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Abstract 

 

 Thermal ageing of triacylglycerides (TAGs) at high temperatures produces films which resist 

removal using aqueous surfactant solutions.  We have used a mass loss method to investigate the 

removal of thermally-aged TAG films from hard surfaces using aqueous solutions of surfactants of 

different charge types.  It is found that cationic surfactants are most effective at high pH, whereas 

anionics are most effective at low pH and non-ionic surfactant is most effective at intermediate pH.  

We show that the TAG film removal process occurs in several stages.  In the first “lag phase” no 

TAG removal occurs; the surfactant first partitions into the thermally-aged film.  In the second stage, 

the TAG film containing surfactant is removed by solubilisation into micelles in the aqueous 

solution.  The effects of pH and surfactant charge on the TAG removal process correlate with the 

effects of these variables on the extent of surfactant partitioning to the TAG film and on the 

maximum extent of TAG solubilisation within the micelles.  Additionally, we show how the TAG 

removal is enhanced by the addition of amphiphilic additives such as alcohols which act as co-

surfactants.  The study demonstrates that aqueous surfactant solutions provide a viable and more 

benign alternative to current methods for the removal of thermally-aged TAG films. 
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1. Introduction 

 

 The removal of stains consisting of liquid triacylgleride (TAG) mixtures from fabric and hard 

surfaces by surfactant solutions has been much studied in order to optimise the efficacy of 

commercial detergents1-8.  The key mechanisms involve either “roll-up” of the TAG drops to form 

emulsion drops within the solution or solubilisation of the TAGs within the micelles of the surfactant 

solution.  Optimal TAG removal generally occurs under conditions when the aqueous surfactant 

solution system exhibits minimum interfacial tension with the liquid TAG phase and the surfactant 

shows maximum solubilisation of the TAG.  This condition corresponds to microemulsion phase 

inversion of the system at equilibrium which, in turn, is also the condition required for emulsion 

phase inversion of the system containing equal volumes of the oily TAG phase and aqueous solution.  

Much less attention has been given to the removal of thermally-aged TAG mixtures by surfactant 

solutions where baking causes the TAG mixture to be hardened to a solid or semi-solid.  Industrial 

cleaning of thermally-aged, hardened TAG residues on cooking surfaces is commonly done using 

alkaline solutions which act by chemically hydrolysing the TAG species to glycerol and fatty acid 

salts which are then easily removed by water rinsing.  The focus of this work is to investigate how 

thermally-aged, hardened TAG films on glass surfaces can be removed using surfactant solutions. 

 

 Baking of TAG films at the temperatures used in food preparation causes complex chemical 

and physical changes in the TAG mixture9-18.  The main chemical reactions are hydrolysis of the 

TAGs to produce fatty acids and di- or mono-glycerides and glycerol, oxidation which reduces the 

concentration of unsaturated fatty acid species and increases the total polar content and 

polymerisation reactions to give a variety of cyclic dimers and acyclic polymers.  These chemical 

changes are accompanied by physical changes including increases in colour, viscosity and 

foamability plus (as for the TAG system investigated here) conversion of a liquid oil to a semi-solid.  

The chemical and physical changes in fats during baking are the result of a complex and 

incompletely understood series of reactions which depend strongly on the nature of the TAG species, 

temperature, oxygen content, trace level catalytic species, the nature of the surface of the container 

and its surface:volume ratio. 

 

 In this study, we focus on a standard TAG mixture which is commonly used to assess the 

effectiveness of different cleaning formulations.  This mixture consists of 33.3 wt% lard (pig fat), 

33.3 wt% vegetable oil (rapeseed oil, supplied as Tesco’s own brand) and 33.3 wt% vegetable 

shortening (which, in turn, consists of 50 wt% cottonseed oil and 50 wt% soya bean oil, Crisco 

brand).  Before thermal ageing, this triglyceride mixture is a semi-solid at room temperature and is a 

pale yellow liquid at 40oC which is the temperature used here to determine the extent of removal.  

The unbaked, liquid TAG film is easily and quickly cleaned using aqueous surfactant solutions.  

When thermally aged using the procedure detailed below, the TAG mixture at 40oC is a light-brown, 

rubbery and tacky semi-solid which is much more difficult to clean from a surface using aqueous 

surfactant.  The aims of this study are to investigate the conditions required to remove thermally 

aged TAG films from hard surfaces using aqueous surfactant solutions and to elucidate the 

mechanism of the process.  We address the following issues. 

 How do the conditions used for the thermal ageing of the TAG film affect its chemical and 

physical properties and its removal by surfactant solutions? 

 How does the thermally aged TAG film removal depend on the surfactant concentration, pH, 

the nature of the surfactant and temperature? 

 How do the surfactants interact with the thermally aged TAG film during the removal?  

 Can the TAG film removal be enhanced by additives to the surfactant solutions? 

