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ABSTRACT Over the years, several approaches have been developed for the quantitative analysis of
dynamic fault trees (DFTs). These approaches have strong theoretical and mathematical foundations;
however, they appear to suffer from the state-space explosion and high computational requirements,
compromising their efficacy. Modularisation techniques have been developed to address these issues by
identifying and quantifying static and dynamic modules of the fault tree separately by using binary decision
diagrams and Markov models. Although these approaches appear effective in reducing computational
effort and avoiding state-space explosion, the reliance of the Markov chain on exponentially distributed
data of system components can limit their widespread industrial applications. In this paper, we propose
a hybrid modularisation scheme where independent sub-trees of a DFT are identified and quantified in a
hierarchical order. A hybrid framework with the combination of algebraic solution, Petri Nets, and Monte
Carlo simulation is used to increase the efficiency of the solution. The proposed approach uses the advantages
of each existing approach in the right place (independent module). We have experimented the proposed
approach on five independent hypothetical and industrial examples in which the experiments show the
capabilities of the proposed approach facing repeated basic events and non-exponential failure distributions.
The proposed approach could provide an approximate solution to DFTs without unacceptable loss of
accuracy. Moreover, the use of modularised or hierarchical Petri nets makes this approach more generally
applicable by allowing quantitative evaluation of DFTs with a wide range of failure rate distributions for

basic events of the tree.

INDEX TERMS Reliability analysis, fault tree analysis, dynamic fault trees, modularisation, petri nets.

I. INTRODUCTION

Safety-critical systems are widely used in many industries.
Reliability engineering concentrates on assuring safety and
reliability of such systems by identifying potential risks that
may be caused by their failure and thereby determining
necessary actions to reduce the likelihood of these risks.
Research efforts have been made to develop reliability models
to improve system safety and optimize system behaviour by
taking into account system performance and components’
failure probability [1], [2]. Modern engineering systems are
getting increasingly complex and their behaviour is becom-
ing more dynamic, leading to a variety of dynamic failure
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characteristics such as functional dependent events and
priorities of failure events. Classical combinatorial fault
trees [3] are unable to capture a system’s dynamic failure
behaviour. The Dynamic Fault Tree (DFT) was introduced
by Dugan et al. [4] to model the dynamic failure behaviour
of systems.

For the quantitative analysis of DFTs, they are typically
converted to continuous-time Markov chain and then a set of
ordinary differential equations representing the Markov chain
are numerically solved [5]-[8]. The computational complex-
ity of Markov model-based approaches increases exponen-
tially with the increase in the number of system components
as it causes an equivalent increase of the Markov chain
states. Moreover, the application of Markov-chain-based
approaches is under the assumption that the system failure
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data is exponentially distributed. To overcome this limitation,
other approaches such as Petri net-based approaches [9]-[12],
Bayesian Network-based approaches [13]-[15], sequential
binary decision diagrams (SBDD) [16], [17], Boolean logic
Driven Markov Process [18], [19], Dynamic Reliability Block
Diagrams [20], [21], stochastic methods [22], and a hybrid
method with the combination of stochastic methods and
simulation [23]-[25] have been proposed. These approaches
can provide exact solutions, however, non-exact solutions to
DFTs can be obtained via simulation approaches [26], [27].
The simulation requires more memory and takes much longer
than analytical models to compute. The issues of state-space
explosion and failure data distribution have been addressed
in [28], [29] by formalizing an algebraic approach. This
approach can synthesise the structure-function of any DFT.
The computational effort required to find a closed-form solu-
tion to a DFT using this approach can be prohibitively expen-
sive. Note that there are different tools developed to support
the DFT analysis based on the concepts mentioned above.
For instance, Galileo [30] and Altarica [31] support DFT
analysis through the use of Markov chains, therefore, they
inherit the issues associated with the Markov chain. At the
same time, tools like DFTSim and MatCarloRe use Monte
Carlo simulation as a mean to quantify DFTs, thus would
require long computation time due to the use of Monte Carlo
simulation. There are other tools, which have their strengths
and weaknesses. A list of such other DFT analysis tools can
be found in [32].

A. RELATED WORK AND MOTIVATION

To address the issue of high computational effort involved in
solving large fault trees, modularisation (a.k.a. hierarchical)
approaches have been developed and used with great effec-
tiveness. The early application of modularised techniques to
solve fault trees can be traced back to the 1990s [33], [34].
DIFtree [35], a modularisation technique for DFT analysis,
follows the divide-and-conquer strategy to solve the DFTs
by dividing the system-level DFTs into independent static
and dynamic sub-trees. The static and dynamic sub-trees are
then solved using Binary Decision Diagrams (BDDs) [36]
and Markov chains, respectively. Finally, these smaller solu-
tions to the sub-trees are combined to solve the whole DFT.
In DIFtree, independent sub-trees, which have no shared
input, were identified using the algorithm proposed by Dutuit
and Rauzy [37]. The same authors have further formalised
and operationalised the modular FTA approach in [38].

