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Abstract: An aniline-functionalized naphthalene dialdehyde Schiff base fluorescent probe L with
aggregation-induced enhanced emission (AIEE) characteristics was synthesized via a simple one-step
condensation reaction and exhibited excellent sensitivity and selectivity towards copper(II) ions in
aqueous media with a fluorescence “ turn-off ” phenomenon. The detection limit of the probe is
1.64 × 10−8 mol·L−1. Furthermore, according to the results of the UV-vis/fluorescence titrations,
Job’s plot method and 1H-NMR titrations, a 1:2 stoichiometry was identified. The binding constant
between L and Cu2+ was calculated to be Ka = 1.222 × 103. In addition, the AIEE fluorescent probe
L could be applied to detection in real water samples with satisfactory recoveries in the range
99.10–102.90% in lake water and 98.49–102.37% in tap water.

Keywords: synthesis; fluorescent probe; copper(II) ion; AIEE; water detection

1. Introduction

In recent years, fluorescent probes have been widely used in the field of rapid detection
(food, metal ion, anion, biomarker, etc.) due to advantages such as ease of operation, low
cost, high selectivity, and sensitivity [1–4]. Copper is an earth abundant element which
plays an important role in many domains like industrial material, [5] bactericide, and
herbicide [6,7], etc. On the other hand, copper ions are important environmental pollutants.
It not only produces toxic effects on the growth of animals and plants, but also lead to
risks to human health via the food chain [8–10]. Lack or excess of copper will cause
health damage.

In order to protect human health, the WHO stipulates that the limit of copper ions
in drinking water should not exceed 31.4 µM [7]. Thus, the development of technologies
for copper ion detection has become an important focus in environmental and food nu-
tritional fields. Traditional methods such as atomic absorption spectroscopy (AAS), gas
chromatography-mass spectrometry (GC-MS), inductively coupled plasma mass spectrom-
etry (ICP-MS) and high performance liquid chromatography (HPLC) have been widely
utilized for detection copper ion [3,11], but these systems also have their limitations, e.g.,
large and expensive instruments, complex modes of operation and high detection costs. In
recent years, methods based on fluorescent probes have emerged as the more cutting-edge
technology in the field of metal ion detection due to convenient procedures, super sensi-
tivity, and fast response times [12,13]. Many copper(II) probes have been reported due to
their low detection limit and remarkable optical changes [14,15].

However, most traditional fluorescent materials exhibit an aggregation caused quench-
ing (ACQ) effect, which means they are highly emissive in solution, but a quenching affect
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exists in the aggregation state. In the case of dyes, the ACQ effect can greatly limit their
practical applications in material science [16]. In contrast, an abnormal photophysical
phenomenon was observed by Tang’s group in 2001 [2,17], namely, aggregation induced
emission (AIE) and aggregation-induced emission enhancement (AIEE), whereby the flu-
orescent molecules show non-/weak emission in solution but enhanced fluorescence in
the aggregation state. Molecules emit energy through intramolecular rotation and vibra-
tional motions in the solution, while in the aggregation state the non-radiative transition is
blocked, and, in turn, energy is lost through the radiative transition channel [18].

Naphthalene and its derivatives have been extensively applied in the assembly of
light-emitting devices and chemical sensors due to their excellent optical properties and
unique chemical stability [19–21]. In this research, we have developed a small molec-
ular probe L possessing AIEE characteristics via a simple one-step reaction, which has
good recognition performance and anti-interference ability for copper ion detection under
aqueous conditions.

2. Results and Discussion
2.1. Synthesis

A new Schiff base probe L was obtained from 2,6-dihydroxynaphthalene-1,5-dialdehyde
and aniline by a simple one-step reaction. The molecular structure was characterized by
1H-NMR spectroscopy, HRMS, and single crystal X-ray diffraction. The Schiff base probe L
exhibited excellent solubility in common solvents (such as dichloromethane, tetrahydrofu-
ran, DMSO, etc.) and possessed good acid and alkali-resistance over the pH range 3–11
within 1440 min (Table S2). This work provides a new strategy for extending the practical
applications of small molecular probes in the heavy metal detection field. (Scheme 1).
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Scheme 1. Synthetic route to Schiff-base L.