 

2. Experimental 
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2.1 Materials. 

 Water was purified by passing through an Elgastat Prima reverse osmosis unit followed by a 

Millipore Milli-Q reagent water system. Its surface tension was 71.9 mN m-1 at 25°C, in good 

agreement with literature.  The standard TAG mixture used consists of 33.3 wt% lard (pig fat, 

supplied as Sainsbury’a own brand), 33.3 wt% vegetable oil (rapeseed oil, supplied as Tesco’s own 

brand) and 33.3 wt% vegetable shortening (taken to consist of 50 wt% cottonseed oil and 50 wt% 

soya bean oil, Crisco brand), mixed together as liquid at 40oC for 30 minutes.  Thermally aged TAG 

films were prepared by pipetting the molten TAG mixture onto a masked glass slide (the back 

surface of the slide and the two ends were masked with sacrificial glass pieces held by spring clips).  

This creates a TAG film of a fairly constant mass (0.2 - 0.25 g) and constant surface area (14.3 cm2) 

on one side of the slide.  To make thermally aged TAG films, the slides were laid flat on a tray and 

placed in an oven for 1 hour at 200oC (except where noted otherwise).  According to ref. 19, the 

composition of the TAG mixture expressed as the wt% of the fatty acids present in the mixture of 

oils is as shown in Table 1. 

 

 The cationic surfactant with tradename BTC65 was supplied by Stepan as a 50 wt% solution 

in water.  The active material contains a mixture of alkylbenzyldimethylammonium chloride species 

with a distribution of hydrophobic chain lengths from C8-C18.  Titration of the dried solid material 

showed the average structure was tridecylbenzyldimethylammonium chloride (abbreviated here as 

TBDMAC).  The anionic surfactant with tradename Bioterge PAS 8S from Surfachem was supplied 

as a 20.4 wt% solution in water and consists of sodium octyl sulphate (SOS).  Sodium dodecyl 

sulphate (SDS) was supplied by Sigma-Aldrich and was 95% pure.  The non-ionic surfactant with 

tradename Neodol 91-6 from Surfachem is 100% alkyl ethoxylate with a distribution on both the 

alkyl and ethoxylate chain lengths.  The average structure is H-(CH2)10-(O-CH2-CH2)6-OH and is 

denoted C10E6 here. 

 

 The acids, bases and buffers, monosodium phosphate (Sigma, >99%), disodium phosphate 

(Sigma, >98%), citric acid (Aldrich, >99.5%), sodium citrate (Aldrich, >99%), sodium tetraborate 

decahydrate (Sigma, >99.5%), HCl (Fisher, Analytical grade) and NaOH (Fisher, 99%), were used as 

supplied.  Reagents for the Epton and iodine number titrations, Wijs solution (Fluka), KI (Fisher, 

>99.5%), sodium thiosulphate (Fisher, >99.95%), chloroform (Fisher, >99%), Patent blue VF 

(Sigma, 50%), dimidium bromide (Sigma, 95%), and sulphuric acid (Fisher reagent grade), were 

used as supplied.  The additives, 1-dodecene (Aldrich, 99%), 1-decanol (Aldrich, 99%), 1-butanol 

(Riedal-de-Haen, >99%), 1-propanol (Fisher, >99%), methanol (Fisher, >99%), n-decane (Aldrich, 

>99%), 1-heptanol (Aldrich, 98%), 1-pentanol (Lancaster, >98%), 1-hexadecanol (Aldrich, 99%) 

and anisole (Sigma, 99%), were used as supplied. 

 

2.2 Methods. 

 

 The iodine value of the TAG mixture (equal to the mass of iodine in grams that is consumed 

by 100 grams of the substance) is a measure of the amount of unsaturated species in the sample and 

was determined as follows.  A known mass of the TAG mixture is mixed with chloroform and an 

excess of Wij’s solution, consisting of a standardised mixture of iodine monochloride in acetic acid, 

and left in the dark with vigorous stirring for one hour.  An excess of potassium iodide is added 

which reacts with the unreacted ClI to liberate iodine which is then titrated against sodium 

thiosulphate.  The overall reaction sequence is: 

 

 R-CH=CH-R’ + excess ClI  →  R-CHI-CHCl-R’ + remaining ClI 

 Remaining ClI + excess KI  →  KCl + I2 
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 2 Na2S2O3 + I2   →  Na2S4O6 + 2 NaI 

 

 All aqueous surfactant solutions were prepared to have pH values of either 1, 4, 7 or 10.  In 

addition to the added surfactant, the electrolyte contents of these solutions were pH 1: 100 mM HCl; 

pH 4: 62 mM citric acid + 38 mM sodium citrate; pH 7: 58 mM monosodium phosphate + 42 mM 

disodium phosphate and pH 10: 59 mM NaOH + 41 mM sodium tetraborate.  To measure TAG film 

removal as a function of time, a pre-weighed slide coated with a TAG film is held vertically in a 

beaker and completely immersed in 250 mL of the cleaning solution which is vigorously stirred and 

thermostatted.  At regular intervals the slide is removed, gently rinsed under a stream of deionised 

water, dried in a desiccator under reduced pressure and reweighed.  The percentage change of the 

original mass of the TAG film is used as a measure of TAG loss by cleaning. 