A similar solution to DFTs based on Rauzy’s linear
time modularisation algorithm [37] can be found in [39].
Later, Manian et al. [40] extended the DIFtree approach
to allow modelling different lifetime distributions for the
system components with the help of Monte Carlo simu-
lation. A major drawback of modularisation approaches is
that it is difficult to perform a sensitivity analysis of the
eliminated basic events once the state space of the Markov
model has been reduced. Moreover, in these approaches,
if the module’s top-level gate is dynamic then further
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modularisation is not performed. To address these issues,
Huang and Chang [41] proposed an approach which can fur-
ther modularise a dynamic module if an independent module
exists within it. The approach is also capable of performing
sensitivity analysis even after the elimination of basic events
through modularisation. In [42], a modular approach was
proposed by showing that further modularisation of a DFT
is possible in a set of cases. A Weibull-distribution-based
modularisation scheme was proposed in [43] where both ana-
lytical and simulation techniques were used to solve DFTs.
Table 1 shows a comparison between different features of the
existing modularisation-based DFT analysis approaches. The
table outlines the previous approaches with their capabilities
and limitations.

In the literature, modularisation techniques have been
proven to be highly effective in improving the comput-
ing performance of DFT quantification processes. However,
there exist a few issues that require further research. For
instance, it can be seen from Table 1 that most of the exist-
ing modularisation approaches use Markov chains to solve
dynamic modules. As Markov chains are only applicable
given an exponentially distributed failure rate, the use of
Markov chains limits the application of these approaches
to a particular class of DFTs. Therefore, it is beneficial to
utilise other DFT solution approaches in a modularisation
scheme, which can alleviate the above limitation, thus making
the scheme capable of solving more general types of DFTs.
Moreover, in most existing modularisation schemes, dynamic
modules are not decomposed further even when they con-
tain independent modules within them. Furthermore, most
of these approaches are not capable of performing sensitiv-
ity/criticality analysis of basic events due to modularisation.

At this point, the contribution of the method proposed
in this publication and its improvement over previous
approaches can be stated. This paper seeks to address the
issues highlighted previously by proposing a modularisation
scheme, which can provide all the features as mentioned
in Table 1. Like the existing approaches, firstly, the proposed
approach identifies the independent static and dynamic mod-
ules in a DFT. Afterwards, the static modules are solved
using algebraic formulas and the dynamic modules are solved
using Petri nets (PN) [44], the widespread use of which in
safety and reliability analysis is reported in [45]. In the liter-
ature, the readers can find many extensions of PNs that can
model both exponentially and non-exponentially distributed
transition rates. For instance, the use of Weibull distribution
in PN was shown in [46], [47]. In addition to the Weibull
distribution, the use of other types of distributions such as
normal and lognormal distribution was shown in [48], [49].
A detailed description of the different types of PNs is out
of the scope of this paper. However, interested readers can
find more information about different kinds of Petri nets
in [44], [50]. The use of PNs for the evaluation of dynamic
modules can support allocating different distributions for fail-
ure rates. Moreover, due to the state-space explosion problem,
while it is infeasible to create Markov states for the behaviour
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TABLE 1. Comparison between the existing approaches in temrs of their features.

Approaches Models used F1 F2 F3 F4
Pullum and Dugan [34] Markov chain and BDD Yes No No No
Dugan et al. [35], [38] Markov chain and BDD Yes | No No No
Anand and Somani [39] Markov chain and BDD Yes No No No
Manian et al. [40] Markov chain, BDD, and Monte Carlo simulation Yes | Yes | No No
Huang and Chang [41] Markov chain and Algebraic Yes | No | Yes | Yes
Yevkin [42] Markov chain and Algebraic Yes | No | Yes | No
Chiacchio et al. [43] Markov chain, Algebraic, and Monte Carlo simulation | Yes | Yes No No
Proposed appraoch PN and algebraic solution Yes | Yes | Yes | Yes
F1: Exponential distribution; F2: Non-exponential distribution; F3:Modularisation in dynmaic sub-trees;
F4: Improtance measures

of small-scale systems, PNs can be used for formal and com-
pact presentation of the behaviour of large-scale systems [49].
Moreover, the proposed approach allows sensitivity analysis
to be performed even after modularisation. The effectiveness
of the approach is illustrated by applying it to five different
DFTs. The results show that the approach finds an approxi-
mate solution to DFTs without losing unacceptable accuracy.
The contributions of this paper can be summarised as:

e Proposal of a modularised solution to DFTs that
can reduce the computational complexity and increase
the efficiency of the existing DFT quantification
approaches.

