
1

Computational Intelligence for Safety Assurance of
Cooperative Systems of Systems

Sohag Kabir and Yiannis Papadopoulos

Abstract—Cooperative Systems of Systems (CSoS) including
Autonomous systems (AS), such as autonomous cars and related
smart traffic infrastructures form a new technological frontier
for their enormous economic and societal potentials in various
domains. CSoS are often safety-critical systems, therefore, they
are expected to have a high level of dependability. Due to the
open and adaptive nature of the CSoS, the conventional methods
used to provide safety assurance for traditional systems cannot
be applied directly to these systems. Potential configurations and
scenarios during the evolving operation are infinite and cannot
be exhaustively analysed to provide guarantees a priori. This
paper presents a novel framework for dynamic safety assurance
of CSoS, which integrates design time models and runtime
techniques to provide continuous assurance for a CSoS and its
systems during operation.

Index Terms—Autonomous Systems, Safety Assurance, Recon-
figurable Systems, Computational Intelligence

I. INTRODUCTION

Autonomous vehicles, unmanned aerial vehicles, distributed
and cloud-controlled robotics, telehealth systems, smart energy
grids, the internet of things and other technologies will define
the smart cities and agriculture of this century. Such systems
are often CSoS and making them safe is challenging. We can
identify a number of challenges they pose in safety assurance.

A first challenge is caused by the distribution and the often
heterarchical organisation of systems. A heterarchy is a system
or organisation where the elements are unranked and non-
hierarchical or can be ranked in different ways. CSoS are
inherently distributed, loosely connected and non-hierarchical.
Individual systems within a CSoS are produced by different
stakeholders and there is no overarching specification or
authority that can guarantee their dependability when they
meet in various configurations. None of the systems typically
has total control and authority over others. This means that
the safety of the overall system cannot be interpreted as a set
of goals that are related to the behaviour of one system and to
which other systems contribute. The latter is possible in more
conventional systems organised as hierarchies of subsystems.
It is possible, for example, to express the safety requirements
of a car as a set of integrity requirements that must be achieved
by its components as dictated by safety standard ISO26262.
However, it is not possible to use a single reference starting
point from which one could express the requirements for safety
in the totality of a transport system, which is composed of
connected autonomous cars and smart infrastructure. A car

S. Kabir is with the Department of Computer Science, University of
Bradford, Bradford, BD7 1DP, UK (e-mail: s.kabir2@bradford.ac.uk) and Y.
Papadopoulos is with the Department of Computer Science, University of
Hull, Hull, HU6 7RX, UK (e-mail: y.i.papadopoulos@hull.ac.uk)

comprises of a hierarchy of components, while the connected
transport system is a heterarchy of systems where no system
has priority or absolute control when safety is concerned.
This heterarchical organisation poses a major challenge for the
state-of-the-art on dependability. The challenge applies both
to new standards as well as cutting edge research, e.g. on
model-based safety analysis, model-checking or other formal
methods. Indeed, both standards and current research mostly
assume a hierarchical organisation of the system, decom-
position of systems into subsystems, and clear hierarchical
authority of control.

A second challenge is caused by the inevitable incom-
pleteness of dependability models anyone would attempt to
do a priori at design time for a CSoS. A traffic system
of connected and autonomous cars and smart infrastructures
does not have a finite set of configurations. Given the un-
predictable nature of CSoS and the infinity of configurations,
any a priori dependability models are likely to be incom-
plete. Indeed all state-of-the-art dependability analysis and
assurance techniques assume a bounded system; which means
that full a priori certification before operation using these
techniques is impossible when the CSoS is unbounded and
its configurations are impossible to enumerate. These systems
operate in highly dynamic and unpredictable environments,
where systems collaborate with other systems adapting their
behaviour in response to the change in the context of operation,
workload, physical infrastructure, and network topology.

Finally, there is increased uncertainty in CSoS. It can arise
from many sources: a) limited observability of the system and
its environment caused by lack of sensors or failure of sensors
b) unreliability of measurements c) inaccuracy, indeterminism
or probabilistic nature of the inferences drawn by AI compo-
nents, e.g. machine learning algorithms d) limited knowledge
concerning services and dependability-relevant properties of
collaboration partners in a cooperative or open system e)
limited knowledge regarding trustworthiness and quality of 3rd
party information.

