
A Runtime Safety Analysis Concept for Open
Adaptive Systems

Sohag Kabir1, Ioannis Sorokos1, Koorosh Aslansefat1, Yiannis Papadopoulos1,
Youcef Gheraibia1, Jan Reich2, Merve Saimler3, and Ran Wei4

1 Department of Computer Science and Technology, University of Hull, Hull, UK
{s.kabir, k.aslansefat-2018, i.sorokos, y.i.papadopoulos,

y.gheraibia}@hull.ac.uk
2 Fraunhofer Institute for Experimental Software Engineering (IESE),

Kaiserslautern, Germany
jan.reich@iese.fraunhofer.de
3 AVL/TR, Istanbul, Turkey

merve.saimler@avl.com
4 Department of Computer Science, University of York, York, UK

ran.wei@york.ac.uk

Abstract. In the automotive industry, modern cyber-physical systems
feature cooperation and autonomy. Such systems share information to
enable collaborative functions, allowing dynamic component integration
and architecture reconfiguration. Given the safety-critical nature of the
applications involved, an approach for addressing safety in the context
of reconfiguration impacting functional and non-functional properties at
runtime is needed. In this paper, we introduce a concept for runtime
safety analysis and decision input for open adaptive systems. We combine
static safety analysis and evidence collected during operation to analyse,
reason and provide online recommendations to minimize deviation from
a systems safe states. We illustrate our concept via an abstract vehicle
platooning system use case.

Keywords: platooning · bayesian networks ·model-based dependability
analysis · runtime assurance

1 Introduction

Autonomous driving has gained significant financial and public interest in recent
years. The idea of reducing or even removing the human control factor from
driving is inherently quite exciting and promises many direct benefits to drivers,
such as increased safety, comfort, improved fuel efficiency and flexible parking in
cities [7]. With regards to financial potential, a widely cited market forecast for
the UK’s government’s Centre for Connected and Autonomous Vehicles (CAVs)
estimates the market for CAVs to be worth ”£28bn in 2035, capturing 3% of
the £907bn global market” [4, pg. 3]. The topic also presents a significant re-
search challenge, incorporating multi-disciplinary issues from domains such as

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science. The
final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-32872-6_22

2 S.Kabir et al.

artificial intelligence, cyber-security, sensor fusion, safety and more. A defining
characteristic of autonomous driving are the highly dynamic and rapidly chang-
ing conditions experienced by CAVs during operation. CAVs must continuously
adapt to varying road layouts, infrastructure, neighbouring vehicle composition
and driving behaviors. These considerations compound existing dynamics ex-
perienced in non-autonomous vehicles such as variable weather conditions and
road conditions. In particular, the issue of safety presents a significant concern.
Traditional safety assurance is defined as activities performed during develop-
ment to support the overall claim that the system will be safe to operate. These
activities are typically bound to the development, not the runtime phase of the
system lifecycle. In safety standards like ISO26262[10] and IEC 61508 [9], safety
analysis activities are expected to only be performed during design and not dur-
ing operation. However, the dynamism that CAVs feature, renders traditional,
exhaustive approaches of safety assurance intractable against the potentially in-
finite combinations of factors and scenarios to consider. To reap the full potential
offered by CAVs, assurance must adapt to their open and collaborative nature.
Previous work in [14] investigated the use of their proposed Dynamic Safety
Contracts (DSCs) and earlier Conditional Safety Certificates (ConSerts) [19] to
address the issue of safety assurance for CAVs. The authors describe how evi-
dence collected at runtime from various sources can be processed by predefined
DCSs and ConSerts to provide runtime safety guarantees, enabling collaborative
services to be negotiated dynamically. However, we note some limitations with
regards to this previous work; both DSCs and ConSerts rely on the use of binary
conditional variables to evaluate guarantees.

In this paper, we expand upon previous contract-oriented approaches in the
following ways:

– We introduce the use of Bayesian Networks (BNs) as an alternate inference
mechanism for probabilistic reasoning of guarantees. BNs provide means
of expressing uncertainty and accounting for uncertainty in the assurance
process.

