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ABSTRACT Safety-critical systems are becoming larger and more complex to obtain a higher level of
functionality. Hence,modeling and evaluation of these systems can be a difficult and error-prone task. Among
existing safety models, Fault Tree Analysis (FTA) is one of the well-known methods in terms of easily
understandable graphical structure. This study proposes a novel approach by using Machine Learning (ML)
and real-time operational data to learn about the normal behavior of the system. Afterwards, if any abnormal
situation arises with reference to the normal behavior model, the approach tries to find the explanation of the
abnormality on the fault tree and then share the knowledge with the operator. If the fault tree fails to explain
the situation, a number of different recommendations, including the potential repair of the fault tree, are
provided based on the nature of the situation. A decision tree is utilized for this purpose. The effectiveness
of the proposed approach is shown through a hypothetical example of an Aircraft Fuel Distribution System
(AFDS).

INDEX TERMS Fault tree, reliability, safety modeling, model repair, machine learning, artificial intelli-
gence.

I. INTRODUCTION
Safety critical systems are systems for which human life,
environmental health, and financial assurance need to be
guaranteed. Medical and surgery equipment, aviation and air
traffic control, hazardous and toxic chemical processes and
nuclear power plant are among safety-critical systems [1].
Different key performance indices such as reliability, safety,
availability, and security have been introduced as a measure
for the evaluation of safety-critical systems [2]. Reliability of
a system can be defined as the probability of its functioning
as expected without any malfunctioning or failure during
a certain and pre-defined period of time [3], [4]. For the
safety attribute, different definitions exist. For instance, the
probability of either a system functioning correctly without
any fault during the mission time or terminating its ser-
vice(s) through a safe procedure can be called safety [5].
Another example would be aircraft emergency landing safety.
Considering the possibility of an aircraft engine failure,
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the probability of either reaching the destination without
crashing or having a successful emergency landing can be
considered as a safety measure for the aircraft.

Because of the criticality of the system functioning, a rigor-
ous reliability and safety evaluation requires comprehensive
and certified model(s) that are usually provided by a team
of high-level experts. A variety of approaches are developed
for modelling and evaluation of dependability attributes,
notably reliability and safety. The existing approaches can
be classified into four categories; I) state-space modelling
such as Continuous-Time Markov Chains (CTMCs), Semi-
Markov Processes (SMPs) and Markov Regenerative Process
(MRGP) [6], II) Non-State-Space (Combinatorial) Models
like Reliability Block Diagram (RBD) and Fault Tree Anal-
ysis (FTA) [7], III) Numerical methods like Monte Carlo
Simulations, and IV) multi-level models that can be cre-
ated through a combination of mentioned methods [8], [9].
It should be noted that safety models can also be categorized
in terms of qualitative and quantitative analysis.

As fault trees feature easy to understand structure and
widespread use, in this paper, we will consider fault trees
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as an example of safety artefacts. Fault Trees are one of the
well-known deductive techniques in which the systems’ fail-
ures and their combinations can be modeled in a logical
and hierarchical manner. A Fault Tree (FT) consists of dif-
ferent levels; top level and top event: usually, in the top
level of a Fault Tree, there is a top event representing the
failure of the whole system or mission. Intermediate level(s):
this level includes the failure of sub-systems. As an exam-
ple, the failure of an aircraft is a top event and the failure
of its sub-systems such as the propulsion system, naviga-
tion system, etc. are the intermediate events located at an
intermediate level. Basic events: in the FTA, a system can
decompose to sub-systems and each sub-system can decom-
pose to sub-sub-systems. This procedure will continue to the
level that no more decomposition is affordable or possible.
The events in the final decomposition level are called basic
events. A failure of a GPS in a navigation system or a short
circuit in an electronic board can be considered as exam-
ples of basic events. Gates: as mentioned before, the com-
bination of failures in Fault Tree illustrates through logic
gates [10].

FTA is widely used in many industries as a mean of provid-
ing evidence while assuring safety through certification. The
process typically begins with an argument about the safety of
a system. For instance, in the automotive industry, such an
argument for a braking system could be ‘‘it is guaranteed that
the braking system will provide service at ASIL level D’’.
To support this argument, as a basis of the above guarantee,
the analyst may show the result of an FTA. Therefore, the cor-
rectness of FTA plays a vital role in the integrity of the of
safety certificate. An error in the model (e.g. FT) used for
providing evidence can make the safety guarantee void, thus
make safety certificate invalid.