 

 Analysis of the ionic surfactant concentrations in both the aqueous solution and TAG phases 

was made using the two-phase titration method detailed in ref. 20.  Surfactant samples in thermally 

aged TAG phases were dissolved in the chloroform phase of the two-phase titration system.  It was 

checked using TAG samples containing added known concentrations of anionic or cationic surfactant 

that the presence of the TAG mixture did not affect the titration.  Additional “blank” titrations of 

either untreated or thermally aged TAG mixture samples containing no added ionic surfactant 

showed no detectable anionic or cationic surface active species (e.g. free fatty acid salts).  If present, 

the concentrations of such species was estimated to be less than 0.04 mM.  Analysis of the non-ionic 

surfactant was done using the method of Tsubouchi andTanaka21 which involves complexation of the 

non-ionic with tetraphenylborate in a two-phase titration.  For titration with thermally aged TAG 

samples, it was found necessary to increase the concentration of the Victoria Blue B indicator to 

improve the visibility of the end-point because of the colour of the TAG films.  Titre results for 

samples of non-ionic surfactant in TAG films did require significant correction (approx. 10% or less) 

for the presence of the TAG species, i.e. titre values of “blank” titrations of TAG samples containing 

no surfactant were subtracted. 

 

Scanning electron microscope (SEM) images were obtained using a Hitachi TM1000 instrument 

operating in high vacuum mode.  Samples were coated in a thin film of gold prior to imaging. 

 

Differential scanning calorimeter (DSC) measurements of thermally aged and untreated TAG 

samples were made using a Mettler Toledo DSC822 instrument.  Samples were weighed into 

aluminium pans and sealed with lids with an identical empty pan as reference.  Using a 

heating/cooling rate of 5oC/minute, samples were initially heated to 90oC, held at 90oC for 5 minutes, 

cooled to -20oC, held at -20oC for 5 minutes, heated to 90oC, held at 90oC for 5 minutes and finally 

cooled back to -20oC.  In this way, two consecutive heating and cooling cycles were recorded for 

each sample. 

 

3. Results and Discussion 

 

3.1 How do thermal ageing conditions affect the properties and removal of baked TAG films? 

 

 The iodine values of the TAG film samples before and after different thermal treatments were 

measured, as shown in Table 2.  A theoretical iodine value for the unbaked TAG mixture based on 

the composition given in Table 1 is 46.3, in reasonably good agreement with the value measured here 

(47.1 ± 0.4, Table 2).  Baking of the TAG films at 150oC for up to 3 hours has no significant effect 

on the iodine value. However, baking at 200oC for 1 hour reduces the iodine value to approximately 

21, indicating an approximately two-fold reduction in the amount of unsaturated species.  Baking for 

longer or at a higher temperature has no further effect on the iodine value.   
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 The concentration of free fatty acid salts produced by triglyceride hydrolysis of the TAG 

mixture was determined by Epton titration using a cationic surfactant as titrant.  For either baked or 

untreated TAG films, the concentration of anionic fatty acid salts was found to be less than 0.04 mM 

from two-phase titration results.  However, it should be noted here that the pH of the aqueous phase 

in these titrations was 4.5.  At this pH, virtually all of the total free fatty acid present would be in the 

form of uncharged, protonated fatty acid which is likely to partition from the water to the oily, TAG 

phase where its presence would not be revealed by this titration. 

 

DSC heating and cooling curves for thermally aged and untreated TAG samples are shown in Figure 

1.  When heated at 5oC/minute, the untreated TAG mixture shows endothermic (melting) peaks at 

approximately -13, 30 and 47oC and melting appears to be complete by 50oC.  The unbaked TAG 

mixture is observed to be semi-solid at room temperature, presumably due to the formation of a fat 

crystal network.  When thermostatted at 40oC, the unbaked TAG mixture is a yellowish liquid with 

no visible fat crystals.  Following thermal ageing of the TAG mixture for 1 hour at 200oC, the 

relatively narrow heat flow peaks are greatly broadened and shifted to lower temperatures.  These 

results indicate that the changes occurring during thermal treatment cause the TAG mixture to lose 

its melting/crystallisation peaks at clearly defined temperatures.  In appearance, the thermally aged 

TAG films remain semi-solid when thermostatted at 40oC and have a rubbery, tacky feel. 

 

 Overall, thermal-ageing of the TAG for 1 hour at 200oC causes (i) a two-fold reduction in 

double bond content; (ii) a broadening of the melting/crystallisation temperature range and (iii) a 

change in state from liquid to a rubbery, tacky semi-solid at 40oC.  The free fatty acid content 

following baking has not been determined.  Thermal treatment at higher temperatures or longer times 

do not induce further changes in the appearance or level of unsaturation.  With respect to TAG film 

removal by surfactant solutions at 40oC, a film of the unbaked liquid TAG mixture was completely 

removed in approximately 1 minute by 43 mM TBDMAC (cationic) surfactant solution at pH 10.  