– Beyond inference, our expanded framework also proposes recommended ac-
tions to be applied to minimize system risk during operation; these actions
are predefined and linked to a state machine. This element allows the sys-
tem to address partially unanticipated scenarios by re-evaluating previous
assumptions about the state of the system and responding appropriately.

To illustrate our methodology, we apply it towards an abstract vehicle platoon-
ing system use case. Notably, we believe the approach is flexible and could be
transferred to other domains. The use case discussed is largely based on the
ongoing research contributed by AVL/TR1 and earlier research by Fraunhofer
IESE2, partners of the Dependability Engineering Innovation for cyber-physical
Systems (DEIS) research project3. The remainder of the paper is structured as

1 https://www.avl.com/-/avl-turkey
2 https://www.iese.fraunhofer.de/en.html
3 http://www.deis-project.eu/

https://www.avl.com/-/avl-turkey
https://www.iese.fraunhofer.de/en.html
http://www.deis-project.eu/

A Runtime Safety Analysis Concept for Open Adaptive Systems 3

follows; in section 2, an overview of previous research and associated literature
is reviewed. In section 3, our proposed framework is presented in detail. Section
4 discusses the application of the framework on the vehicle platoon case study
mentioned earlier.

2 Brief background and literature

2.1 Runtime Assurance for Vehicle Platooning

Integration of automated control in vehicles is not a recently proposed idea;
for instance, the PATH project4, as early as 1986, begun pursuing the topic of
Intelligent Transportation Systems (ITS). As vehicles are safety-critical systems,
providing equal or even more robust guarantees for safety, security and other
dependability characteristics is paramount for the successful adoption of ITS.
Vehicle platooning systems are an application of ITS also explored in PATH,
and in other research projects such as KONVOI, SARTRE and more [23], [2],
[17, p. 19].

Vehicle platooning also falls under the definition of self-adaptive systems. In
[5], an overview of the topic of assurance using models at runtime for self-adaptive
software systems (SASSs) is provided. Platoons are SASSs in the sense that
they are formed, modified and dissolved dynamically at runtime. The authors
view SASSs as compositions of steady-state programs, managed by controllers
or autonomic managers. SASSs require assurance to be performed at runtime
as well, as part of their functionality is conditional on their adaptation. Thus,
dependability-critical properties of SASSs must be assured before, during and
on completion of each adaptation over the course of operation.

Earlier, in [18], the idea of using monitoring for adaptive system runtime
verification is explored. The author notes that adaptive systems may feature
unanticipated interactions at runtime. Rushby proposes a framework based on
assurance cases and monitors generated from runtime verification languages to
oversee whether assumptions and other safety properties of the case are not
violated during operation. In cases where violations are detected, fault diagnosis
can be applied, to trace indirect violations back to their source and identify
appropriate options for recovering from failure or mitigating risk e.g. switching
to backup systems or degrading services.

In [14], the issue of safety assurance for emergent collaboration of open dis-
tributed systems is explored. The authors note, like others have e.g. [18, p.1-2, 5-
6][5, p. 1],[17, p. 2], that established practice restricts validation and verification
processes to be performed exclusively during development. System behavior is
decided and assured before operation, severely restricting the potential of run-
time collaborative operations. The established view is rejected by the authors,
who claim that available information on the operational context can be exploited
to inform and assure collaborative functions at runtime. Their proposed ap-
proach is to predefine certain collaboration options during development. As the

4 https://path.berkeley.edu/home

https://path.berkeley.edu/home

4 S.Kabir et al.

options are predefined, a priori analysis can determine what should the appro-
priate reaction be to specific conditions during operation. The reaction would
ideally reduce or eliminate the risk of collaborative services during operation,
such that it is acceptable for the services to be performed. The decision of the
appropriate reaction during operation relies on the systems’ capacity to monitor
the condition of dependability properties. A notable concept that support this
view are Conditional Safety Certificates (ConSerts) [19]. ConSerts extend the
notion of a modular assurance case with conditional dependability guarantees.
Guarantees are provided using user-defined Boolean logic gates (AND, OR) to
combine demands imposed on further ConSerts or runtime evidence that will
be collected during operation. Further ConSerts satisfy imposed demands by
evaluating their own guarantees and so on. The authors of [14] note that their
proposed scheme can be expanded to identify potential collaborative services at
runtime and negotiate their assurance via ConSerts.