In works on safety assurance like [1]–[3], the dynamic
nature of systems is recognised. In these works, at design
time several contracts or assurance cases are defined for
components for different foreseeable scenarios. It is assumed
that information would be available at runtime to choose
particular contracts or assurances cases for components to
dynamically form the assurance case for the whole system to
provide a safety guarantee for a particular operational scenario.
That means these approaches are mostly applicable to cases
where it is possible to foresee all the potential configurations
and scenarios that a CSoS can avail during its operation. This

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works.



2

is certainly not possible for a typical CSoS which constrains
the application of these methods.

To address the challenges of CSoS identified above, we
take a new approach to dynamic safety assurance of CSoS
which is being developed in the DEIS EU project (http://deis-
project.eu/). The approach uses a network of intelligent safety
monitoring agents to deliver safety assurance within a CSoS.
An agent for a system carries information about the safety
assurance of the system in the form of dependability models
and uses information shared by the agents of other cooperating
systems in conjunction with information from the environment
to provide dependability management at runtime, e.g., event
monitoring, diagnostics, certification, risk prediction and ac-
tion planning. The approach aims to facilitate the development
of run-time artefacts to self-certify safe operation of CSoS
even if the system design evolves during operation. The
approach is outlined in the paper and illustrated with an
example of an autonomous production cell system.

II. INTELLIGENT SOLUTION FOR SAFETY ASSURANCE OF
CSOS

Fig. 1(a) shows the proposed intelligent solution framework
for providing safety assurance for CSoS. The framework is
formed as a distributed multi-agent system to provide safety
assurance of autonomous CSoSs, where each agent will be
responsible to observe and enforce the dependability of the
individual physical system and the agents will cooperate to
assure the safety of the whole system.

An intelligent agent, presented as intelligent reasoning en-
gine (IRE) in Fig. 1(a), interfaces to its respective system,
operators and the CSoS. As seen in the figure, the IRE of a
particular system receives inputs from the system itself and
also from the other systems that are part of the CSoS. The
inputs received from its own system are based on real-time
monitoring of the system. For monitoring, an Event Monitor is
utilised, which determines the occurrence of events using real-
time sensory data. These data are generated by the component
or system, e.g. sensor readings, or maintenance events and can
be stored for offline analysis. The modelling of event monitor
may vary depending on the application area and a detailed
explanation of such modelling is out of the scope of this
paper. However, the use of techniques like a circular buffer or
Complex Event Processing (CEP) [4] can be considered while
modelling an event monitor. CEP can capture complex data
streams, process a large number of events, and automatically
correlate the events in the context of predefined constraints.
This will help to identify events and their potential causes.
If the causes of an event cannot be known with certainty,
thus require diagnosis, the information will be passed to
the Diagnostic Engine. For instance, while monitoring low-
level events, a detected condition may reflect the symptom of
failures, not underlying causes. Therefore, such symptoms are
expected to be diagnosed before making a conclusion about
the health of system components. Due to brevity, a detailed
explanation on the modelling of fault diagnosis engine is not
provided in this paper, however, interested readers can find
more information on fault diagnosis in [5].

From the above discussion, we can see that with the help of
an Event Monitor and Diagnostic Engine, an IRE can receive
information about the state of the system and its parameters.
An intelligent agent of one system can receive different infor-
mation from the agents of other systems. This information may
include, but not necessarily limited to, states, parameter values,
dependability guarantees, safety certificates, any recommended
actions etc. After processing the information received from
both within the system and outside the system, an IRE can
make decisions and communicate them as output to both
its own system and other collaborating systems. For its own
system, such outputs contain corrective measures to force the
system to operate safely. Moreover, alarms are raised and
recommendations are provided to the operator interface. The
outputs provided to the outside systems may contain its own
state information, dependability demands, safety certificates,
corrective actions to assure safety, etc.