« Enabling the integration of multiple solutions such as
algebraic, Petri Nets and their reachability tree and
Monte Carlo simulation in a single place, thus allowing
to take advantages of their strong features to solve a wide
range of DFTs. For example, consider a DFT with two
large independent modules that can be solved very fast
and simple with the algebraic solution and one small
module that has non-exponential and shared basic events
that can be easily solved with Monte Carlo solution.
In the proposed approach, the best solution for each
independent module is detected and applied to increase
the efficiency and use the advantages of all existing
methods.

« Introduction of a modified version of Birnbaum impor-
tance measure as part of the proposed hybrid approach
to determine the criticality of basic events.

o The capabilities and accuracy of the proposed method
are illustrated and compared through using differ-
ent well-known hypothetical and industrial case stud-
ies facing issues such as repeated basic events and
non-exponential failure distributions.

Il. DYNAMIC FAULT TREE ANALYSIS

The DFT extends the capability of static fault trees (SFTs)
by introducing dynamic gates like the Priority AND (PAND),
Priority OR (POR), Functional dependency (FDEP), SPARE,
and SEQ to model time-dependent failure behaviour of
systems. Fig. 1 shows the graphical symbols of the com-
monly used DFT gates. Detailed information about the defi-
nitions and functional behaviour of these gates can be found
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FIGURE 1. Commonly used logic gates in DFT.

in [4], [51], [52]. Similar to SFTs, a DFT analysis follows a
top-down procedure, starting from the undesired system-level
top event (TE), which represents the system failure condition.
The TE is decomposed into a combination of intermediate
events. The intermediate events are further decomposed using
Boolean and dynamic logic gates down to the specification of
the lowest-level event causes, named Basic Events (BEs).
DFTs can be analysed both qualitatively and quantita-
tively. Through qualitative analysis, minimal cut sequences
(MCSQs) can be obtained from DFTs. These MCSQs show
how different sequences of events can cause a system failure.
On the other hand, the quantitative analysis focuses on calcu-
lating system failure probability and other reliability indices
based on the failure data of the DFT’s basic events. As men-
tioned earlier, there are several approaches available for the
quantitative analysis of DFTs. As the approach proposed in
this paper uses the algebraic solution for the static gates and
PN for the dynamic gates, we concentrate on these only.
AND and OR are the commonly used Boolean gates in
DFTs. If the probability of a basic event (BE) i at time ¢ is
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FIGURE 2. PN model of the failure behaviour of a non-repairable
component.

given as Pr{BE;}(t) and an AND gate contains »n statistically
independent BEs, then the probability of that AND can be
calculated as:

n
Pr{EiANExdN...ANE;} (1) = nPr{E,-} () €))
i=1
Similarly, an OR gate with n BEs as inputs can be evaluated

as:
n

Pr{E\VE,V ... VE}(1)=1— ]_[ (1-PriE} (1)) (2
i=1

PNs have been used to evaluate fault trees. For example,
in [53]-[55], classical fault trees have been converted into
PNs for reliability analysis. Furthermore, PN-based DFT
quantification methods have been proposed in [9], [56], [57].
In these approaches, DFTs are transformed into PNs. In the
transformation process, each DFT node is translated to a
particular sub-PN with a ‘place’ indicating the status of the
DFT node. Places are therefore used to indicate the state of
the system, while timed transitions, symbolised by white rect-
angles, represent random faults and immediate transitions,
symbolised by black rectangles, indicate the propagation
of failures. The firing rate of a timed transition is charac-
terised by the failure rate of the component it is representing.
For instance, the PN model of the failure behaviour of a
non-repairable component is shown in Fig. 2. In this model,
the places “x.up’ and ‘x.dn’ represent the functional and
non-functional state of the component x, respectively. At the
beginning of system operation, the place ‘x.up’ contains a
token (the black dot symbolises it), meaning the component
is fully operational (i.e., operating as a new component).
The timed transition ‘x.f’ is characterized by the time to
failure distribution of the component. Note that depending on
the failure behaviour of a component, i.e., exponentially on
non-exponentially distributed time to failure, a transition can
be modelled accordingly. For instance, if the component has
an exponentially distributed failure rate A, then the probability
of the transition x.f firing at time ¢ is 1 — e~*/. On the firing
of the transition x.f the place x.dn will get a token, which
will mark the occurrence of the basic event, i.e., failure of
the corresponding component. PN models of the DFT’s logic
gates are shown in Fig. 3 and further details on how these
transformations are made can be found in [9], [51].