In their current state, ConSerts use binary variables to provide/request guar-
antees/demands. ConSerts Trees (CSTs) are formed to represent connectivity
and hierarchical relationships between multiple ConSerts. To evaluate CSTs dur-
ing operation, each CST is converted to a Binary Decision Diagram (BDD) [19,
p. 13]. In [15], the authors note that ConSerts does not address uncertainty and
propose an additional safety manager to be added to the AUTOSAR standard.
The introduced manager actively manages policy, not only monitoring safety
rules, but also enforcing them via the existing AUTOSAR mode manager. The
proposed manager addresses uncertainty by monitoring the data quality and
integrity of safety-critical information stored in safety contracts, the latter be-
ing a comparable concept to ConSerts. Alternative approaches for addressing
uncertainty in CAV platoons include using formal methods [6], Hidden Markov
Models [21] and a requirements language [24].

2.2 State Machines and Bayesian Networks

State machines (SMs) are a high-level modelling formalism used to explicitly
express the behaviour of systems. In its basic form, a SM could be defined as:

SM = (S,Σ, δ, s0) (1)

Where S is the set of all possible states in the SM, Σ is the set of all possible
events, δ is the transition function δ : S×Σ → S and s0 is the initial state. From
a system behaviour modelling point of view, at the beginning of operational time,
the system is in state s0. When an event occurs, a state transition defined by the
transition function can happen to take the system to another state. As SMs can
readily model the effects of different events on different states of a system, they
are well-suited for capturing the effects of failure and faults on the behaviour of
a system. As a result, SMs have been utilised in a number of model-based safety
analysis paradigms such as AADL [8], Altarica [1], xSAP[3], HiP-HOPS [16,12],
etc.

Bayesian networks (BNs) as a probabilistic graphical model have flexible ar-
chitecture, which can make decisions under uncertainty and can provide a global

A Runtime Safety Analysis Concept for Open Adaptive Systems 5

assessment about different dependability properties such as reliability and avail-
ability by combining local level information from different sources. Graphically,
BNs represent the relationships between a set of random variables in the form of
a directed acyclic graph. These relationships can be interpreted as parent-child
relations. In a BN, if an arc originates from a node X and terminates at another
node Y , then X is the parent node and Y is the child node. A parent has direct
effect on its child nodes. Such effects can be either be deterministic (in the sense
they are guaranteed to occur) or probabilistic [13]. The probability distribution of
a node Xi conditioned on its parents can be expressed as Pr{Xi|Parents(Xi)}.
A node without a parent and one without children are known as root and leaf
nodes, respectively. Using the BNs, the joint probability distribution of a set of
random variables {V1, V2, V3, . . . Vn−1, Vn} can be obtained by a chain rule as:

Pr{V1, V2, V3, . . . Vn−1, Vn} =

n∏
i=1

Pr{Vi| Parent(Vi)} (2)

where Pr{x} is the probability of x and Pr{x|y} is the conditional probability
of x given y.

In recent years, BNs have gained popularity in the dependability engineering
area and an overview of widespread applications of BNs in safety and reliablity
analysis can be found in [11].

Fig. 1. Framework of the proposed approach

3 Proposed Framework

Our proposed framework relies on certain assumptions, described here. As men-
tioned earlier, during operation, self-adaptive systems can react to different unex-

6 S.Kabir et al.

pected and/or expected events and reconfigure themselves to continue providing
services. That means such systems can operate in different mode of operations
and each mode can be considered as a distinct system state. In this paper, we
assume that during design stage, it is possible to foresee all the different possible
states a system can be in during operation. The only a priori unknown is the
actual state of the system at a given point during operation.