Following the primary detection and diagnosis of events,
dependability-relevant events are handled by a set of model-
based high-level IREs. The IREs can exist independently of
each other together with their corresponding systems and assist
them in dependability related tasks. However, as different sys-
tems meet or come together in a configuration, we expect that
their respective IREs collectively form a parallel, distributed
dependability certification system for the SoS as a whole.
This distributed certification system is a multi-agent system
incorporating several agents which operate locally on their
models but also communicate and collaborate between them.
Exchange of information about the state of other systems,
their perception of the environment, and the reasoning from
IREs of other systems help to reduce ambiguity and improve
reasoning about dependability at the system level, e.g. to
certify operations that involve many systems, assess collective
risk or decide on corrective actions that may affect more than
one system.

To provide safety certificates and further dependability
management functions (e.g. recommended actions to avoid
hazardous situations), the IREs operate on knowledge graph,
which is an ontology that integrates metadata in a machine-
interpretable representation. We incorporate appropriate IRE
models into the knowledge graph to enable the executing of
dependability algorithms at runtime. For this purpose, we use
the concept of Digital Dependability Identities (DDIs) [6],
which is a key innovation of the H2020 DEIS project. Due to
brevity, full implementation details of DDI are omitted in this
paper, however, interested readers can fetch the full implemen-
tation details from the publicly available GitHub repository
of the DEIS project1. A DDI of a component or a system
contains all the information required to uniquely define the
dependability properties of the system or the component. The
information can be captured in textual format and/or by using
one or more safety artefacts such as in the form of fault trees,
Conditional Safety Certificate (ConSerts), Bayesian Networks
(BN), Markov chains, Petri nets, etc. Using these models,
the key attributes that define the systems’ or components’
dependability behaviour are captured, for instance, in the form

1https://github.com/DEIS-Project-EU/



3

(a) Intelligent Solution Framework for Safety Assurance of Autonomous Systems of Systems

(b) Compositional formation of an Intelligent Reasoning model for a system based on DDIs

Fig. 1. The proposed intelligent solution framework



4

of faults and potential fault propagation models. Additionally,
requirements on how the component/subsystem interacts with
other components/subsystems of the CSoS in a dependable
way is captured in terms of the level of trust and assurance.

Note that, DDIs span over the lifecycle of a CSoS. They are
produced during the design, issued during releasing the com-
ponent/system and continuously maintained/adapted through-
out the system lifetime. DDI models that provide the basis
for runtime reasoning are modular and composable (see Fig.
1(b)). As seen in Fig. 1(b), DDIs of multiple components can
be composed together to form the DDI of a subsystem. The
DDIs of subsystems and other components can be integrated
iteratively to form the DDI of the whole system. This inte-
gration requires algorithms and tools which include mecha-
nisms for abstraction, modularisation, information hiding and
formalisation. Currently, we are working towards developing
a tool-supported process where the production of IREs as
DDI models will be semi-automatic, where a component
integrator would be able to compose component-level IREs
into system reasoning models. IRE models will be thoroughly
tested before deployment to systems, e.g. using appropriate
testbeds and simulation. Once sufficient testing has been done,
the models will be deployed on systems, each system carrying
an intelligent agent responsible for system monitoring and
managing its dependability.

III. ILLUSTRATIVE EXAMPLE

To demonstrate the proposed approach, we use the example
of an autonomous production cell system presented in [7] and
shown in Fig. 2(a). The function of the production system
is to take a workpiece, drill a hole in it, insert a screw
into this hole, and then tighten the screw. To achieve this
functionality, the system uses three autonomous robots, which
are connected with autonomous transportation carts. With the
help of three different tools, each of the robots can perform
three tasks: drilling, inserting and tightening. However, they
can only perform one task at a time and if instructed they
can reconfigure themselves to perform a different task. Note
that switching from one mode of operation to another mode of
operation, i.e., switching tools require some time. A workpiece
must be processed in the order of Drill → Insert → Tighten,
i.e., DIT. Although, a single robot can perform all three tasks,
to meet the timing constraint a single robot cannot be used
to perform all three tasks through multiple reconfigurations.
Therefore, the workpiece should be processed by all three
robots in order and the carts transport the workpiece to the
robots according to the planned operation (see Fig. 2(a)).