The thermally aged TAG films are much more difficult to remove as shown in Figure 2.  For 43 mM 

TBDMAC (cationic) surfactant solution at pH 10 and 40oC, complete film removal requires several 

hundred minutes.  Consistent with the observations that the key thermally-induced changes in the 

TAG mixture are complete after 1 hour at 200oC, it can be seen from Figure 2 that the rates and 

extents of removal by the cationic surfactant solution of TAG films baked at either 200oC for 1 hour 

or 250oC for 3 hours are not significantly different.  Because of this, all further measurements of 

baked TAG films used films which were thermally-aged at 200oC for 1 hour. 

 

3.2 How is thermally-aged TAG film removal affected by the conditions used? 

 

 Figure 3 shows percentage TAG film removal by a surfactant solution versus time (on a 

logarithmic scale) for baked TAG films of different thicknesses but constant surface area.  The 

shapes of the film removal plots reveal some important mechanistic features.  Firstly, the plots all 

show a lag time of about 30 minutes over which no TAG removal occurs.  Importantly, this lag time 

is independent of the TAG film thickness.  As seen later, this lag time is related to the time required 

for the surfactant to penetrate and partition to the fat film from the aqueous solution.  If the lag time 

corresponded to the time required for the surfactant to diffuse across the complete depth of the TAG 

film (and thereby affect the adhesion of the fat film with the underlying glass substrate), the lag time 

should be proportional to the square of the fat film thickness.  Figure 3 shows this is not the case; it 

appears that the lag time corresponds to the time required for the surfactant to penetrate only into the 

outermost surface of the TAG film. 
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 Following the lag time, the TAG film is removed by the surfactant solution which is observed 

to remain transparent and weakly scattering.  This weak scattering indicates that the TAG removed 

into solution is present in objects of size much less than the wavelength of light, i.e. it is solubilised 

into nm-sized micelles rather than micrometre-sized emulsion drops.  The post-lag-phase rate of 

TAG removal by solubilisation decreases slightly as the amount of TAG mixture in the film is 

increased.  Under the conditions used here (250 ml of 43 mM cationic surfactant), the TAG films 

containing 0.16 and 0.25 g of TAG mixture are completely removed and solubilised into the 

surfactant solution whereas for the film with 0.46 g TAG mixture, only 0.36 g is removed.  This 

incomplete removal is presumably due to the limit of maximum solubilisation of the TAG by the 

surfactant micelles being reached in this case.  This maximum solubilisation capacity corresponds to 

0.36/(0.25 x 0.043) = 33 g of fat per mol of surfactant.  The decrease in rate of removal by 

solubilisation observed for systems with increasing initial mass of TAG is probably due to the 

decrease in available solubilisation capacity of the aqueous surfactant solution. 

 

 The effect of increasing the surfactant concentration on the TAG film removal rate is shown 

in Figure 4.  The lag time is unaffected by the surfactant concentration but the post-lag-phase rate of 

removal by solubilisation increases with increased surfactant concentration, presumably because the 

increased surfactant concentration leads to an increased fat solubilisation capacity of the aqueous 

surfactant solution. 

 

 We have investigated how the rate and extent of baked TAG film removal is dependent on 

the charge type of the surfactant and the pH of the surfactant solution as shown in Figure 5.  Control 

measurements with solutions of the same pH but no surfactant all showed zero baked TAG film 

removal.  Several observations are noteworthy here.  Firstly, the ionic surfactants (anionic or 

cationic) all cause either no change in the mass of fat remaining or its progressive removal.  In 

contrast, the non-ionic surfactant generally causes an initial mass gain of the TAG film during the 

lag phase.  This shown on the graph as a negative mass loss.  This observation suggests there may be 

differences in the mechanism of TAG film removal by non-ionic versus ionic surfactants.  The 

observed mass gain with non-ionic surfactant in the lag phase may be associated with entry of a 

significant mass of water into the baked TAG film associated with non-ionic surfactant partitioning. 

 

 Secondly, we find the previously unsuspected result that, at high pH, the cationic surfactant is 

the most effective whereas the anionic is most effective at low pH and the non-ionic is most effective 

at intermediate pH.  This pH effect on TAG film removal correlates with pH effects on the maximum 

extent of TAG solubilisation in the solutions of the different surfactants, as seen in Figure 6.  Note 

that the values of maximum TAG film mass lost in Figure 6 are derived from the long-time plateau 

values from Figure 5 in the cases where this corresponds to less than 100% of the total TAG present.  

In the other cases, the maximum mass of TAG solubilised (lost) was measured in additional 

experiments using larger amounts of added thermally aged TAG mixture.  These results suggest that 

the cationic surfactant micelles are best at solubilising TAG when the solutions contain high 

concentrations of anionic hydroxide ion counterions (i.e. high pH) attracted to the micelles whereas 

anionic surfactant micelles solubilise best in the presence of high concentrations of cationic 

hydrogen ions (i.e. low pH).   The non-ionic surfactant solubilises best at neutral pH when the 

concentrations of both hydrogen and hydroxide ions are very low. 