A. MOTIVATION AND CONTRIBUTIONS
The correctness of the safety artefacts is very important for
providing the right level of safety assurance. An error in these
models may lead to a false safety assurance provision. It is
important to note that every step of safety artifact construction
process heavily relies on the expertise of the analysts. The
IET has developed a brand-new set of standards [11] by
defining three levels of competency of an analyst such as
supervised practitioner, practitioner, and an expert. There also
exists a possibility of no established confidence. Under this
condition, when the analyst has no or very limited evidence
in hand, the developed FT could be inferior, and any safety
guarantee provided based on this FT is highly likely to be of
very low quality.

In the literature, some researchers have pointed out the
flaws in safety artefacts. For instance, Manion [12] critically
scrutinized the FTA and correctness of the FT-based safety
analysis. He mentioned FTA as a flawed approach based on a
series of false assumptions and pointed out what can gowrong
in five different steps of FT construction. Moreover, a num-
ber of flaws of safety analysis methods and processes have
been reported in [13], [14]. One of the limitations is related
to the completeness of the hazard identification process of
safety analysis. It is not possible to guarantee that all possible
hazards are identified during the safety analysis process.
Suokas and Pyy [15] and Carter and Smith [16] investigated
several incidences in the process industry and construction
industry respectively, to find the relation between hazards
that were identified during the analysis and hazards that were
identified during operation. Based on their investigation, they
found significant gaps between these two sets of hazards list.

Fig. 1 shows a typical safety analysis where a group of
safety analysts use the system design and safety requirements

FIGURE 1. A typical safety analysis process.
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to identify the possible causes of system failure. However,
because of the limited knowledge of the experts, unpredicted
causes of failure can exist that are unforeseen, thus not
considered in the safety model(s). Generally, the mentioned
issue can occur and cause catastrophes when an unpredicted
failure event with low probability and high impact happens.
The Fukushima Daiichi nuclear disaster [17] initiated by the
tsunami following an earthquake on 11 March 2011 is an
example of a case where the designer of the nuclear facil-
ity failed to foresee the environmental circumstances that
may cause the system failure. The statement ‘‘We can only
work on precedent, and there was no precedent. When I
headed the plant, the thought of a tsunami never crossed my
mind’’ [18] given by Tsuneo Futami, a former director of
Fukushima Daiichi plant, makes it clear that sometimes it is
not possible to foresee all possible failure modes, especially
if the failure modes represent infrequent events. However,
such events are often discovered during the operation of the
system.

As argued in [19], a system can have behaviours which
are not non-conformant to the specifications but are still
unsafe. These kinds of situations are usually not captured by
safety artefacts because of the nature of the behavior of the
system. For instance, according to Leveson [20], the Mars
Polar Lander accident and Ariane 5 launch failure are two
industrial incidences where the system components operated
exactly as they were planned to work, however, the systems
still failed because of the wrong perception of the effects of
their behavior. Therefore, it is obvious that the safetymodel of
the systems where the behavior of the components is wrongly
perceived is bound to be incorrect. If we consider this issue
from the point of view of creating a FT, then this may lead
to inserting wrong logic in the FT, i.e., using a wrong gate
to model the relationship between events. Moreover, analysts
may make such mistakes by not following systematic ways of
creating a FT. For instance, consider that the failure behavior
of a system is depicted by the FT of Fig. 2. The outcomes
of qualitative and quantitative analysis of this FT depend on
the logical structure of the tree. Changing the type of a gate,
i.e., the logical relationship between events may significantly

FIGURE 2. An example FT.

change the safety and reliability of the system. If we replace
one of the AND gates by an OR gate, then we will achieve a
completely new failure behavior of the system. Consider the
AND gate in red color, which says that the system will fail
if all BE4, BE5, and BE6 occur. However, if we replace this
gate with an OR gate, then this will mean that the system will
fail if any of the above-mentioned BE occurs.