In the conditions of break-down of one or more tools, a
particular configuration of the whole system may not be able
to provide the DIT processing of a workpiece. In such cases,
a system reconfiguration may be possible to restore the DIT
processing of the workpiece. For instance, in Fig. 2(b), a
broken drill at Robot 1 seized its intended functionality to drill
a hole on the workpiece, thus disrupts the DIT processing of
the workpiece. This disruption is temporary in the sense that
another Robot can be reconfigured to take over the drilling op-
eration and the Robot 1 can be configured to perform another

task than drilling. Fig. 2(c) shows the restoration of the DIT
processing of the workpiece by switching tasks between Robot
1 and Robot 3. Note that, given the available functionality
of each robot, many configurations can be possible to keep
the system operational. However, the exact information about
these configurations is not known at design time, i.e., how the
robots will be configured in the future cannot be known at
design time. Forming a new configuration to reassign tasks to
robots and re-routing the carts accordingly is the responsibility
of a controller. How the controller performs these tasks is out
of the scope of this paper.

In this paper, we aim to demonstrate that the intelligent
solution proposed in Section II can help to provide safety
assurance of the above autonomous system even in the absence
of the prior knowledge about any particular configuration the
system will avail during its operation in the future. To do this,
similar to [7] we define the correct functioning of the system
as an invariant predicate as “a workpiece can be processed by
the system in DIT order”. Any violation of this variant can
be considered as the violation of the safety requirement of
the system operation. To detect such violations, we need to
form an intelligent reasoning engine that can utilise evidences
collected during the operation of the system to tell us whether
the above-mentioned invariant can be satisfied by a particular
system configuration at any point in time. If the invariant is not
satisfied with the current system configuration, the intelligent
reasoning engine should be able to tell us whether it is possible
to satisfy the invariant via system reconfiguration. In the worst
case, we will know that no reconfiguration is possible to satisfy
the invariant, thus system operation should be halted.

To illustrate the idea of an intelligent reasoning engine in
the form of DDIs, we formed the model shown in Fig. 3.
For the illustration purpose, we use a Bayesian network as
the model to represent DDIs. Due to space limitation, we
only show the use of a BN model, however, as mentioned
earlier, different other models such as ConSert and fault tree
can be used for this purpose. Interested readers can find more
information on such alternative modelling and applications of
DDIs in different areas on the DEIS project’s website2. From
Fig. 3 it can be seen that the DDI of the whole production
system is formed in a compositional fashion. Together with
its own elements, it composed the DDIs of the three robots
named as “DDI Robot X”, where X=1, 2, 3. As the three robots
are of the same specifications, their DDIs are modelled as the
same. The DDI of each robot can communicate the functional
status of the respective robot. For instance, at any point in
time, a robot can be in one of the eight states: NoFunctionality
(completely non-functional), DrillOnly (can perform drilling
only), InsertOnly (can perform inserting only), TightOnly (can
perform tightening only), DrillAndInsert (can perform drilling
and inserting), DrillAndTight (can perform drilling and tight-
ening), InsertAndTight (can perform inserting and tightening),
AllFunctionality (fully functional). Within the DDI of the
production system, the nodes ConfigurationOfRobot1, Con-
figurationOfRobot2, and ConfigurationOfRobot3 represent the
functionality expected from the Robots 1, 2, and 3 respectively

2http://www.deis-project.eu/dissemination/



5

Fig. 2. Production automation system with three autonomous robots

Fig. 3. Intelligent reasoning engine for the autonomous system as DDIs



6

in the current system configuration. The controller, which is
not shown in this paper, decides the expected functionality
of the robots, i.e. the value of these nodes. Whether a robot
can fulfil its operational requirement in the current operational
state (represented as nodes CanRobotXFulfilRequirement? in
the model) is determined based on its operational state (ob-
tained from its DDI) and the expected function of the robot.
The node SafetyStatus within the DDI of the production
system can tell us the status of the system with regards to
the invariant defined earlier. This node has three values: S1,
S2, and S3. S1 means that the invariant can be satisfied
with the current configuration, i.e., safety is guaranteed in
this state. S2 means that invariant is not satisfied in this
current configuration, however, the invariant can be satisfied
by reconfiguring the system. That means the controller has to
perform the required reconfiguration to assure safety in this
state. S3 means that invariant is not satisfied in this current
configuration and no other configuration can be formed to
satisfy the invariant. Therefore, system operation should be
stopped immediately.