Fig. 1 shows the proposed framework for runtime safety assurance of self-
adaptive systems. Note that, we assume that the user of this framework have the
safety goal(s) defined for the subject system. As seen in the figure, the framework
contains six different steps. The first three of these steps are performed during
design time and the rest of the steps are performed repeatedly during runtime.
The framework steps are performed as follows:

1. In light of assumptions made previously, as the first step of the framework,
the behavioural model of the system is developed as a state machine. To do
so, analysts require knowledge of the architecture and both nominal and fail-
ure behaviour of the studied system. Digital Dependability Identities (DDIs)
[20] can be used to encapsulate this behavior into a machine-readable format.

2. Once the state machine is formed, per the second step of Fig. 1, analysts
must identify the safety status of the system in each of the previously iden-
tified states with respect to the safety goal(s) defined earlier. Based on the
state machine, per-state actions are defined to assure safety of the overall
system operation. In other words, as a particular state depicts a distinct
operational context for the system, actions are defined to reduce or elimi-
nate unacceptable i.e. unsafe risk of operation under that context. How such
actions should be processed in general depends on the specific application.
For instance, some actions may be provided as recommendations to human
operators, others may be input for automated controls.

3. The third step involves developing an executable model used at runtime to
estimate the operational state of the system. To develop such an executable
model, the first task is to identify necessary conditions that must be verified
at runtime to ascertain the system state. Once such conditions are known,
these conditions must be formulated in a verifiable format using parameters
known at design time and parameters that can be monitored during system
operation. The monitoring data based on these parameters includes internal
system data, external data received from other collaborating systems, and
environmental conditions. In this paper, we utilise the modelling capability
of Bayesian Networks (BNs) to formulate such an executable model. In the
BN model, leaf nodes are variables representing different parameters neces-
sary to learn about the state of the system. The root node evaluates the
current state of the system based on the leaf nodes. Note that, if multiple
states could be evaluated from one BN, then multiple root nodes can be
included. Alternatively, it is also possible to separate the executable model
into several BNs when different state evaluations are needed. In this paper,
we assume that each of the smaller participating subsystems to the larger
system operate based on the principle of self-safety with group-awareness.

A Runtime Safety Analysis Concept for Open Adaptive Systems 7

This means that each subsystem aims to ensure its own safety in the context
of the whole system’s operation, based on the subsystem’s own data and
data received from others. For this reason, each such subsystem contains
executable model(s) (i.e. BN model(s)) to evaluate its own state.

4. During operation, each subsystem monitors its own data and data collected
from other systems, and provides runtime input to the BN model(s). In the
context of a BN model, this involves setting evidence on the leaf nodes of
the appropriate BNs.

5. In the next step of Fig. 1, whenever new evidence is provided to the BN, the
model is executed automatically to update the knowledge about the current
state of the system’s operation.

6. Once the current system state is known, appropriate actions can be selected
for the current state from the predefined set of actions. As actions are prede-
fined to assure system safety, proper execution of the actions should guaran-
tee the safe operation of the system from any state, providing development
assumptions hold. However, even if recommended actions are not executed
properly, the executable model can revise the earlier recommendation by ac-
counting for the new situation. In the worst case scenario, if the subsystem’s
safe operation cannot be guaranteed in the context of the larger system, then
the operation can be suspended.

4 Illustrative Example

In this section, we use an abstract vehicle platooning system (see Fig. 2) example
to demonstrate the proposed approach. For illustration, an already formed, sta-
ble platoon scenario with two vehicles, a leader and a follower, is assumed. Each
vehicle is equipped with sensors and other components to detect frontal obstacles
and communicate with other vehicles and roadside infrastructure. For brevity,
we consider all communication channels adequately secure, hence, security issues
are not considered in this use case. Moreover, we consider that both vehicles can
operate in either Cooperative or Adaptive Cruise Control (CACC/ACC) mode.
In CACC mode, each vehicle collaborates with other vehicles to provide safety
guarantees. In the absence of collaboration (ACC mode), vehicles rely only on
their own components to drive safely.