 

 In general, aqueous surfactant solutions at concentrations above their critical micelle 

concentration (cmc) contain a mixture of surfactant monomers and micelles in rapid dynamic 

equilibrium.  The aqueous monomer concentration is approximately equal to the cmc and the 

concentration of micellised surfactant is equal to the total surfactant concentration minus the cmc.  

Because only the micellised surfactant is capable of fat solubilisation, the maximum extent of fat 
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solubilisation and its variation with pH depends on both the cmc and the properties of the particular 

micelles.  Values of the cmc for the different systems are summarised in Table 3.  For the anionic 

surfactant SOS, the cmc is similar in magnitude to the overall surfactant concentration of 43 mM 

used for the cleaning measurements and hence the cmc value is a significant factor in determining 

the overall fat solubilisation capacity for the SOS solutions used here.  The cmc values for SDS, 

TBDMAC and C10E6 are all small relative to the total surfactant concentrations used here.  In these 

cases, the great majority of the total surfactant present is in the form of micelles capable of fat 

solubilisation and hence the pH dependence of the cmc is not a significant factor in the pH 

dependence of the solubilisation capacity.  The maximum extents of TAG solubilisation for the 

anionic surfactants SOS (high cmc) and SDS (low cmc) are compared in Figure 6.  Because of its 

lower cmc, SDS shows much greater solubilisation than SOS at all pH values except at the lowest pH 

of 1 where the cmc of SOS is reduced to about half the total surfactant concentration.  At pH 1, the 

solubilisation values of SOS and SDS are similar. 

 

 Figure 7 shows the effect of temperature on the thermally aged TAG film removal rate for the 

cationic surfactant at pH 10.  Lowering the temperature from 40oC to 10oC causes the lag time to be 

dramatically increased from about 30 minutes to about 1000 minutes and also slows the rate of TAG 

removal in the post-lag phase.  Possible factors contributing to this temperature effect may include 

alteration in the thermally-aged TAG film structure (e.g. increased solidification) causing a decrease 

in the rate and/or extent of surfactant partitioning from the water to the film and changes in the extent 

of TAG solubilisation in the surfactant micelles.  Further measurements, beyond the scope of this 

work, would be required to resolve which of these factors are dominant. 

 

 Figure 8 shows illustrative SEM images of the thermally aged TAG films before and at 

various stages during removal with different surfactant solutions.  Before immersion in surfactant 

cleaning solution (top image), the thermally aged TAG film surface is fairly smooth but shows a 

network of fine lines.  The lines may correspond to either crystallite boundaries or indicate some 

degree of microphase separation within the TAG films.  After immersion in cationic TDBMAC 

cleaning solution at pH 10 for 50 minutes (middle image, corresponding to the lag phase being 

complete and approximately 10% of the TAG removed, see Figure 5), the surface is still fairly 

smooth but the network of fine lines is more pronounced; this suggests that these points in the film 

are removed by the surfactant first.  After immersion in non-ionic C10E6 solution at pH 7 for 80 

minutes (bottom image), the film is less smooth and the network of fine lines appears to be converted 

to a pattern of surface bumps.  From Figure 5, it can be seen that this latter image corresponds to 

part-way through the cleaning lag phase in which immersion in the non-ionic surfactant solution 

causes a slight mass gain of the fat film.  The mass gain and change in appearance of the fat film 

maybe due to ingress of surfactant plus some water into the film.  Overall, these SEM images (plus 

many others not shown here) reveal that the thermally aged TAG films are slowly eroded by the 

surfactant cleaning solutions with only minor changes in surface appearance.  Under the conditions 

used here, surfactant solution cleaning does not lead to flaking or removal of macroscopic large 

fragments of the TAG films. 

 

3.3 How do the surfactants interact with the thermally-aged TAG films during removal? 

 

 Thermally-aged TAG films were immersed in surfactant solutions, removed at different times 

and analysed for surfactant content in the TAG films.  Figure 9 shows examples of the measured 

surfactant concentrations in the TAG films as a function of immersion time.  For the cationic 

surfactant TBDMAC, partitioning to the thermally aged TAG is high at pH 10 but much lower at pH 

1.  This pH dependence is reversed for the anionic surfactant SOS; partitioning is high at pH and low 

for pH 10.  Similarly to the variation of the maximum extent of TAG solubilisation, the dependences 
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of the partitioning on pH and surfactant headgroup charge correlate with the effects of these 

variables on the overall cleaning process as seen in Figure 5.  It can also be seen that the timescales 

over which surfactant partitioning to the TAG films occurs are similar to the lag times observed in 

the TAG removal plots of Figure 5. 