To test whether the intelligent reasoning engine can detect
different scenarios based on the inputs received from the robots
during the operation, we generated different hypothetical sce-
narios and evaluated the reasoning capability of the model.
Due to limited space, in Table I, we reported the results of six
of those tests (Test 1 to Test 6). For instance, Test 1 depicts
the scenario shown in Fig. 2(a), where all robots are fully
functional and Robot 1, 2, and 3 are assigned to drill, insert,
and tighten respectively. Therefore, as expected the model
determined the state of the system as S1. In Test 2, although
all the robots are partially functional, still the system is deter-
mined to be in state S1 because the available functionalities
of the robots are sufficient to meet their requirements. In Test
3 and 5, the reasoning engine determines the system to be
in S2, meaning a reconfiguration is required to satisfy the
safety invariant. In Test 3, Robot 1 and 3 fail to satisfy their
requirement and Robot 1 fails to satisfy its requirement in Test
5. System state S3 has been determined in Tests 4 and 6. In
Test 4, a common single available functionality (TightOnly)
for Robot 1 and 3 push the system to state S3, where further
reconfiguration is not possible to satisfy the invariant. This
is because either of Robot 1 or Robot 3 has to be able to
perform a different function than tightening. In Test 6, the
reason behind the system is determined to be in state S3 is
the non-functionality of Robot 2.

IV. RELEVANT WORK AND COMPARISON WITH
STATE-OF-THE-ART

There has been recent interest in the concept of dynamic
assurance cases that proactively compute the confidence in,
and update the reasoning about, the dependability of ongo-
ing operations. Current research on dynamic assurance has
considered the need for greater automation [8]; mathematical
formality [9]; and quantification of confidence based on real
monitored data [10]. This has been combined with modular ap-
proaches to reasoning about safety and security of cooperating
systems in applications such as farming and automotive [11]

TA
B

L
E

I
R

E
S

U
LT

S
O

F
T

H
E

T
E

S
T

IN
G

O
F

T
H

E
R

E
A

S
O

N
IN

G
E

N
G

IN
E

O
F

F
IG

.3

Pa
ra

m
et

er
s

Te
st

1
Te

st
2

Te
st

3
Te

st
4

Te
st

5
Te

st
6

Fu
nc

tio
na

lit
yS

ta
tu

sO
fR

ob
ot

1
A

llF
un

ct
io

na
lit

y
D

ri
llA

nd
Ti

gh
t

D
ri

llA
nd

Ti
gh

t
Ti

gh
tO

nl
y

D
ri

llA
nd

In
se

rt
In

se
rt

A
nd

Ti
gh

t

Fu
nc

tio
na

lit
yS

ta
tu

sO
fR

ob
ot

2
A

llF
un

ct
io

na
lit

y
In

se
rt

O
nl

y
A

llF
un

ct
io

na
lit

y
D

ri
llA

nd
In

se
rt

D
ri

llA
nd

Ti
gh

t
N

oF
un

ct
io

na
lit

y

Fu
nc

tio
na

lit
yS

ta
tu

sO
fR

ob
ot

3
A

llF
un

ct
io

na
lit

y
In

se
rt

A
nd

Ti
gh

t
Ti

gh
tO

nl
y

Ti
gh

tO
nl

y
In

se
rt

O
nl

y
A

llF
un

ct
io

na
lit

y

C
on

fig
ur

at
io

nO
fR

ob
ot

1
to

D
ri

ll
to

D
ri

ll
to

In
se

rt
to

In
se

rt
to

Ti
gh

te
n

to
Ti

gh
te

n

C
on

fig
ur

at
io

nO
fR

ob
ot

2
to

In
se

rt
to

In
se

rt
to

Ti
gh

te
n

to
D

ri
ll

to
D

ri
ll

to
In

se
rt

C
on

fig
ur

at
io

nO
fR

ob
ot

3
to

Ti
gh

te
n

to
Ti

gh
te

n
to

D
ri

ll
to

Ti
gh

te
n

to
In

se
rt

to
D

ri
ll

Sa
fe

ty
St

at
us

S1
S1

S2
S3

S2
S3



7

and industry 4.0 [12]. Rushby introduced some initial ideas
for runtime certification based on formal analyses, enabling
the verification of component runtime behaviour according to
its specification [13].

