Engine Feed 
4.06861E-5 I-HiSEF 

Internal Failure of Starboard 

Inner Level Sensor 
1.65633E-3 I-SIL 

Internal Failure of Starboard 

Outer Level Sensor 
3.31774E-5 I-SOL 

 

Reliability evaluation of AFDS through DFT has been 

addressed by [74]. They have converted the DFT to Petri Nets 

and Bayesian Networks and consequently calculated the 

reliability of the system. A comparison between the proposed 

approach and two other existing addressed methods has been 

provided in Table IX.  The obtained results are approximate but 

close to the existing results. 

 
TABLE IX 

COMPARISON BETWEEN PROPOSED APPROACH, PETRI NETS BASED AND 

BAYESIAN NETWORKS BASED APPROACHES 

Bayesian 

Networks [74] 
Petri Nets [74] 

Proposed 

Approach 

Mission 

Time 

0.04527486000 0.04998134610 0.05261416997 100 
0.52900833000 0.55645041000 0.59015071681 500 

0.85004877000 0.87518982420 0.89056414810 1000 

0.94597227200 0.96217232090 0.96590195305 1500 
0.97782727200 0.98690630030 0.98766528020 2000 

0.99029561190 0.99502308600 0.99514980424 2500 

0.99563683150 0.99800983670 0.99801543278 3000 
0.99809093140 0.99918448590 0.99917346098 3500 

0.99916055205 0.99966205560 0.99965314139 4000 

0.99960976330 0.99985924100 0.99985398520 4500 
0.99980478790 0.99994123190 0.99993845915 5000 

 

Regarding the reliability evaluation of DFTs, there are some 

other challenges such as Common Cause Failures (CCF), and 

Reconfiguration that are not considered in this paper and can be 

studied as the future research. 

VI. CAPABILITIES AND LIMITATIONS OF THE PROPOSED 

METHOD 

In this section, some of the capabilities and limitations 

(limitation in achieving an exact result) of the proposed method 

are discussed. A number of guidelines are suggested to 

overcome that limitation.  

A. Capabilities of the Proposed Method 

The proposed method offers the following capabilities: 

1) This paper presents a universal semi-Markov model that 

can model any type of gates including static and dynamic. 

In addition, it embeds the functional dependencies 

behavior of gates' inputs into gate model. This simplifies 

the final model of DFT. 

2) The proposed method solves DFTs hierarchically through 

SMP theorem. So, this method can reduce problem 

complexity in order to reduce state and transition 

explosion. Moreover, the presented general equations for 

gates help us to reduce SMP solution's trend. 

3) The proposed method is able to consider non-exponential 

failure by means of SMP theorem. It is possible to consider 

hybrid failure distributions as the gate's input by the use of 

SMP theorem. 

4) Basic events in this method can be defined by SMP or 

CTMC in which repair, imperfect coverage, and other 

issues can be considered. This idea already exists for static 

FT in the literature [76] and extended by us for DFTs. 

 

B. Limitations of the Proposed Method 

 

The proposed method has the following limitations. All will 

be resolved is our future works. 

1) The results of this method are approximate for DFTs with 

repeated events make the results more approximate or less 

precise. It should be noted that the proximity of the method 

would not diminish its effectiveness since, in spite of the 

proximity, the results obtained through this method is much 

more precise than the results of some other published research 

works [29]. 

2) In the proposed method, the output of SEQ, OR, and POR 

gates with any complexity in their inputs will be precise. In 

addition, in the AND and PAND gates when a complex event 

or a sub-tree is connected to the first input and a simple event 

connected to the second input, the output will be precise. 

Otherwise, the output will be approximate for other gates and 

other situations for AND and PAND gates the output will be 

approximate. 

3) In some benchmarks in which the shared or sliding spares 

are used, the proposed method is not able to solve shared spare 

gates. It is suggested to replace shared spares and use the 

reshaping rules (see appendix). It should be noted that these 

gates are then modelled as a semi-Markov model and 

generalized for any kind of failures distribution function. 

4) In this study, it is assumed that the fault tree has only 

coherent events and there would be no guarantee for a fault tree 

with non-coherent events. 

5) There are still some gates like pSAND and SAND that 

cannot be modelled through the universal gate. We hope to 

improve this universal gate to consider pSAND and more other 

gates as future research works. It would be also possible to 

define new gates such as semi-PAND in the future. 

6) The example of repairable DFT is just provided to show that 

there might be a possibility to improve the approach for 
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repairable DFTs. However, at the moment, there is no guarantee 

for any other example of repairable DFT. In fact, this example 

is just an insight into potential future works. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a novel hierarchical approach to evaluating the 

reliability of DFTs based on SMP theorem was presented and 

the universal state space model has proposed for the static of 

dynamic gates (with inputs with exponential and non-

exponential failure distribution function). The proposed method 

can compete with other approximate solutions for reliability 

evaluation of DFT. A number of examples have been given to 

show the capabilities and limitations of the proposed solution 

in I) parametric solution that can be used for other related 

computations such as MTTF and Sensitivity, II) dealing with 

non-exponential failure distribution functions, III) dealing with 

repeated basic events, IV) no state explosion V) considering 

repairable events (a limited example just to provide an insight 

for future research works) and VI) a case study of AFDS. 

Moreover, the limitations and capabilities of the proposed 

method have been discussed clearly. 

SMP have limitations in modeling the concurrency among 

generally distributed events. Therefore, MRGPs and phased-

approximated (PH) approaches can be applied instead of SMP 

in the proposed method to use in a wider range of problems [2].  

APPENDIX 

The proposed method of this paper can solve DFTs with the 

shared spare gate by some reshape rules. We assume three types 

of shared CSP and reshaping them by LSH gate. LSH gate has 

four inputs, and their input is described by ( ) , 1,...,4iF t i = . 

Fig. 25 shows how a given DFT with series shared CSP can be 

reshaped with LSH. 

 
Fig. 25. Reshape series shared CSP's DFT by the use of LSH gate 

Similar to the previous figure we can reshape the DFT of 

parallel shared CSP as Fig. 26. In addition, if we have priority 

in the parallel shared CSP system, then the DFT can be reshaped 

as Fig. 27.  

 

 
Fig. 26. Reshape parallel shared CSP's DFT by the use of LSH gate 

 

 
Fig. 27. Reshape DFT of parallel shared CSP with priority using LSH gate  
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