 

 For the experiments described here, potential complications could arise from chemical 

degradation of the surfactants, particularly at the low and high pH values used.  For example, it is 

well known that alkyl sulphate hydrolysis is accelerated at both low and high pH.  Using 

measurements of the extent of surfactant degradation (not shown here) over time when incubated at 

different pH and temperatures, it was concluded that surfactant loss by chemical degradation at 40oC 

over the 5 hour duration of a typical TAG film removal/partitioning experiment was negligibly small 

for all the pH values used. 

 

 The extents of surfactant partitioning were expressed as values of the TAG-water partition 

coefficient Kow defined as [surfactant]TAG/[surfactant]water and were measured for both thermally 

aged and untreated (liquid) TAG at 40oC.  For the Kow measurements, the relative volumes of the 

TAG and aqueous phases and the surfactant concentrations were altered to overcome problems 

arising from TAG solubilisation within the surfactant solutions.  Two main points emerge from the 

plots shown in Figure 10.  Firstly, the variation of Kow with pH for the thermally aged TAG systems 

correlates well with the TAG film removal behaviour shown in Figure 5, i.e. partitioning and 

cleaning are high for cationic surfactant at high pH, high for anionic surfactants at low pH and high 

for non-ionic at intermediate pH.  Secondly, comparison of the Kow values for baked and unbaked fat 

shows that the Kow values for untreated TAG mixtures are 1-2 orders of magnitude less than for the 

thermally aged TAG mixtures. Clearly, the thermal ageing process produces TAG oxidation and/or 

other species that increase the affinity of the TAG mixtures for the different surfactants.  Although 

the exact identities of the species produced by thermal treatment are currently unclear, they are likely 

to include free fatty acids, mono- and di-glycerides and glycerol (from hydrolysis), polar species 

from oxidation and polymeric species.  Understanding precisely how such species increase the 

affinity for the different surfactants in the pH dependent ways seen here would require additional 

study which is beyond the scope of this paper.   

 

 In general, the partitioning of ionic species from aqueous solution to a low polarity solvent 

like the TAG mixture is energetically unfavourable.  Depending on the dielectric constant of the low 

polarity solvent, ionic species are unlikely to be present in the low polarity solvent as dissociated 

ions; they are expected to be present as uncharged ion pairs.  For the anionic surfactant ions 

considered here (alkyl sulphates), the relatively high partitioning at low pH could, in principle, be a 

result of protonation of the alkyl sulphate ion to form an uncharged species able to partition to the 

TAG phase.  However, the pKa of the conjugate acid of a methyl sulphate ion is estimated to be 

approximately -3.424.  Assuming the conjugate acids of octyl and dodecyl sulphate ions are similarly 

strong, it can be seen that significant protonation of the anionic surfactant ions is not expected to 

occur, even at the lowest pH of 1 used here.  Hence, it appears likely that the anionic surfactant 

species partition into the baked fat as uncharged species formed by ion-pairing with a cationic 

counter-ion other than H+ which is present in the buffer electrolytes used here (see experimental 

section 2.2).  Similarly, the cationic surfactant ions are likely to partition to the fat in the form of 

uncharged ion-pairs with either OH- or alternative anions from the buffer electrolytes present.  

Hence, it might be anticipated that the tendency of the ionic surfactants to partition to the TAG phase 

may depend on the nature and concentration of the counter-ions present. 

 

 From the results presented above, the mechanism of the removal of thermally aged TAG 

films by these surfactant solutions first involves partitioning of the surfactant from the solution into 
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the TAG over a period of several 10s of minutes.  No TAG removal occurs during this process which 

corresponds to the lag time of the removal process.  Once a certain surfactant concentration in the 

TAG film is achieved at a time equal to the lag time, removal of the TAG from the film into the 

solution occurs.  In its final state, the removed TAG is solubilised within aqueous micelles.  It 

appears that the TAG solubilisation into the micelles occurs via self assembly of the surfactant + 

TAG within the TAG film followed by exit of the TAG-filled micelles into the water, i.e. the 

surfactant must partition to the TAG film before this solubilisation can occur.  If this hypothesised 

mechanism is correct, then it is predicted that adding surfactant to the TAG film prior to immersion 

and cleaning in a surfactant solution should remove the lag time and cause TAG removal to 

commence promptly on immersion in the solution.  Figure 11 shows that this predicted behaviour is 

indeed observed.  For the cationic surfactant TBDMAC at pH 10, the plot of percentage TAG 

removed versus immersion time for a TAG film without added surfactant shows a lag time of 

approximately 30 minutes.  When the TAG film is “doped” with 10 mM TBDMAC prior to 

immersion in 43 mM TBDMAC solution, the TAG film removal commences immediately with no 

lag time.  A doped TAG film immersed in water at pH 10 containing no surfactant shows no 

removal.  This control experiment suggests that the TAG film doping level of 10 mM TBDMAC 

used requires dynamic replenishment from the aqueous solution before TAG removal by 

solubilisation into aqueous micelles can occur. 