Ill. A MODULAR APPROACH FOR DFT ANALYSIS

The flowchart of the proposed modular approach is shown
in Fig. 4. Similar to the existing modularisation techniques,
the proposed approach takes the system level DFTs as input
and then identifies the independent sub-trees. Independent
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sub-trees are those which do not share any input among
them. These sub-trees are then further classified into static
and dynamic fault trees. Static sub-trees are solved using an
algebraic solution by utilising equations (1) and (2). Sep-
arating static parts and solving them with algebraic solu-
tion reduces the computation time and complexity. On the
other hand, unlike the existing modularisation approaches,
dynamic sub-trees and trees with shared inputs are solved
using the PN-based approach. In case of BEs having expo-
nential failure distribution, the PN model will be converted
to a reachability graph and can be solved through Markov
theorem. If BEs obey non-exponential failure distribution,
the PN-model will be simulated with a number of iterations
and the result will be gained through Monte Carlo theorem.
It should be noted that the proposed solution solves the DFT
hierarchically and layer by layer in each separated module.
Afterwards, these independent solutions are combined to
achieve the solution of the system-level DFT.

A. MODULE IDENTIFICATION

Several algorithms have been developed for the identifica-
tion of modules in fault trees [37], [S8]-[63]. Among these,
the algorithm proposed by Dutuit and Rauzy [37] is the
simplest and most efficient one. This is a highly efficient
linear time algorithm [38].

The basic idea of this algorithm is as follows: “Let v be an
internal event and t| and t respectively the first and second
dates of visits of v in a depth-first left most traversal of the
Sfault tree. Then v is a module iff none of its descendents is vis-
ited before t| and after t, during the traversal” [37]. We used
this algorithm to identify the independent sub-trees (modules)
in the original fault tree. To compute and facilitate the integra-
tion of the sub-tree solutions, we used two flags: TypeofNode
to indicate whether the independent sub-tree is static or
dynamic, and Independent_Child to indicate whether the
current independent sub-tree contains other independent sub-
trees. The latter flag helps further modularisation of sub-trees
if they contain independent sub-trees.

B. RELIABILITY QUANTIFICATION THROUGH
INTEGRATION
Once the independent sub-trees are identified, a recursive
approach is used to solve independent sub-trees because an
independent sub-tree may contain other independent sub-
trees. The solutions of sub-trees at different levels are com-
bined in the recursion process to obtain the probability of the
top event. As static and dynamic gates can be combined in
different ways to form different tree structures, we consider
these distinct scenarios and provide ways of addressing each.
The first scenario is shown in Fig. 5. In this case, the top
event (TE) is a static gate and input to this gate is the output
of another static sub-tree. To solve this tree, at first, the static
sub-tree is solved using an algebraic formula to obtain the
probability of the sub-tree. This probability is used directly
as an input to the parent tree and the parent tree is then solved
using an algebraic formula to calculate the TE probability.
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(a) PN model of AND gate

(e) PN model of SEQ gate

FIGURE 3. PN models of Boolean and dynamic gates.

Fig. 6 shows the second scenario, where the TE of the
trees is a dynamic gate and the sub-trees are static gates.
To solve these trees, firstly, the static sub-trees are solved
using mathematical formulas to obtain their probability.
As probability values cannot be used directly to quantify
dynamic gates, we obtain the failure rate from the probability
value. After that, the static sub-tree is replaced by a single
node and a PN model of the dynamic gate is created for
evaluation. The PN model can be evaluated in many different
ways to obtain the unreliability of the dynamic module. For
instance, in the PN model, if all the timed transitions are
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exponentially distributed, then the PN model can be evaluated
by evaluating an underlying Markov model. On the other
hand, if the PN model contains non-exponentially distributed
timed transitions, then simulation like Monte Carlo simu-
lation can be used for evaluation. In this paper, we eval-
uated PNs containing exponentially distributed transitions
by converting them to reachability graph and then solved
it via Markov theorem. On the other hand, we used Monte
Carlo simulation to evaluate PNs having non-exponentially
distributed timed transitions. More details about this process
are provided in section III-C.
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FIGURE 4. Flowchart of the proposed hybrid modularised approach.
The third scenario (see Fig. 7) is the opposite of scenario 2. the dynamic sub-tree using the PN-based method to obtain
In this case, the TE of the trees is a static gate and the sub-tree the probability of the dynamic tree. Subsequently, a single
is a dynamic tree. Therefore, to solve this tree, we first solve node is used to replace the sub-tree and the probability value
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FIGURE 6. DFT having dynamic gate as top event with an independent
static sub-tree.