A more practical refinement of this general idea is the
concept of the ConSert which facilitates the modular defini-
tion of safety certificates using a contract-like approach for
components and systems [11]. ConSerts have a runtime repre-
sentation, enabling their use during in-the-field execution and
dynamic reconfiguration of systems at runtime. ConSerts do
not describe fixed contracts, but support variability. Depending
on which runtime demands can be fulfilled, the guarantees
offered by the system can be updated and adapted accordingly.
This provides flexibility during system integration, as it is very
unlikely that independently-developed components provide the
exact safety properties fitting to static assumptions. ConSerts
have been applied in different settings (e.g. industrial proto-
types) and they have been applied and adapted in research
projects such as EMC2 [3]. ConSerts have been integrated
within the concept of the DDI presented in this paper.

Dynamic risk management is a rather new concept. Dy-
namic dependability management capabilities can be used as a
basis for dynamic monitoring. In the automotive domain, there
are approaches potentially allowing dynamic risk management.
Essential ingredients are models of system capabilities and
the dependability-relevant environment [14]; and scenarios
combining the former at a specific point in time, where risk
shall be assessed dynamically. Risk control requires models
about safety capability variants [15] that can be selected based
on the assessed risk. Other recent approaches to dependability
of CSoS use run-time application of formal methods [16] and
model checking [17]. Johnson et al. [18] proposed a multi-
agent framework for the dependable adaptation of evolving
system architectures. This approach used an Agent Verification
Engine, which can construct evolvable Belief-Desire-Intention
(BDI) agents that verify a system architecture when something
changes in the architecture. Getir et al. [19] provided a set of
model transformation rules for ensuring the co-evolution of
software architecture and fault tree models. This approach has
been applied to factory automation examples and for a limited
number of known evolution scenarios. Similar to ConSerts,
this approach can provide safety assurance for reconfigurable
systems but under the assumption that there are a known
number of system configurations. Good overviews of dynamic
assurance approaches and the many open research challenges
are given by [16].

Overall, work on dynamic assurance cases has addressed
to some extent the challenges of openness. We draw for this
work, ConSerts in particular. However, we also look to create
a flexible framework which can employ models and techniques
to address the challenges of uncertainty, unpredictability and
the need to repair dependability models that in practice may
deviate from reality in a complex CSoS.

Our multi-agent system of DDIs facilitates dynamic de-
pendable integration and operation of systems into intelligent
“systems of systems”. We currently incorporate uncertainty
in models including concepts from relevant literature: multi-
valued logics and Bayesian inference. This is early work but

could lead to significant step forwards; to our knowledge, no
other dynamic assurance method has addressed the important
issue of uncertainty at runtime certification.

For additional reading:
1. E.E. Alves, D. Bhatt, B. Hall, K. Driscoll, A.
Murugesan and J. Rushby, “Considerations in assuring
safety of increasingly autonomous systems,” NASA
Langley Research Center, Hampton, Virginia, Tech.
Rep. No. NASA/CR–2018-220080, 2018.
2. J.A. McDermid, Y. Jia, and I. Habli, “Towards
a Framework for Safety Assurance of Autonomous
Systems,” in Artificial Intelligence Safety, 2019, pp.
1-7.
3. S. Müller, and P. Liggesmeyer, “Safety assurance for
emergent collaboration of open distributed systems,”
in International Symposium on Software Reliability
Engineering Workshops (ISSREW), IEEE, 2016, pp.
249-256.
4. J. Swanson, M.B. Cohen, M.B. Dwyer, B.J. Garvin,
and J., Firestone, “Beyond the rainbow: Self-adaptive
failure avoidance in configurable systems,” in Pro-
ceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2014, pp. 377-388.
5. E. Denney, G. Pai, and I. Habli, “Dynamic safety
cases for through-life safety assurance,” in IEEE/ACM
37th IEEE International Conference on Software En-
gineering, vol. 2. IEEE, 2015, pp. 587–590.
6. D. Schneider and M. Trapp, “B-space: dynamic
management and assurance of open systems of sys-
tems,” Journal of Internet Services and Applications,
vol. 9, no. 1, pp. 1–16, 2018.
7. R. De Lemos, D. Garlan, C. Ghezzi, H. Giese,
J. Andersson, M. Litoiu, B. Schmerl, D. Weyns, L.
Baresi, N. Bencomo et al., “Software engineering
for self-adaptive systems: Research challenges in the
provision of assurances,” in Software Engineering for
Self-Adaptive Systems III. Assurances. Springer, 2017,
pp. 3–30.