In addition to the above-mentioned issues, we can have
invalid assumptions, such as statistical independence of basic
events. This can also produce misleading results. It is impor-
tant to note that, not all the accidents are caused due to a
problem with safety analysis, but in many cases, improper
actions taken by system operators cause the accident. A sur-
vey on aircraft accidents conducted by Lloyd and Tye [21]
suggested that almost 50% of those accidents were caused
due to the improper actions of crews. For instance, in the
Kegworth air disaster on January 1989, there was a delay
in alerting the pilot about the occurrence of the fault and its
causes. As a result, the pilots made a misjudgement and took
the wrong action, causing the accident. In another fatal acci-
dent caused partially due to a misleading alarm annunciation,
the Airbus A330 of the Air France flight AF447 crashed in the
Atlantic, killing all 228 people on board. As the information
about the blocked pitot tube and the information about the
angle of attack reading were not properly conveyed to the
crews, they were not able to take the appropriate actions.
Moreover, there were no clear guidelines available of the
crews regarding those particular emergency situations [22].
From these two cases, we can see that the lack of knowl-
edge about some particular events and delay in the alarm
communication contributed significantly to the occurrence
of the accidents. Therefore, timely communication of alarms
and more knowledge (information) might help the users of a
system to take more informed and appropriate actions during
an unforeseen scenario.

To address the above-mentioned issues related to unfore-
seen events and misunderstanding about system behavior,
in this paper, we propose a data-driven approach using
machine learning to provide assistance when an unknown or
unconsidered scenario encountered during system operation.
The aim of our approach is to crosscheck the real time
operational behavior of the systemwith the safety artefacts (in
this case fault tree) created for the system during design time
to see if the current operational scenario is explained by the
FT of the system. To achieve this, we used a machine learning
based method for forming the normal behavior model of a
system based on operational data. Afterward, we provide
the process of identifying anomalies in the behavior of the
system at any time instance during system operation by cross
checking with the data-driven nominal behavior model of
the system formed earlier. Finally, a decision-making system
is provided for verifying whether an abnormal behavior
detected based on the operational data is explained by the
fault tree of the system. If the explanation is not found in
the existing FT, recommendation about potential update of
the safety artifact of the system is provided.
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II. BACKGROUND AND RELATED WORKS
In this section, the background has been divided into two sub-
section; I) A brief literature survey on model repair and II)
Machine learning approaches associated with safety models.

A. MODEL REPAIR AND PROCESS MINING
Process mining enables analysts to extract insights from log
data and create a performance model of an industrial plant.
It is also possible to repair or update existing models through
datamining [23]. Regarding this area, substantial research has
been done and a brief literature review will be provided in
what follows.

An approach based on the alpha algorithm has been pro-
posed in [24] to generate a Petri net model of the process
from its workflow log. However, the inability to extract a
model from processes with arbitrary workflow was a limi-
tation of the proposed method. A hierarchical and iterative
process-mining technique has been introduced in [25] to
refine the process model. The paper constructed the orig-
inal system model and verified this model based on the
incoming data. At each iteration, the steady-state behavior
of the model is checked regarding any changes in data.
van der Aalst et al. [26] emphasized the importance of align-
ing the system model and the workflow log file, which repre-
sents data from the system deployment. These relationships
have been used to check the conformity of the system and to
evaluate the performance of the system as well. From a com-
putational point of view, these alignments are the challenging
problem, which is an open challenge to find the optimal
alignment.

Authors in [27] identified all possible variants of the sys-
tem model, by applying a clustering algorithm from data
of the logs file (execution traces). The paper proposed a
greedy method to make an exhaustive search of possible
behaviours, and at each step try to cluster traces sharing
similar behaviours. Augusto et al. [28] presented a literature
review of automated process discovery methods, and the
outcome of the paper revealed that some methods suffer from
the lack of scalability and inconsistent performance results.

B. MACHINE LEARNING ASSOCIATED WITH SAFETY
MODELS
Safetymodels are one of themost important pillars in reliabil-
ity and safety assessment that can represent the failure com-
binations of a system, and they need to be created by certified
designers and experts. In the following, research works that
combined Fault Tree Analysis (FTA) with Machine learning
approaches will be discussed.

Hurdle et al. [29] used a non-coherent Fault Tree for the
fault diagnosis of a water tank system. The limitations in this
method was a need for consistency checks from observation
points. Two years later, the approach has been updated by
combining the FTA and Bayesian Belief networks in [30].
Cai et al. [31] proposed a new method for real-time relia-
bility analysis through a combination of traditional Bayesian

networks derived from root cause diagnosis and dynamic
Bayesian networks. In fact, this study updates prior reliability
knowledge of the system (failure distributions) via dynamic
Bayesian networks. A subsea pipe ram BOP system has been
addressed as a case study in this paper.