TE.true

TE.false T1 T2

FIGURE 7. DFT having static gate as top event with an independent
dynamic sub-tree.

of this node is used directly as an input to the evaluation of
the parent tree. As the parent tree is static, it can be evaluated
algebraically using equations (1) or (2).

In the fourth scenario, as can be seen from Fig. 8, two
dynamic gates are arranged hierarchically, i.e., the output
of one dynamic gate is an input to another dynamic gate.
We solve this DFT by converting it to a PN model directly.
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FIGURE 9. DFT with shared events.

However, it is possible to solve them one at a time using the
PN model, i.e., solving the child tree first and then the parent
tree. Since a PN model is needed to address both parent and
child, we use a single PN model to solve the whole tree in
one go. Fig. 9 shows a case where an input is shared between
two logic gates, thus making them dependent. In such cases,
we use the PN approach to solve the tree.

C. REACHABILITY SOLUTION
To demonstrate the quantitative solution of the proposed
method, a simple DFT consisting of a PAND and a POR gate
with three basic events is considered as shown in Fig. 10.
The DFT of Fig. 10 can be converted to an equivalent PN
as illustrated in Fig. 11. It is assumed that the PN models
of all gates in DFT are bounded. Therefore, from the PN
model of each gate, a reachability graph can be obtained. By
removing immediate transitions the reachability graph will be
converted to a Markov process. Interested readers are referred
to [64] to find more information about how this can be done.
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FIGURE 12. Markov process model for a simple DFT of Figure 10.

For the PN model presented in Fig. 11, a Markov process
of Fig. 12 can be achieved. Note that as the Markov process
of Fig. 12 is obtained by optimising the original reachability
graph of the PN model of Fig. 11, it would not be possible to
find a one-to-one correspondence between the two models.
However, in Fig.12, A4, Ap, and A¢ correspond to the failure
rates of events A, B, and C, respectively, which are denoted by
the timed transitions (white rectangles) with values 0.0002,
0.0003, and 0.0001, respectively in Fig. 11.

For the Markov process of Fig. 12, the equations can be
formed as eq.(3).

P(t+ At) = MP (1) 3)

where P is the “‘states vector” denoted by eq.(4) and M is the
discrete state transition matrix denoted by eq.(5).

P(1) = [P1 (1), P2(t), P3 (), Pop (1), PF (1)] “
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1 —EAT 0 0 0 0
Ao At 1 — pAt 0 0 0
M = ABAt 0 1—yAr 0 O (@)
0 ApAt Ao At 1 0
Ac At Ac At Ac At 0 1

where £ = (M +Ap+Ac), ¥ = (Aa+Arc),and ¢ =
(A + Ac) . Eq. (3) can be recursively solved if the initial
probability vector P (0) is known. The result at times nAt is
given by eq.(6).

P (nAt) = M"P (0) (6)
Eq. (6) in its continuous form is written as (7).
P (1) = AP (0) @)

where A is the continuous Markov transition matrix in the
form of (8).

oM
A= —
JdAt
—AA—AB—AC 0 0 0 0
AA —AB — AC 0 0 0
= AB 0 —2a—Ac 0 O
0 AB AA 0 0
Ac Ac AC 0 0

®)

Solving (7) gives the probability of system states at any time
t and the unreliability of the system can be calculated through
the probability of failed state.

U@ =Pr@)
AB ()»A + Ape~Gathstior 4 )\'Ce_()\A+)~B+)~C)t)
B (kg + Ac) (ha + Ag + Ac)
2 (g + g + Ag) e~ BBtrod
(A +Ac) (Aa + AR+ Ac)

&)

In the case of having non-exponential failure distribution,
the proposed approach will use the combined Monte Carlo
Simulation and PN. Consider N is the number of total itera-
tions in which the Petri Net model can be simulated. The time
to failure can be calculated for each timed arc transition in
the model based on its probability distribution. For example,
in the case of having exponential failure distribution, the time
for arc transition can be calculated through an exponential
distribution.

(1 — rand)
g
AA

Aat

Pr=e"™" >ty = (10)
where rand is the uniformly generated random number and A4
is the failure rate of event A. The unreliability of the system
can be calculated by dividing the number of time that a token
reaches the place denoting the TE by the total number of
iterations. For Weibull distribution, it is also possible to use
inverse distribution. In MATLAB “wblinv”’ can be used.
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D. CRITICALITY ANALYSIS

In FTA, criticality analysis plays an important role by iden-
tifying the critical events causing the top event of a fault
tree. Criticality is measured in terms of the relative contri-
butions of the events to the occurrence of the TE. Differ-
ent approaches such as Fussel-Vesely importance measures,
Birnbaum importance measures (BIM), and Risk Reduction
Worth (RRW) are available to perform the criticality anal-
ysis [65]. For illustration, in this paper, we show how BIM
can be used for identifying critical basic events using our
proposed approach. Note that other approaches can also be
used for this purpose.