 

3.4 Can the thermally-aged TAG film removal be enhanced by additives? 

 

 From the range of systems investigated here, the best removal of thermally-aged TAG films 

occurs with the cationic surfactant TBDMAC at pH 10.  However, even for this system, the lag time 

is approximately 30 minutes and so the time required for removal is long relative to that for 

untreated, liquid TAG mixture.  Using the 43 mM TBDMAC/pH 10 system, we have investigated 

how the addition of various co-solvents or co-surfactants affect the removal.  As seen in Figure 12, 

the addition of 1-10 vol% butanol strongly reduces the TAG film removal time with the 10 vol% 

butanol + surfactant system achieving faster TAG removal than pure butanol alone.  The added 

butanol could enhance the cleaning performance in several different ways.  It may (i) partition to the 

thermally aged TAG, soften it and thereby speed up surfactant partitioning to the TAG film; (ii) 

partition to the TAG and increase its affinity for the surfactant, i.e. increase Kow and/or (iii) act as a 

co-surfactant to increase the TAG solubilisation in the mixed butanol-TBDMAC micelles.  In 

separate experiments, we have measured that Kow for TBDMAC partitioning into thermally aged 

TAG films at pH 10 and 40oC is increased from 4.6 to 6.3 by the addition of 10 vol% butanol to the 

aqueous phase.  Hence, factor (ii) certainly contributes to the observed cleaning enhancement; the 

extent to which factors (i) and (iii) may contribute is currently unknown. 

 

 Figure 13 summarises the effects of many different additives on the thermally-aged TAG film 

removal.  The logarithmic scale ordinate of the measured time required for 50% removal of the 

thermally aged TAG film provides a convenient measure of overall TAG removal rate.  The “base 

system” of 43 mM TBDMAC at pH 10 removes 50% of the TAG film in approximately 105 

minutes, as indicated by the horizontal dashed line.  Some additives (butanol, pentanol, heptanol, 

decanol, hexadecanol and anisole) reduce the 50% removal time whereas others (methanol, dodec-1-

ene, and chloroform) increase the time.  In general, the removal enhancing additives (alcohols and 

anisole) possess an amphiphilic structure consisting a hydrophobic group joined to a hydrophilic 

group.  They all have a co-surfactant character which is likely to increase TAG solubilisation in the 

aqueous micelles.  As noted above, they may also act to soften the thermally aged TAG and increase 

its affinity for the surfactant, as seen in the increase in Kow observed for butanol addition.   
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The additives which have a negative impact on the cleaning (i.e. they increase the 50% removal 

time) are of two types.  Addition of the water miscible co-solvent methanol generally increases the 

cmc of surfactants23.  Hence, methanol addition is expected to increase the cmc, reduce the 

concentration of micelles, reduce the TAG solubilisation capacity of the aqueous solution and 

thereby reduce the film removal rate, as seen here.  The water-immiscible hydrophobic species 

chloroform and dodecene are dissolved in the aqueous phase by solubilisation within the 

hydrophobic cores of the micelles.  Filling the micelles with these hydrophobic additives blocks the 

solubilisation of the TAG and hence reduces the cleaning effect. 

 

 Thermally-aged, semi-solid TAG deposits have generally been regarded as difficult to 

remove using aqueous surfactant solutions as the roll-up/emulsification or solubilisation mechanisms 

for the removal of liquid TAGs are not applicable.  We have shown here that thermally-aged TAG 

film removal occurs in two steps.  In the first, lag-phase step, the surfactant partitions from the 

aqueous solution to the TAG film.  In the second step, the surfactant in the TAG phase self-

assembles into micelles containing solubilised TAG and exits into the water phase, thereby removing 

the TAG film from the surface.  Interestingly, surfactant partitioning to untreated, liquid TAG is low 

whereas partitioning to the semi-solid, thermally aged TAG films is much higher, probably as a 

result of the presence of the product species formed by reactions of the TAGs during thermal 

treatment.  We have found the effectiveness of this TAG film removal process varies with pH in a 

manner that depends on the charge type of the surfactant used.  Cationic surfactants require a high 

pH whereas anionic and non-ionic surfactants require low and intermediate pH values respectively.  

This conclusion has wide ranging implications for the design of thermally aged TAG film removal 

formulations required to operate under particular pH conditions.  Finally, we have shown that 

amphiphilic additives, including amphiphilic perfume components such as anisole, can increase the 

speed of thermally-aged TAG film removal whereas additives which are either too hydrophilic or too 

hydrophobic reduce the speed of TAG removal. 
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Table 1. Composition of the untreated TAG mixture expressed as the wt% of fatty acids contained 

in the mixture of triglyceride oils (derived from information in ref. 19). 

 

no. carbons no. double bonds wt% in ASTM grease 

 

14 0 0.3 

16 0 14.5 

18 0 5.8 

20 0 0.3 

22 0 0.3 

24 0 0.3 

 

16 1 1.0 

18 1 31.5 

18 2 22.3 

18 3 5.1 

20 1 1.3 

22 1 17.2 
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Table 2. Iodine values of ASTM grease samples subjected to different thermal treatment times and 

temperatures.  