Askarian et al. [32] proposed a new method for fault
diagnosis through a fusion of micro-macro data. In this paper,
the FTA and Bayesian networks have been combined to gain
the advantages of both prior probability distribution in FTA
and real-time data in Bayesian networks. Remaining Useful
Life (RUL) is a parameter usually estimated throughMachine
learning approaches [33]. A method for combining failure
rate and RUL as the basic event in Dynamic Fault Tree has
been proposed in [34], [35].

A hierarchical Bayesian network-based model has been
provided for process monitoring and decision making in [36].
This article used a data-driven algorithm to update the sub-
Bayesian networks in the model. Getir et al. [37] focused
on semi-automated and co-evaluated process as a case study
and defined a number of intra- and inter-model rules of
transformation to cover the evaluation scenarios. The out-
come of this study has shown that realizing the co-evolution
of the proposed approach required fewer user interactions.
The potential challenges and opportunities of using machine
learning in a safety-critical application have been reviewed
in [38]. The paper illustrated how missing casualties in the
model can be reduced through the incorporation of safety
models and data-driven knowledge.

A conceptual idea regarding the combination of artificial
intelligence methods with safety models has been presented
in [39]. In this report, examples of golf-shot on the moon
and Falcon launch from SpaceX have been demonstrated.
Cheng et al. [40] proposed an Imitation Medical Diagnosis
Method (IMDM) in which three types of Bayesian networks
have been used; Machine Learning BN, Expert empirical
BN, and maintenance decision BN. The method also applied
the fuzzy theorem to achieve uncertainties and conditional
probabilities.

From the above discussion, all the works related to model
repair and/or machine learning for safety analysis consider
the system models and based on the conformity analy-
sis or model checking different potential actions such as to
repair a model, update a model, upgrade a model, etc. are
recommended. However, to the best of the authors’ knowl-
edge, no work has considered the same for the safety artefacts
that are used to safety certification of the system models.
Therefore, in this paper, we aim to combine machine learning
with safety analysis for runtime evaluation of correctness of
safety models developed during the design time.

III. THE PROPOSED APPROACH
The approach proposed in this paper considers that at design
time, safety analysts have knowledge about the systemmodel
and behavior, and they have already created a fault tree of
the system based on their knowledge about the foreseeable
failure events. It also considers that at runtime the system is
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FIGURE 3. A classification for safety models associated with machine learning.

continuouslymonitored for some parameters, i.e., operational
data is available. The basic idea of the approach is to use
the real time operational data of the system to learn the
normal behavior of the system. Afterwards, when a new set of
operational data is available, the knowledge about the normal
behavior of the system is used to see if there exists any
anomaly in the new record. If any anomaly is detected in the
behavior, then the existing system fault tree is consulted to see
if it can explain the reason for abnormal behavior, i.e., if the
FT contains a node that is associated with this current event.
If no explanation is found in the fault tree, different recom-
mendations are provided based on the perceived severity of a
scenario. The framework of the proposed approach is shown
in Fig. 4. It can be seen that the approach is divided into two
parts: the anomaly detection (AD) part and the decision mak-
ing (DM) part. The AD part is responsible for formulating
the normal behavior model of the system and for checking
for anomaly in the newly arrived record. We used One Class
Support Vector Machine (OC-SVM) to accomplish this task.
If an abnormal behavior is detected, the DM part processes
the information made available by the machine learning part
to suggest appropriate actions. A detailed description of the
AD and DM parts of the approach is provided in the next
two sections.

A. ANOMALY DETECTION
Anomaly detection is the process of abnormal behavior iden-
tification. The abnormal behavior can be an item, object,
observation or any unusual pattern from the expected behav-
ior [41]. For example, in the banking sector, to check if a bank

card has been stolen or an account is hacked, we can identify
any abnormal transaction made from the bank account by
generating the normal behavior of the account holder from
his/her previous transactions and comparing it with the new
transaction. Fig. 5 graphically represents the anomaly detec-
tion process, where the blue region (dots) represents datasets
forming the expected behavior of a system and the red circle
represents an anomalous dataset. In this illustrative example,
we showed the behavior formed based on three arbitrary
parameters such as FTV, Tmp, and PFT. Each point in the
graph represents an observation on these three parameters at
different point in time.