The BIM of an event is calculated by taking the difference
between the conditional TE probability given the occurrence
or absence of that event. The event’s occurrence and absence
are represented by setting the basic event’s probability as
1 and 0, respectively. Mathematically, the BIM of an event
can be expressed as:

BIM(BE;)=Pr(TE|Pr(BE; = 1))— Pr(TE|Pr(BE; = 0))
(11)

where Pr(TE|Pr(BE; = 1)) and Pr(TE|Pr(BE; = 0)) is
the probability of the TE given that the probability of BE; is
1 and O, respectively.

Most of the existing modularisation approaches are not
able to perform criticality analysis. This is because when
modularisation is performed to replace a sub-tree using a
single event, the basic events involved in the sub-tree are
eliminated, thus are absent from the further analysis. For this
reason, it is not possible to set the probability of non-existent
events. The methodology proposed in this paper provides a
way to perform criticality analysis event after modularisation.

Consider that we want to find the criticality of an event ‘e’
which is part of an independent tree ‘¢r’. In the general case,
when we replace the sub-tree with a single event, the exis-
tence of event ‘e’ will be lost. To facilitate the criticality
analysis, when evaluating the sub-tree, firstly, we set event
e’s probability to the pre-specified value (either O or 1).
After that, the sub-tree is evaluated and the probability is
calculated. As a result, the calculated new node’s probability
reflects the effect of the change in event e’’s probability. In this
way, the effect of the change in the probability of a basic
event is calculated despite the basic event itself becoming
non-existent.

IV. NUMERICAL EXAMPLES AND EVALUATION

In this section, five different DFTs are evaluated using the
proposed method to illustrate its effectiveness. The first
example of an abstract temporal fault tree (TFT) is shown
in Fig. 13 and the failure rates and probabilities of the BEs of
the TFT are shown in Table 2. In this TFT, the identified inde-
pendent static modules are G1, G6, G3, G7, and G4. The inde-
pendent dynamic modules are G2 and G8. These independent
modules are evaluated according to the process described
in section III. The results of these individual solutions are
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FIGURE 13. An example abstract temporal FT.

TABLE 2. Failure rate and probability of the basic events of the TFT
in Fig. 13.

. . Failure
Basic Events | Failure rate/hour (\) Probability
A 0.0000105852412 0.05155
B 0.0000048400967 0.02391
C 0.0000136150871 0.06581
D 0.0000050820240 0.02509
E 0.0000127413734 0.06172
F 0.0000012297731 0.00613
G 0.0000049364225 0.02438
H 0.0000209321521 0.09937
I 0.0000064757148 0.03186
J 0.0000026433921 0.01313
K 0.0000035981739 0.01783
L 0.0000151236686 0.07283
M 0.0000142433542 0.06874

combined to obtain the TE (G1) probability. According to the
proposed modularisation technique, the TE probability of the
TFT is 0.0289564056. To compare the result, we evaluated
this TFT using PN approach without modularisation and
the TE probability obtained was 0.0289692416. As can be
seen, these two values start differing from the fifth digit after
the decimal point. That means the result approximated by
the proposed modularisation approach is very to close the
solution provided by typical PN-based approach.

The second DFT, as seen in Fig. 14, was selected
from [22], [66]. In [66], an inclusion-exclusion based for-
mula is used to achieve the TE probability through cut-sets
considering repeated events. Yuge and Yanagi evaluated this
DFT using their proposed approach as well as using the
Galileo tool and Monte Carlo Simulation by setting the failure
rates of the BEs as 0.01 A~!. The same DFT was evalu-
ated in [67] under the same setting using a semi-Markov
process-based approach. In [67], Aslansefat et al. evaluated
this DFT through a hierarchical procedure in which starting
from BE level, the cumulative failure distribution function of
each gate was calculated and used as an input of next layer
gates. This process was repeated to obtain the cumulative
failure distribution function of the TE. The results produced
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TABLE 3. Comparison between the results obtained by different approaches.