 

Thermal treatment 

time / hrs 

Temperature / oC Iodine value 

0 - 47.1 ± 0.4 

1 150 47.3 ± 0.6 

2 150 47.2 ± 0.8 

3 150 47.7 ± 0.5 

1 200 21.1 ± 0.3 

2 200 21.1 ± 0.6 

3 200 21.6 ± 0.5 

1 250 21.3 ± 0.7 

2 250 21.7 ± 0.6 

3 250 21.2 ± 0.4 
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Table 3. Critical micelle concentration (cmc) values at 40oC for the surfactant solutions used 

here.  The electrolyte compositions of the different pH solutions are noted in the text. 

TBDMAC value was interpolated from values in ref. 22.  SDS value refers to 100 mM 

NaCl at 40oC, from ref. 23.  SOS values were measured in this work. C10E6 value 

refers to water at 40oC, from ref. 23. 

 

surfactant pH cmc/mM 

TBDMAC 1, 4, 7 and 10 Approx. 1 

(cationic)   

 

SDS 1, 4, 7 and 10 Approx. 1.6 

(anionic)   

 

SOS 1 26 

(anionic) 4 43 

 7 47 

 10 36 

 

C10E6 1, 4, 7 and 10 Approx. 0.7 

(non-ionic)   
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Figure 1. DSC heating and cooling curves for untreated and thermally aged (heated on a glass slide 

for 1 hour at 200oC) TAG mixture samples.  The plots correspond to the second cycle of 

heating to 90oC, holding at 90oC for 5 minutes and cooling to -20oC with a 

heating/cooling rate of 5oC/minute. 
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Figure 2. Effect of different thermal treatment conditions on thermally aged TAG film removal 

using 250 ml of 43 mM TBDMAC (cationic) surfactant solution, pH 10 at 40oC. 
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Figure 3. Effect of initial mass of the TAG films (thermally aged for 1 hour at 200oC) on their 

removal using 250 ml of 43 mM TBDMAC (cationic) surfactant solution at 40oC.  The 

initial TAG film thicknesses (in order of increasing mass) are 140, 215 and 398 m. 
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Figure 4. Thermally-aged TAG film mass loss versus time for different concentrations of 

TBDMAC (cationic) surfactant (250 ml) at pH 10 and 40oC.  The horizontal dashed lines 

indicate the total initial mass of TAG mixture for each experiment. 
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Figure 5. Effects of pH and surfactant charge type on the removal of TAG films (thermally aged 

for 1 hour at 200oC) using 250 ml of 43 mM surfactant solutions at 40oC.  For the 

surfactants, the cationic is TBDMAC, non-ionic is C10E6 and the anionic is SOS. 
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Figure 6. Effect of pH on the maximum mass of thermally aged TAG mixture which can be 

solubilised into 250 ml of 43 mM solutions of the different surfactants at 40oC.  The 

horizontal dashed line shows the typical mass of TAG used in the TAG film removal 

experiments; 100% TAG film removal is only observed when the maximum 

solubilisation exceeds this value.   
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Figure 7. Effect of temperature on the removal of TAG films (thermally aged for 1 hour at 

200oC) using 250 ml of 43 mM TBDMAC (cationic) surfactant solution at pH 10. 
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Figure 8. SEM images of thermally aged TAG films. Top image: TAG film before immersion in 

surfactant solution.  Middle image: film after immersion in 43 mM cationic TBDMAC 

solution at pH 10 and 40oC for 50 minutes (corresponding to approximately 10% TAG 

removed).  Bottom image: film after immersion in 43 mM non-ionic C10E6 solution at 

pH 7 and 40oC for 80 minutes (corresponding to 5% mass gain of the TAG film).   
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Figure 9. Variation with time of the surfactant concentration in the thermally aged TAG films 

(0.25 g thermally aged for 1 hour at 200oC) for the cationic (TBDMAC) and anionic 

(SOS) surfactants at pH 1 and 10 following immersion in 50 ml of 43 mM surfactant 

solution at 40oC. 
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Figure 10. Variation of TAG-water partition coefficient (Kow) with pH for the different surfactants 

into thermally aged TAG (upper plot) and untreated TAG (lower plot).   
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Figure 11. Percentage mass loss versus time for thermally-aged TAG films with and without pre-

doping with 10 mM TBDMAC (cationic) surfactant.  The aqueous solution volume was 

250 ml and the temperature was 40oC in each case. 
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Figure 12. Percentage mass loss versus time for thermally-aged TAG films in solutions containing 

43 mM TBDMAC (cationic) surfactant and different concentrations of 1-butanol.  The 

aqueous solution volume was 250 ml, pH = 10 and the temperature was 40oC in each 

case. 
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Figure 13. Immersion time required to achieve 50% TAG film removal at 40oC in 250 ml solutions 

containing 43 mM cationic surfactant plus different additives at pH = 10 and 40oC.  The 

horizontal dashed line shows the time for 50% removal in the absence of additive. 
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