Based on the testing data, the anomaly detection problem
can be formulated as a supervised, unsupervised or semi-
supervised classification problem. In supervised anomaly
detection, the data set is labeled as ‘normal’ or ‘abnormal’,
and the algorithm will learn the model of each class and
provide a separator for the classification engine. The data will
help the algorithm to identify the importance of each feature
to the problem in hand. In contrast, the unsupervised anomaly
detection techniques use unlabeled test data. Therefore, there
is no straightforward technique to evaluate the quality of the
results. Semi-Supervised learning anomaly detection uses a
mixture of labeled and unlabeled data for the learning phase.
In most anomaly detection problems, the data is unlabeled
with the assumption that the system is by default most likely
to perform its normal expected behavior.

In order to detect anomalies in the system behavior, the first
step is to generate the normal behavior of the system after a
dataset is received from the real-time operation of the system.
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FIGURE 4. Framework of the proposed approach for abnormality detection and warning notification.

This means this step should wait for a sufficient number of
records to be available. The incoming data from the system
is considered to be normal, i.e., all data are labeled with one
class. Regarding that, the normal behavior generation prob-
lem is formulated as a one-class classification problem using
only data from the assigned class. The One Class Support
Vector Machine (OC-SVM) classifier [40] has been used to
generate normal behavior. OC-SVM uses a pattern analy-
sis algorithm to study the general type of relations among
the instances of data. This type of algorithm is known as
a ‘Kernel’, which represents a similarity measure between
any two inputs, also known as a weighting factor. There are
different types of kernel functions such as linear, Gaussian,
polynomial, and hyperbolic tangent. A kernel function is
used inside the decision function. Usually, the selection of a
particular type of kernel is problem-specific and contributes

considerably to the success of the learning algorithm. SVM
uses the kernel to map the data into the feature space H and
tries to converge the data points into a hypersphere in feature
space.

The OC-SVM can be formulated as follows: Let
X = {x1, x2, x3, . . . , xn}m be a set of instances with one
label ‘Normal’ representing the streaming data coming con-
tinuously in real time from the system. n is the number of
all parameters of the system (data captured from the different
system’s sensors) and m is the number of instances at a time
instant t.

Let K : Rn → H be the kernel function that trans-
forms the input data to the features space H . The OC-SVM
is in general an optimization problem, which tries to min-
imize the distance between points on the same class and
maximize the distance between points inside the class and
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FIGURE 5. Graphical representation of anomaly detection process.

the origin [42].
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where δi is the relaxation parameter, which is used to balance
the experienced risk minimisation. ω, b parameters are used
for deciding the separating line (hyperplane), which defines
the decision distance that separates points assigned to the
normal behavior to other points.
vn sets upper bound of the out-of-class training examples

and lower bound on the number of training used as support
vector. n is the number of points in the training dataset.

The problem of finding the optimal hyperplane, which
makes separation between classes of data, is a quadratic prob-
lem. The main objective of the quadratic problem is to find
the optimal separating hyperplane between classes. A general
quadratic programming problem can be described as:

Min Q (α) =
1
2

n∑
i,j

αiαjK
(
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)
Subject to: 0 ≤ αi ≤

1
vn
,
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i
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where αi is the influence of example i.

f (x) = sign ((ω,K (x))− ρ) (3)

where sign function is the derivative of the absolute value
function (−1, +1).

ρ =

n∑
j=0

αiK
(
xi, xj

)
(4)

The kernel is a positive symmetric function where it
projects input vectors into a feature space allowing for non-
linear decision boundaries. Let ϕ denote the feature mapping,
which maps from the attributes to the features. The kernel

uses a featuremapping ϕ, whichmaps the data to a new space.
The construction of the mapping function is very expensive
in very high dimensional spaces.
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(
xi, xj

)
= ∅ (xi)T · ∅

(
xj
)

∅ (xi) =

 x
x2

x3

 (5)

After the initial normal behavior model is formed, when-
ever a new monitoring dataset is received from the sensors of
system, this new record is checked against the normal behav-
ior model of the system to detect anomalies. If no anomaly is
detected, the record is saved in a central repository. Note that,
to keep the normal behavior model of the system updated,
it is regenerated after a certain number of new normal records
have arrived. This number can be defined by the user. In this
paper, we regenerated the model after receiving 10 normal
records.