The highly dynamic nature of CSoS means that any models
used to observe and enforce dependability are likely to deviate
from reality. To address this problem, DDI agents self-monitor
at run-time the integrity of their models in terms of cor-
rectness and completeness. When problems are detected then
the limitations of runtime certification can become evident to
those who oversee the systems. Runtime certification can be
temporarily suspended in full knowledge of the stakeholders
involved. In addition, we explore techniques for fixing DDI
models at runtime, e.g. by correcting or augmenting them
with new causal relationships and paths, using, for example,
machine learning to establish those new relationships. The
main goal here is the ability for non-monotonic reasoning
about certification or safety. In this mode, the system could
recover from reasoning failure enabling a DDI-based certifying
system to continue to operate in degraded mode when this
is necessary, still providing advice to systems and operators.



8

Early work on model-repair has been presented in [20]. We
are not aware of any dynamic assurance technique that offers
such capabilities.

V. CONCLUSION

The unstoppable development of CSoSs has the potential to
provide significant benefits to society by facilitating produc-
tivity enhancements and creating new markets. While such
developments have created huge expectations and investments
in AI, they give rise to fundamental challenges to safety
assurance of such systems. CSoSs’ safety assurance is a rel-
atively new research area and has gained increasing attention
from industry, academia, governments and regulators around
the world. To provide safety assurance for the CSoSs while
taking into account the challenges posed by the evolving and
black-box nature of such systems, researchers are putting their
efforts to develop approaches to shift some of the design time
assurance activities to the runtime. The framework presented
in this paper is one such effort to provide an intelligent solution
for the safety assurances of CSoSs. The approach presented in
this paper proposes to deploy intelligent agents in the systems
to monitor different parameters and the behaviours of the
systems. The agents of different collaborating systems are
designed to share their knowledge about the parameters related
to the dependable operation/collaboration of the systems. This
knowledge is utilised within the intelligent reasoning engines
to perceive the safety status of the CSoSs. Based on the
perceived safety state of a system, different level of variable
guarantees can be provided. Moreover, the recommended
actions can be suggested to improve the overall safety of the
system.

ACKNOWLEDGEMENTS

This work was supported by the Dependability Engineering
Innovation for Cyber Physical Systems (DEIS) H2020 Project
under Grant 732242.

REFERENCES

[1] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and
T. Kelly, “Engineering Trustworthy Self-Adaptive Software with Dy-
namic Assurance Cases,” IEEE Transactions on Software Engineering,
vol. 44, no. 11, pp. 1039–1069, 2018.

[2] S. Kabir, I. Sorokos, K. Aslansefat, Y. Papadopoulos, Y. Gheraibia,
J. Reich, M. Saimler, and R. Wei, “A Runtime Safety Analysis Concept
for Open Adaptive Systems,” in International Symposium on Model-
Based Safety and Assessment. Springer, 2019, pp. 332–346.

[3] T. Amorim, D. Ratasich, G. Macher, A. Ruiz, D. Schneider, M. Driussi,
and R. Grosu, “Runtime safety assurance for adaptive cyber-physical
systems: ConSerts M and ontology-based runtime reconfiguration ap-
plied to an automotive case study,” in Solutions for Cyber-Physical
Systems Ubiquity, 2018, pp. 137–168.

[4] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” in Proceedings of the ACM SIGMOD Inter-
national Conference on Management of data. New York, New York,
USA: ACM Press, 2006, pp. 407–418.

[5] J. Chen and R. J. Patton, Robust model-based fault diagnosis for dynamic
systems, 3rd ed. Springer Science & Business Media, 2012.

[6] D. Schneider, M. Trapp, Y. Papadopoulos, E. Armengaud, M. Zeller, and
K. Hofig, “WAP: Digital dependability identities,” in 26th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2015,
pp. 324–329.

[7] M. Güdemann, F. Ortmeier, and W. Reif, “Safety and Dependability
Analysis of Self-Adaptive Systems,” in Second International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and
Validation (isola 2006). IEEE, 2006, pp. 177–184.