G4

FIGURE 14. An example DFT [22], [66].

by different approaches were compared in [66], [67] and it
was argued that the results produced by Galileo tool were
more accurate because of the tool’s ability to provide more
exact closed-form solution. In this paper, for comparison,
we have evaluated the DFT of Fig.14 using the proposed
modularisation approach under the same setting as used in
other mentioned papers. Table 3 provides a comparison of
the probability of the TE for mission times ranging from O to
300 hours. From the comparison, it can be seen that the results
produced by the proposed approach are almost the same as the
results produced by the Galileo tool. Therefore, it can be said
that the proposed modularisation is effective in evaluating
DFTs without losing accuracy.

As we know the exact results belong to Galileo. To com-
pare the different results provided in table 3, the Mean Abso-
lute Percentage Error (MAPE) of each method with regards to
the reference method (Galileo) has been used in table 4. It can
be seen the proposed method has less deviation percentage
in comparison to the others such as Yuge’s, Aslansefat’s or
Monte Carlo based methods.

The DFTs in the examples seen so far contains only a
limited number of dynamic gates, e.g., PAND and POR gates.

97184

Time (hours) Galileo Yuge’s method [66] Aslansefat’s method [67] | Monte Carlo | Proposed method
0 0.00000 0.00000 0.00000 0.00000 0.00000
50 0.21418 0.25653 0.19526 0.25647 0.21535
100 0.49318 0.59960 0.45148 0.59970 0.49635
150 0.68751 0.80196 0.64738 0.80212 0.69372
200 0.81010 0.90114 0.78226 0.90120 0.81890
250 0.88519 0.94864 0.86873 0.94869 0.89395
300 0.93066 0.97213 0.92168 0.97215 0.93786
TE
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FIGURE 15. SAP2 DFT [43].
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FIGURE 16. Numerical results of DFT illustrated in figure 15.

To illustrate the evaluation of DFTs with a wider number of
dynamic gates, the DFT shown in Fig. 15 is selected. This
is the DFT of a subsystem of a real industrial plant, taken
from [43]. The quantitative parameters for the BEs of this
DFT are shown in Table 5. Considering the mission time
0 to 9000 hours, the unreliability of the SAP2 system can be
achieved as shown in Fig. 16, which is in line with the original
study presented in [43].

The fourth example used in this paper is the TFT (see
Fig. 17) of an aircraft fuel distribution system taken from [11].
Table 6 shows the numerical data for the BEs of this TFT.
This TFT is the most complex compared to the other DFTs
shown earlier. It presents many complex relationships and
dependencies among the events at different levels of the tree.
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TABLE 4. A comparison of Mean Absolute Percentage Error (MAPE) of existing methods with regards to Galileo’s results.

Yuge’s method [66]

Aslansefat’s method [67] | Monte Carlo | Proposed method

13.47

Mean Absolute Percentage Error (MAPE)

4.89 13.48 0.82

TABLE 5. Failure rates of the basic events of the DFT in Fig. 15.

Basic Events | Failure rate/hour ()\)
BEI 0.00010
BE2 0.00091
BE3 0.00010
BE4 0.00017
BES 0.00075
BE6 0.00091
BE7 0.00450
BE8 0.00086
BE9 0.00045

BE10 0.00790
BEI11 0.00015

TABLE 6. Failure rate, failure probability, and criticality ranking of the
basic events of the TFT in Fig. 17.

Basic Events | Failure rate/hour (\) | Rank
1-SCP 5.84267E-5 8
1-CSP 5.84267E-5 5
1-SOV 1.65633E-3 2
I-SIV 1.65633E-3 4
1I-CSV 1.65633E-3 1
I-SCV 1.65633E-3 3
I-CRL 2.21127E-6 7

I-HiSOF 4.06861E-5 9
I-HiSIF 4.06861E-5 10
I-HiSEF 4.06861E-5 6
I-SIL 1.65633E-3 4
I-SOL 3.31774E-5 11

Using a laptop with a 64-bit Intel core i7 processor at 2.8 GHz
(8 CPUs) and 16 GB RAM, an attempt was made to quantify
this TFT using the PN-based approach proposed in [11]. The
approach failed to provide a solution because after generating
a certain number of states, due to the state space explosion
the approach could not proceed further. However, with the
help of the High-Performance Computing (HPC) facility at
the University of Hull, we were able to find a solution to
this TFT. Across 10 executions, finding a solution required,
on an average, 747 seconds. The modularisation technique
proposed in this paper was able to avoid the state space explo-
sion problem without using the HPC facility and provided
a solution in a matter of seconds. Moreover, for 100 hours
of mission time, the values estimated by both the PN and
modularisation approaches for the TE probability are 0.049.
The criticality of the BEs are also calculated, the events are
ranked based on their criticality and the ranking is shown
in Table 6. This ranking agrees with the ranking suggested
in [11] by the PN-based approach.
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FIGURE 17. TFT of the aircraft of the fuel distribution system.