If an anomaly is detected in the new record, correlations
are generated among the different parameters within the
record. Correlation is a measure of change between two
variables. Correlation between variables does not necessarily
mean causality, but this measurement is used to provide extra
knowledge for the decision-making process. Two variables X
and Y are highly correlated if any variation (positive or neg-
ative) in X corresponds (or does not correspond) to a similar
variation in Y, and vice versa. The correlation between two
variables can be interpreted as one of the variables influenced
by the other one, or both of them being influenced by a third
variable. The interpretation of the correlation can be used as
a parameter to the overall decision-making process.

One of the well-known correlation measures is the corre-
lation coefficient (Pearson r). The advantage of this measure
is that it is sensitive to outliers. Therefore, a high correlation
means the two variables match each other with high proba-
bility over an observation period. The formula for computing
the Pearson r is as follows:

rXY =

∑n
i=1

(
Xi − X

) (
Yi − Y

)√∑n
i=1

(
Xi − X

)2√∑n
i=1

(
yi − Y

)2 (6)

The correlation among different variables are utilised to
identify the system parameters that have pushed the system
outside the boundary of its normal behavior. This information
is used in the decision-making process as follows for recom-
mending actions.

B. DECISION-MAKING PROCESS
The result of the anomaly detection part is a set of parameters;
these parameters are divided into categories. Some parame-
ters are pushing the behavior of the system to the abnormal
region, and other parameters that are highly correlated to
the first category’s parameters. The decision-making process
will take this relevant information as input. Based on this
information, several alternative decision paths are identified
(see Fig. 6). The decision process will use some external
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FIGURE 6. A decision tree for scenario classification.
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FIGURE 7. A schematic of aircraft fuel distribution system.

resources, such as the system fault tree, to check if the current
abnormal scenario has been taken into consideration during
the offline analysis. If not, action should be taken and warn-
ings based on the system situation (fail or not) should be
issued. After that, based on the final step of the branches,
the system user is notified. Note that the warning is given
immediately or on request based on the criticality of the
scenario. If the detected anomalous behavior represents a
system failure, then it is considered as critical. On the other
hand, if it does not represent system failure, then the sce-
nario is considered as less critical. When an abnormal system
behavior is detected, the following two cases are possible.
Case 1: The fault tree of the system can explain this abnor-

mal scenario. Although an explanation is found, the fault tree
may ormay not contain all the event(s) corresponding to these
observed anomalies. If the fault tree contains all the related
events, the decision-making block does not suggest any repair
action for the fault tree. On the other hand, if there are
some events missing in the fault tree then a recommendation
is provided to check the fault tree for a potential repair to
include the newly discovered events which were not seen
during design stage. Note that whenever a recommendation
is provided it is saved in a central repository for future use in
a similar case.
Case 2: The fault tree cannot explain this abnormal behav-

ior. That could either mean that during the design time cre-
ation of the fault tree the analysts were not able to foresee
some events that are identified now, or they were able to
identify all the events, but the logical relationships among
the events were wrongly set in fault tree. Therefore, it is
recommended either to repair the fault tree by including
newly identified events or by correcting the logic of the fault
tree. Note that, in this case, before generating any recommen-
dation, the decision-making process first checks the warning

FIGURE 8. Fault tree of omission of fuel to the PE.

repository to see if this particular scenario has been addressed
in the past. If it was addressed before, then the warning is
retrieved from the repository for reuse. If it is a new case,
then a new appropriate warning event is created, and the
required notification is provided based on the system situation
(fail or not).
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FIGURE 9. Readings from sensors under normal operating condition.

IV. CASE STUDY EVALUATION
To illustrate the concept proposed in this paper, we use a
simplified version of an Aircraft Fuel Distribution System
(AFDS) used in [43]. The system shown in Fig. 7 has two
primary functions: storing fuel and distributing fuel to the
engines. These functions are provided in refueling and con-
sumption phases, respectively. During refueling, the fuel is
first loaded in the Central Reservation Tank and then dis-
tributed to the Front and Rear Tanks. In the consumption
phase, the two engines receive adequate level of fuel from
the appropriate tanks. For instance, the Port Engine (PE) will
receive fuel from Front Tank and the Starboard Engine (SE)
will receive fuel from Rear Tank. Each of the tanks have a
level sensor and a temperature sensor. They measure the level
of fuel and the temperature of the tank, respectively.When the
fuel level reaches to a pre-specified level in the Front and the
Rear Tank, they can draw fuel from the central reservation
tank. Similar to the tanks, the valves have their own sensor
to measure the rate of flow through them. Additionally, there
are flow sensors attached to the pipes to measure flow rate
through the pipes.