Fig. 2. Platoon with two vehicles

8 S.Kabir et al.

In our illustration, we assume that two vehicles are driving in CACC mode.
For effective platooning, the follower vehicle always attempts to maintain the
minimum distance from the leader such that inter-vehicle distances should not
increase downstream from leader to followers. This concept is also known as
‘string stability’, [22]. Driving in close proximity to the leader leads offers im-
proved fuel efficiency, at the cost of increased risk of frontal collision. The aim
of this use case is to show that the follower vehicle can ensure, through the
proposed approach, that the risk of frontal collision with the leader in any of
its operational modes is minimal. Towards this end, the follower vehicle must
verify specific safety properties during runtime. Similar to the example provided
in [14], we consider that to ensure safe and lawful driving the follower vehicle
has to ensure the following conditions:

– Condition 1: d ≥ ds, where d is the distance from the front vehicle and ds is
the minimum safety distance.

– Condition 2: Speedvehicle ≤ Speedlimit, where Speedvehicle is the current
speed of the vehicle and Speedlimit is the speed limit of the road.

Therefore, the safety goal considered is “avoid violation of the safe dis-
tance and legal speed limit”. For the purposes of the study presented here,
only a few factors are considered for the determination of dmin. In practice, there
is a plethora of additional dynamic factors that affect this limit and will need to
be accounted for. A more detailed analysis of the involved factors can be found
in [17, p. 45].

Across all scenarios, if the above conditions cannot be satisfied, then the
follower vehicle will take appropriate action based to achieve safety by satisfying
the conditions. However, if any of the above conditions are not verifiable at
runtime, then the proposed approach will recommend the vehicle switch to ACC
mode until verification can be performed. Potential reasons for non-verifiability
include the unavailability of one or more parameters required for verification or
poor parameter detection quality by the vehicles.

Fig. 3 presents the block diagram showing how safety is assured during run-
time, from the follower vehicle’s perspective. In the figure, the follower vehicle
collects external runtime evidence from the leader and the roadside infrastruc-
ture via its communication interface. This evidence, coupled with the follower’s
internal parameters, are fed to its calculation unit. Within the calculation unit,
the safety distance is calculated by accounting for different factors that may
affect the vehicle’s reaction capability. The specifics of the calculation are out-
side the scope of this paper. We consider the outcome of the calculation block
available to the executable models created as part of the proposed framework.

The state machine of the behaviour of the follower vehicle in the context of
the whole platoon is shown in Fig. 4. The state machine accounts for the differ-
ent operational system contexts, with the follower vehicle being in six possible
operational states. To guarantee safety in each state, table 1 shows the required
action in each state. That means a distinct safety guarantee is associated with
each state. In state S0, both conditions (distance and legal speed limit) are sat-
isfied, therefore no special action is needed in this state. However, in S2, the first

A Runtime Safety Analysis Concept for Open Adaptive Systems 9

Fig. 3. Runtime safety assurance concept for the following vehicle

condition is not satisfied, therefore the follower should decelerate to increase dis-
tance from the leader. We should note that the state machine’s role is advisory
rather than prescriptive or descriptive. This means that it is used as a guide for
identifying recommended actions to transition to safe/safer states, rather than
being actively executed.

Fig. 4. State machine of the platoon system

10 S.Kabir et al.

Table 1. State with their description and associated actions

State Description Actions

S0

The safety constraint is fulfilled
and the vehicle is driving within
the speed limit of the road.

The state is safe, therefore
continue driving.

S1

The safety constraint is fulfilled
but the vehicle is driving outside
the speed limit of the road.

Decelerate to fall within the
speed limit.

S2

The safety constraint is not fulfilled
and the vehicle is driving within
the speed limit of the road.

Decelerate to increase distance
with the front vehicle until
safety constraint is fulfilled.

S3

The safety constraint is not fulfilled
and the vehicle is driving outside
the speed limit of the road.

Decelerate to achieve safety
distance and fall within speed
limit.

S4

The safety constraint is not fulfilled,
the vehicle is driving outside
the speed limit of the road,
and it is driving too closely.

Brake to stop driving.

S5
Safety constraint and/or
speed limit cannot be verified.

Switch to ACC mode.