[8] E. Denney and G. Pai, “Tool support for assurance case development,”
Automated Software Engineering, vol. 25, no. 3, pp. 435–499, 2018.

[9] J. Rushby, “Trustworthy self-integrating systems,” in International Con-
ference on Distributed Computing and Internet Technology. Springer,
2016, pp. 19–29.

[10] P. J. Graydon and C. M. Holloway, “An investigation of proposed
techniques for quantifying confidence in assurance arguments,” Safety
science, vol. 92, pp. 53–65, 2017.

[11] D. Schneider and M. Trapp, “Conditional Safety Certification of Open
Adaptive Systems,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 8, no. 2, pp. 1–20, 2013.

[12] O. Jaradat, I. Sljivo, I. Habli, and R. Hawkins, “Challenges of safety
assurance for industry 4.0,” in 13th European Dependable Computing
Conference (EDCC). IEEE, 2017, pp. 103–106.

[13] J. Rushby, “Runtime certification,” in International Workshop on Run-
time Verification. Springer, 2008, pp. 21–35.

[14] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining
and substantiating the terms scene, situation, and scenario for automated
driving,” in 2015 IEEE 18th International Conference on Intelligent
Transportation Systems. IEEE, 2015, pp. 982–988.

[15] I. Colwell, B. Phan, S. Saleem, R. Salay, and K. Czarnecki, “An
automated vehicle safety concept based on runtime restriction of the
operational design domain,” in 2018 IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE, 2018, pp. 1910–1917.

[16] B. Cheng, K. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. Müller, P. Pel-
liccione, A. Perini, N. Qureshi, B. Rumpe, and D. Schneider, “Using
models at runtime to address assurance for self-adaptive systems,” in
Models@ run. time. Springer, 2014, pp. 101–136.

[17] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic QoS Management and Optimization in Service-Based
Systems,” IEEE Transactions on Software Engineering, vol. 37, no. 3,
pp. 387–409, 2011.

[18] K. Johnson, R. Sinha, R. Calinescu, and J. Ruan, “A Multi-agent Frame-
work for Dependable Adaptation of Evolving System Architectures,”
in 41st Euromicro Conference on Software Engineering and Advanced
Applications. IEEE, 2015, pp. 159–166.

[19] S. Getir, L. Grunske, A. van Hoorn, T. Kehrer, Y. Noller, and M. Tichy,
“Supporting semi-automatic co-evolution of architecture and fault tree
models,” Journal of Systems and Software, vol. 142, pp. 115–135, 2018.

[20] Y. Gheraibia, S. Kabir, K. Aslansefat, I. Sorokos, and Y. Papadopoulos,
“Safety + AI: A Novel Approach to Update Safety Models Using
Artificial Intelligence,” IEEE Access, vol. 7, pp. 135 855–135 869, 2019.

Sohag Kabir received the Ph.D. degree in computer science and the M.Sc.
degree in embedded systems from the University of Hull, UK, in 2016 and
2012, respectively. He is currently working as a Lecturer (Assistant Professor)
in the Department of Computer Science at the University of Bradford, UK.
Prior to that, he was a research associate in the Dependable Intelligent Systems
(DEIS) Research Group at the University of Hull. He has worked in EU
projects on safety, including MAENAD and DEIS. His research interests
include model-based safety assessment, probabilistic risk and safety analysis,
fault tolerant computing, and stochastic modelling and analysis.

Yiannis Papadopoulos is a professor and leader of the Dependable Intelligent
Systems research group at the University of Hull. He has pioneered work
on model-based dependability assessment and evolutionary optimisation of
complex engineering systems known as Hierarchically Performed Hazard
Origin and Propagation Studies (HiP-HOPS). He co-authored EAST-ADL, an
emerging automotive architecture description language working with Volvo,
Honda, Continental, Honeywell, and DNV-GL, among others. He is actively
involved in two technical committees of IFAC (TC 1.3 & 5.1). He is
also working on new metaheuristics inspired by the hunting behaviour of
penguins and developing technologies for self-certification of cyber-physical
and autonomous systems. He is interested in digital art and various aspects
of philosophy and its interactions with science.