As seen in the figure, the fuel flow paths to the PE and
SE are identical and they only use a different set of compo-
nents. For this reason, for illustrative purposes, in this paper
we only consider the fuel flow path of the PE for further
analysis. It was also assumed that the sensors are reliable;
therefore, their failures are not considered in the analysis.
A fault tree is derived by considering the ‘‘Omission of Fuel
to the Port Engine’’ as the top event and shown in Fig. 8.
Table 1 describes the meaning of the basic events and their
associated components.

To illustrate the proposed idea, we consider that eight
different sensors are used to monitor the real time behavior
of the fuel flow path to the PE. The sensors are FTL and FTT
(level and temperature sensor of front tank), CRTL and CRTT
(level and temperature sensor of central tank), FTF and CLF
(two flow sensors attached to two different points in the
pipes), FTV-S (sensor on valve FTV), and CLV-S (sensor on
valve CLV).

TABLE 1. Description of the basic and intermediate events of the fault
tree in figure 8.

FIGURE 10. Correlation heat map for different variables in the normal
operating condition.

Fig. 9 shows the readings from different sensors when the
system works normally. Note that all the data used in this
paper is hypothetical and used only for illustrative purposes.
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FIGURE 11. Readings from sensors in abnormal scenario 1.

FIGURE 12. Correlation heat map for different variables in the scenario 1.

However, we believe that the real operational data from a
practical system can be used in the same fashion. As seen
in Fig. 9, it is assumed that in normal operating conditions,
temperatures of the fuel in the front and the central tank are
kept at−20◦C. It is also seen that the front tank keeps provid-
ing fuel to the PE, without drawing any fuel from the central

tank, until its fuel level drops to 50%. At time interval 10,
the fuel level of front tank reaches to 50%, where it starts
drawing fuel from the central tank, which is evident from the
drop in the fuel level in the central tank and availability of
fuel flow through CLF and CLV-S sensors. The central tank
fuel level drops sharply compared to the left tank because it
was assumed that both the left and right tanks are drawing
fuel from the central tank at the same time. Moreover, after
the time interval 10, the fuel level of the left tank drops less
sharply than before because of the support it is receiving from
the central tank. The correlation among different variables in
the normal scenario is shown in Fig. 10.

To illustrate how the proposed approach will identify
abnormal scenarios and suggest appropriate actions, we con-
sider four different scenarios. Fig. 11 shows the first scenario.
In this case, after time interval 13, the operators of the system
notice that the port engine is starving of fuel. Independent
of what the operators observe, the approach proposed in
this paper detects an anomaly after time interval 13. The
approach detects that the change in the readings fromFTF and
FTV-S cause the system to go outside its operational
boundary. Given the abnormal behavior and the detected
parameters, the approach finds correlations between these
parameters with other parameters (see Fig. 12). From the

FIGURE 13. Readings from sensors in abnormal scenario 2.
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FIGURE 14. Readings from sensors in abnormal scenario 3.

FIGURE 15. Correlation heat map for different variables in scenarios 2 and 3 (a) correlation heat map for different variables in the scenario 2
(b) correlation heat map for different variables in the scenario 3.

correlation heat map, it is seen that in this abnormal con-
dition, the variables FTF and FTV-S themselves are highly
correlated, i.e., a change in one of the variables may cause
the problem in other variables. Moreover, these variables are
highly correlated with CTL and FTL, which could potentially
mean that the reduced rate of flow through pump FTP and
valve FTV is responsible for reduced level of consumption
from the front and central tank, consequently the reason for
starvation of the port engine. The fault tree of Fig.8 can
explain this scenario. This scenario corresponds to a case
where the top event of the fault tree becomes true because of
the occurrence of any of the BEs 1 to 4 (BEs associated with
FTP and FTV). However, as Fig. 11 shows that the reduced
fuel flow is detected by the FTF first, the position of this
sensor in system (see Fig. 7) suggests that it is highly likely
that the problem was with the pump FTP, i.e., BE 1 and/or
BE2 in the fault tree of Fig. 8.