Fig. 5. BN model for deterministic estimation of system state

A Runtime Safety Analysis Concept for Open Adaptive Systems 11

To identify the current operational situation for the follower vehicle, we con-
sider internal safety-related data from the vehicle itself and external data from
the leader and the environment together in a unified BN model as shown in
Fig. 5. Note that this model is defined at design time and evaluated at runtime.
In this model, we combine both quantitative and qualitative safety parameters
for runtime inference about system state. For instance, Speed, SpeedLimit, Dis-
tance@Follower, SafetyDistance etc. are quantitative parameters. On the other
hand, DetectedbyFollower, DetectedbyLeader, ‘ValidSpeedLimit?’ are qualita-
tive binary parameters. In the model, different nodes are responsible for guaran-
teeing different conditions. For instance, the SpeedCheck node guarantees com-
pliance of the vehicle’s speed with the legal speed limit. The SpeedCheck node
receives input from two child nodes. The child node ‘ValidSpeedLimit?’ repre-
sents a certificate about the validity of the speed limit, which is shared either by
other vehicles or by roadside infrastructure. As vehicles may drive very closely
in a platoon, street signs could be missed due to the view being obstructed by
nearby vehicles. Moreover, the speed limit varies based on location, therefore it
is also necessary to have a guarantee about the liveness of the monitored speed
limit. Another child node, SpeedWithinLimit, monitors the legality of the vehi-
cle’s current speed by comparing with the current speed limit. In the absence of
a certificate on the validity of the speed limit, no guarantee is provided regard-
ing legality. However, if the speed limit is validated, the internal safety property
SpeedOK is guaranteed if the current speed is within the speed limit. If the
speed limit is valid and is exceeded, the safety property LimitSpeed is set; this
is equivalent to Speed 6= OK in Fig. 4. Similarly, the node ‘IsItSafe?’ provides a
guarantee about whether the vehicle is maintaining safe distance from the leader.
The DetectionQuality provides a guarantee about the detection capacity of the
two vehicles. A guarantee about the detection quality is provided if the follower
and leader vehicle detect each other and the distances measured by them do not
deviate by a value larger than a predefined threshold.

In order to test whether the approach can detect different scenarios based
on the runtime inputs, provide appropriate level of safety guarantees and rec-
ommend proper actions for ensuring safety, we randomly generated several test
cases and tested the executable model of Fig. 5. Out of these test cases, Table
2 shows 6 different test cases (C1 to C6) which lead the executable model to
provide six different guarantees, i.e., the follower vehicle was detected to be in
six different states. Fig. 6, shows the first test case where the system was de-
tected to be in S0, meaning a guarantee is provided about ‘complete’ safety i.e.
safe distance and legal speed. On the other hand, in case C2, the system state
is estimated as S2, meaning the system is violating the first safety constraint,
thus LimitSpeed guarantee is provided in this case.

Note that, in the above test cases it was assumed that the values of the pa-
rameters are deterministic and their values are known with certainty, as a result,
using the model in Fig. 5, the system states were estimated deterministically.
However, in practice, we may be uncertain about the parameter values. In such
cases, to address parameter uncertainty, we propose to use a probabilistic ver-

12 S.Kabir et al.

Table 2. Results of runtime verification of safety guarantees

Parameters C1 C2 C3 C4 C5 C6

Distance@Follower (m) 6.0 4.0 6.0 1.8 4.2 5.5

Distance@Leader (m) 6.2 3.9 5.9 1.9 4.4 6.2

Safe distance (m) 5.0 5.0 5.0 5.0 5.0 5.0

Too close distance (m) 2.0 2.0 2.0 2.0 2.0 2.0

Allowed error in distances (m) 0.5 0.5 0.5 0.5 0.5 0.5

Speed (miles/h) 48 47 37 37 77 48

Speed limit (miles/h) 50 50 30 30 70 50

Validity of speed limit Yes Yes Yes Yes Yes No

Leader detected by follower Yes Yes Yes Yes Yes Yes

Follower detected by leader Yes Yes Yes Yes Yes Yes

State estimated S0 S2 S1 S4 S3 S5

Fig. 6. Case 1 (C1) as shown in Table 2

sion of the executable model. As an example, we present a probabilistic version
of system estimation in Fig. 7. In this example, the inputs to the BN model
are probabilities instead of deterministic binary values. For instance, the node
SpeedWithinLimit represents that there is an 80% chance that the speed of the
vehicle is within limit and 20% of chance of exceeding it. Similarly, all other root
nodes of the BN model represent probabilistic values for different parameters.