To reveal the capabilities of the proposed method in the
case of having non-exponential failure distribution, an exam-
ple of DFT consists of PAND, AND and OR gates with ten
basic events (seven exponentially distributed BEs and three
BEs with Weibull failure distribution) has been considered.
It is assumed that three BEs including I, J and K have Weibull
failure distribution with the scale factor of @ = 20 and the
shape factor of ¢ = 0.1 that can be formulated as follows:

P = ¢ W (12)

The rest of the BEs obeys exponential failure distribution
with the failure rate of A4 = 0.0110, A = 0.0120, A¢ =
0.0130, A.p = 0.0140, Ag = 0.0150, Ay = 0.0011,and A;, =
0.0015 failure per hour, respectively. Figure 18 illustrates the
DFT of the elucidated example.

Considering the mission time of zero to three hundred
hours, the unreliability of the system can be obtained as
shown in figure 19. In this figure, the blue curve is the result
that can be obtained from Algebraic solution provided by [28]
and red circles are the results obtained from the proposed
method in which a combination of PN and Monte Carlo
simulation with 10e6 iterations has been used. As can be seen,
both solutions have the same results.

From the results obtained by the modularised approach
for five different examples, we can see that the proposed
modularisation technique estimates results without unaccept-
able loss of accuracy while making a major improvement
in the execution performance. Regarding the computation
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FIGURE 18. An example DFT consists of exponential and Weibull BEs.
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FIGURE 19. A comparison of the numerical unreliability results (Algebraic
and proposed method) of the DFT shown in figure 18.

complexity of the proposed hybrid method, we can divide it
into three parts, (A) Algebraic, (B) Petri Nets and (C) Monte
Carlo Simulation. The computation complexity of proba-
bilistic algebraic method that represents DFT operation can
be achieved by O(a) where a is the number of gates in a
DFT [68]. As mentioned before, the Petri Nets model is
converted to a reachability tree that is equivalent to a Markov
chain. The cumulative required time to obtain the probability
vector in a Markov model can be calculated as (13) assuming
that n < x[00] and x[01].

O((x[00] + x[01Dn) (13)

where x[00] stands for the number of non-zero transitions
between functional states and x[01] stands for the number of
non-zero transitions between functional states and absorbing
failure state(s). Therefore, [69] showed that the computation
complexity of the model can be simplified to O(n*) where n
can be determined by the total number of states. However,
in the proposed method, DFTs are solved through the hier-
archical model and the computation complexity is reduced
to O(k) where k is the number of gates in DFT [67]. This
helps the proposed approach to avoid the issues associated
with the state-space explosion. The computation complexity
of Monte Carlo Simulation is O(h) where & is the number
of steps in each iteration. However, based on [70], in an
optimized implementation, it can be reduced to O(h~2). It is
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assumed that numerical discretization of the problem follows
weak convergence, and quality obeyed by Euler—Maruyama
and Milstein schemes.

In the proposed hybrid method, currently, repairable DFTs
are not considered and it can be considered in the future
research work. In addition, components are considered to
have binary states (working and failed), thus complex failure
behaviour of components with multiple modes of operation
are not considered. In the future, research can be performed
to find ways to incorporate such complex failure behaviour
of components, for instance, using a concept like complex
BEs. Currently, uncertainty with failure data is not consid-
ered. Exploring the ways of handling uncertainty could be a
potential future research avenue.

V. CONCLUSION

In this paper, we have addressed the limitations of the existing
modularisation techniques for DFT analysis by proposing
a novel approach based on algebraic solutions and PN to
quantify dynamic fault trees. We have outlined the differences
and contribution by our approach against existing methods
extensively, both in the related work and motivation section
and as part of the detailed discussion of our method. The
effectiveness of the approach is evaluated by applying it to
five different DFTs. The comparison of the results approxi-
mated by the proposed approach with the existing approaches
confirms that the modularisation approach yields comparable
results with regards to accuracy. However, the time required
by our modular approach to evaluate DFTs is significantly
less than that required by the classical state-space based DFT
evaluation approaches. Thus, the modular approach proposed
in this paper allows analysis of much larger systems with
complex inter-dependencies among the components than
with the classical non-modular approaches. As the proposed
approach allows the use of both constant failure probabilities
and rates in the same analysis, it is therefore equally appli-
cable to evaluate hardware, software and human operator
failures. At present, we have considered PN as a solution
technique to alleviate the limitations of Markov chain based
modularisation techniques for DFT evaluation. There exist
other solution techniques like semi-Markov process, SBDD,
etc., which can relax the limitation of the Markov chain,
therefore, in the future, it is worth exploring these alternative
solutions as part of modularisation.
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