Figs. 13 and 14 represents two closely related scenarios. As
seen in Fig. 13, like the normal operation mode (see Fig. 9),
after time interval 10, the front tank starts drawing fuel from

the central tank. However, unlike the normal operation mode,
the temperature of the fuel in the front tank starts dropping
after time interval 10. After time interval 12, the temperature
recorded by FTT reaches to−45◦C and stays at the same level
afterwards. At the same time, after time interval 12, the fuel
flow rate recorded by FTF and FTV-S starts dropping. The
proposed approach detects that the values recorded by FTT
force the system to go outside its operational boundary. The
correlation heat map in Fig. 15(a) shows that in scenario 2,
FTT has very high correlation with FTF, FTV-S, CTL, and
FTL. That means the drop-in temperature recorded by FTT
is responsible for the abnormal system behavior. In this sce-
nario, as the fuel system is operating in a degraded mode,
a warning event would be generated by incorporating this
newly found knowledge, and the warning will be shown on
request.

Scenario 3, shown in Fig. 14, represents further degra-
dation from scenario 2, where the temperature recorded by
FTT dropped further to −65◦C. At the same time, unlike
scenario 2, the fuel flow rate recorded by FTF and FTV-S
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FIGURE 16. Readings from sensors in abnormal scenario 4.

FIGURE 17. Fault Tree correction based on the recommendation of the proposed method for scenario 4.

reaches to zero, meaning that there is no fuel flow to the
PE. The updated correlation heat map for this scenario is
shown in Fig. 15(b). According to the heat map, correlation
of FTT with FTF, FTV-S, and CTL increased further, which
suggests that the temperature of the fuel in the front engine
is responsible for this abnormality. An inspection of the fault
tree of Fig.8 reveals that this scenario is not explainable by the
fault tree because in the fault tree there is no event related to
temperature of fuel in the front engine. As a result, a warning

event is created with the suggestion to repair the fault tree by
including an event related to the temperature of the fuel.

The scenario 4 (see Fig. 16) shows that at time interval
10, the central fuel tank starts providing fuel to the front
tank, which is an expected behavior. However, after time
interval 12, the central tank stopped providing fuel to the front
tank as evidenced by no flow reading from CLF and CLV-S.
No flow reading from CLF and CLV-S could be attributed
to the failure of either or both of pump CLP and valve CLV.
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Because of this, the front tank has to feed the PE alone, which
results into very low fuel level at the front tank. Moreover,
throughout this time, the readings at FTT and CRTT remain
the same. In this case, an abnormal behavior is detected by the
proposed approach and the variables detected for this abnor-
mality are FTL, CLF, and CLV-S. Although an abnormality
is detected by the proposed approach and there are events
associated with all the detected abnormal parameters in the
fault tree, the fault tree of Fig. 8 was still not able to explain
this scenario. It is clear that this abnormality is because of the
low fuel level at the front tank, which corresponds to event I3
(front tank’s fuel level too low) in the fault tree. However, for
some reason this event does not become true. Therefore, there
may exist a problem with the logical relationship among the
events that can cause intermediate event I3. For this reason,
the proposed approach would create a warning event with the
suggestion to check the fault tree for the correctness of the
logic gate used for modelling the behavior of event I3 and
other events downwards.

Based on the recommendation, the fault tree of Fig. 8 is
corrected by replacing the AND gate below I3 by an OR gate
(see Fig. 17). After this correction, the fault tree was able to
explain the scenario 4.

V. CONCLUSION
This work utilises machine learning based approaches to
capture the real time behavior of a system based on real-
time operational data. During monitoring, if it is found that
the system deviates from its normal behavior, a number of
recommendations have been provided based on the nature of
the detected abnormality and the ability of the safety artefacts
of the system to explain the abnormality. These recommenda-
tions include the potential repair of the fault tree of the system
via the inclusion of new basic events and/or via the correction
of the logical structure of the fault tree.

From historical evidence, it is clear that during safety
analysis in the design phase of system development, it is
possible that the analysts may not foresee all possible causes
of failure and they may develop safety artefacts based on the
wrong assumptions and wrong understanding of the system
behavior. Such limitations can only be uncovered during the
operation of the system. The approach proposed in this paper
is an attempt to address these issues by taking into account
the monitoring data. The primary advantage of the approach
is that it can provide additional knowledge about the safety
model and the system behavior to the system user when an
unknown scenario is encountered.

Currently, we demonstrated the effectiveness of the
approach by applying it on a simplified aircraft fuel dis-
tribution system, based on hypothetical data and scenarios.
However, in the future, we plan to verify the usefulness and
scalability of the approach by applying it to more complex
systems with real operational data. One challenge in this case
would be the availability of operational data of a system and
the willingness of the system owners to share the data.
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