A Runtime Safety Analysis Concept for Open Adaptive Systems 13

As a result of using such probabilistic values for the inference process, unlike the
deterministic model, the system states are estimated with probabilistic rather
than absolute guarantees. For instance, in the case of Fig. 7, the system was
estimated to be in states S0 to S5 with 53%, 13%, 6%, 1%,0%, and 26% proba-
bility, respectively. As S0 state has the highest probability, it could be said that
the system is most likely in state S0. Thereby, a (probabilistic) safety guarantee
for this state can be provided and actions for this state can be executed. The
simplistic rule applied is that the state with the highest probability is selected.
However, there may be cases where two states both have (approximately) the
highest probability. To resolve such cases, predefined rules can be applied for
choosing state. For instance, the more safety-critical state can be chosen in the
case of ties.

Fig. 7. An example of probabilistic system state estimation

5 Conclusion

In this paper, we present a conceptual framework for addressing the issue of
safety under uncertainty in open adaptive systems. Our approach builds upon
previous work on runtime certification, through the use of design-time depend-
ability artifacts such as safety contracts, state machines and Bayesian Networks.
Artifacts are deployed at runtime alongside a monitoring framework for ob-
serving system and environmental state. Thus, runtime knowledge is utilised to
maintain safety properties or recover from unsafe situations.

The work presented here is part of a larger effort, the DEIS research project.
As part of our ongoing research, we aim to integrate our proposed framework

14 S.Kabir et al.

with the concept of the DDI. DDIs aim to support modularity, composition,
seamless exchange and evaluation of the associated dependability artifacts at
runtime. DDI integration offers an avenue for implementing the approach in a
larger systematic, top-down, traceable development framework. Such a frame-
work provides justified confidence in the assurance of dependability-critical prop-
erties of CPS. Further avenues of investigation include linking the proposed ap-
proach with ConSerts. By combining modular and conditional certification with
probabilistic reasoning and runtime monitoring, a larger section of the develop-
ment lifecycle could be supported via relevant model-based techniques. Further,
an assumption of our current approach is that the actions for mitigating safety
risk defined from each system state have deterministic outcomes. A more robust
framework would ideally be capable of deciding on actions with uncertain effects
as well.

Acknowledgements

This work was supported by the DEIS H2020 Project under Grant 732242.

References

1. Arnold, A., Point, G., Griffault, A., Rauzy, A.: The AltaRica formalism for de-
scribing concurrent systems. Fundamenta Informaticae 40(2), 109–124 (2000)

2. Bergenhem, C., Shladover, S., Coelingh, E., Englund, C., Tsugawa, S.: Overview
of platooning systems. In: Proceedings of the 19th ITS World Congress, Oct 22-26,
Vienna, Austria (2012) (2012)

3. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP safety analysis platform. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 533–539 (2016)

4. CCAV: Connected and autonomous vehicles: Market forecast. Tech.
rep., Centre for Connected and Autonomous Vehicles; UK Department
of Transport (2017), https://www.gov.uk/government/publications/

connected-and-autonomous-vehicles-market-forcecast

5. Cheng, B.H.C., Eder, K.I., Gogolla, M., Grunske, L., Litoiu, M., Müller, H.A.,
Pelliccione, P., Perini, A., Qureshi, N.A., Rumpe, B., Schneider, D., Trollmann,
F., Villegas, N.M.: Using Models at Runtime to Address Assurance for Self-
Adaptive Systems, pp. 101–136. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-08915-7 4

6. Dolginova, E., Lynch, N.: Safety verification for automated platoon maneuvers:
A case study. In: International Workshop on Hybrid and Real-Time Systems. pp.
154–170. Springer (1997)

7. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: oppor-
tunities, barriers and policy recommendations. Transportation Research Part A:
Policy and Practice 77, 167–181 (2015)

8. Feiler, P., Rugina, A.: Dependability Modeling with the Architecture Analysis
& Design Language (AADL). Tech. Rep. July, Software Engineering Institute,
Carnegie Mellon University (2007)

https://www.gov.uk/government/publications/connected-and-autonomous-vehicles-market-forcecast
https://www.gov.uk/government/publications/connected-and-autonomous-vehicles-market-forcecast
https://doi.org/10.1007/978-3-319-08915-7_4

A Runtime Safety Analysis Concept for Open Adaptive Systems 15

9. International Electrotechnical Commission: IEC 61508: Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety-related Systems, ed. Geneva:
Switzerland. Tech. rep., International Electrotechnical Commission (1997)

10. ISO: ISO 26262: Road vehicles - functional safety. Tech. rep., International Orga-
nization for Standardization, Geneva, Switzerland (2011)

11. Kabir, S., Papadopoulos, Y.: Applications of Bayesian networks and Petri nets
in safety, reliability, and risk assessments: a review. Safety science 115, 154–175
(2019)

12. Kabir, S., Papadopoulos, Y., Walker, M., Parker, D., Aizpurua, J.I., Lampe, J.,
Rüde, E.: A model-based extension to HiP-HOPS for dynamic fault propagation
studies. In: 5th International Symposium on Model-Based Safety and Assessment.
pp. 163–178 (2017). https://doi.org/10.1007/978-3-319-64119-5 11

13. Kabir, S., Walker, M., Papadopoulos, Y.: Dynamic system safety analysis in HiP-
HOPS with Petri nets and Bayesian networks. Safety science 105, 55–70 (2018)

14. Mueller, S., Liggesmeyer, P.: Safety assurance for emergent collaboration of open
distributed systems. In: IEEE International Symposium on Software Reliability
Engineering Workshops. pp. 249–256. IEEE (2016)

15. Östberg, K., Bengtsson, M.: Run time safety analysis for automotive systems in
an open and adaptive environment. In: SAFECOMP 2013-Workshop ASCoMS
(Architecting Safety in Collaborative Mobile Systems) of the 32nd International
Conference on Computer Safety, Reliability and Security. p. NA (2013)

16. Papadopoulos, Y., Walker, M., Parker, D., Sharvia, S., Bottaci, L., Kabir, S.,
Azevedo, L., Sorokos, I.: A synthesis of logic and bio-inspired techniques in the
design of dependable systems. Annual Reviews in Control 41, 170–182 (2016)

17. Reich, J.: Systematic engineering of safe open adaptive systems shown for truck pla-
tooning. MSc thesis, Technical University of Kaiserslautern, Kaiserslautern, Ger-
many (2016). https://doi.org/10.13140/RG.2.2.27809.61283

18. Rushby, J.: Runtime certification. In: International Workshop on Runtime Verifi-
cation. pp. 21–35. Springer (2008)

19. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 8(2), 1–20
(2013)

20. Schneider, D., Trapp, M., Papadopoulos, Y., Armengaud, E., Zeller, M., Höfig, K.:
Wap: digital dependability identities. In: 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE). pp. 324–329. IEEE (2015)

21. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) Runtime Verification. pp. 193–207. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2012)

22. Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE trans-
actions on automatic control 41(3), 349–357 (1996)

23. Tsugawa, S., Jeschke, S., Shladover, S.E.: A review of truck platooning projects
for energy savings. IEEE Transactions on Intelligent Vehicles 1(1), 68–77 (2016)

24. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: RELAX: Incorpo-
rating Uncertainty into the Specification of Self-Adaptive Systems. In: 17th IEEE
International Requirements Engineering Conference. pp. 79–88 (Aug 2009)

https://doi.org/10.1007/978-3-319-64119-5_11
https://doi.org/10.13140/{RG}.2.2.27809.61283

	A Runtime Safety Analysis Concept for Open Adaptive Systems