2.2. AIEE Properties

The probe L emits glaring red light in the solid state but the emission decreases
dramatically in the dissolved state, so we propose that this probe may exhibit AIEE
properties. To investigate our hypothesis, a good solvent tetrahydrofuran (THF) and
a bad solvent water were selected as the testing systems. As shown in Figure 1, the
compound L emitted orange mission with λmax em = 565 nm in pure THF solution. As the
water fraction (f w) gradually increased from 0% to 50%, the fluorescence intensity barely
changed. Subsequently, when the water fraction (f w) reached 60%, some particles could
be observed in the mixture, and the mixture exhibited bright orange light under 365 nm
UV irradiation. The fluorescence spectrum also corresponded with this phenomenon: the
fluorescence intensity at 60% was much higher than that of f w = 0–50%. When the water
fraction reached 70%, the fluorescence intensity of the solution attained the maximum
value (807 a.u.) with an approximate 40.31-fold increase versus that in the pure solution.
In addition, we also tested the quantum yield of L in the solid state and in pure THF
solvent. The quantum yield in the solid state (Φ f = 18.4%) is higher than that in THF
solution (Φ f = 0.5%). Thus, the Schiff-base L is a chromophore with aggregation-induced
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enhanced emission characteristics. As the probe polymerizes at f w = 60%, referring to the
experimental conditions of similar probes [20,22], we choose the mixture of THF/water
(VTHF/VH2O = 4:1) as the recognition environment.
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Figure 1. (A) Fluorescence spectra of L (40 µM) in tetrahydrofuran (THF)/water mixtures with
different water fractions (λex/λem = 428 nm/565 nm, slit: 5/5 nm, voltage: 660 v). (B) Plots of
fluorescence intensity at 565 nm. (C) photographs in THF/water mixtures with different water
fractions taken under 365 nm UV irradiation.

2.3. Stability of Detection

The luminescent and recognition behavior of Schiff base compounds are often af-
fected by many factors (such as pH, time, etc.). If the recognition environment tends to
acidic/alkaline, this can induce C=N fracture, which may affect the optical properties and
recognition ability of these compounds [23,24]. In order to test the luminescent stability
of probe L, the pH 3–11 range was selected as the detection environment. In addition, the
pre-experimental results showed that the probe L had the ability to recognize Cu2+, so the
mixed solution of probe L-Cu2+ was also selected for determination at the same time.

As shown in Figure 2A, the emission intensity of probe L at 565 nm barely changed,
which indicated that this probe possessed good acid and alkali-resistance over the pH
range 3–11. When adding Cu2+ to the mixture, a significant fluorescent quenching phe-
nomenon was observed over the pH range from 8 to 11, whilst little fluorescence change
was found over the pH range 3 to 7. The acidic conditions can induce dissociation of the
L-Cu2+ complex because of the protonation of probe, and excessive H+ in the solution
may push the coordination equilibrium to the left [25]. As for higher pH conditions, the
alkaline recognition environment can provide sufficient hydroxyl ions to consume H+,
and the ionized phenolic groups interacted more easily with copper ions to form L-Cu2+

complex [26,27]. These may be the reasons why probe L exhibited better recognition ability
under alkaline conditions. We also tested the time-dependent optical stability of probe L
and the L-Cu2+ mixture, and the results showed that L and the L-Cu2+ complex were stable
over a certain period of time.
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2.4. Cation Sensing Study

Schiff base compounds are widely used in the recognition of rare-earth metals, transi-
tion metals and alkali metals as a result of their high binding affinity [28–30]. To test the
detecting ability toward metal ions, probe L (40 µM) was exposed to many metal ions (such
as Cd2+, Cu2+, K+, Pb2+, Li+, Fe3+, Mg2+, Co2+, Cr3+, Al3+, Ba2+, Ni2+, Zn2+, Ag+, Na+, Hg+,
[M]n+ = 200 µM) and anions (such as AcO−, ClO4

−, Br−, NO2
−, CO3

2−, I−, F−, SO4
2−,

Cl−, PO4
3−, C2O4

2−, SO3
2−, HSO3

−, HCO3
−, [A]n− = 200 µM) in mixtures of THF and

water (VTHF/VH2O = 4/1, pH = 8.00).
As shown in Figure 3, on adding the metal ions to the solvent containing L, only

Cu2+ cause the solution colour to change via naked-eye observation (Figure S3). The
absorption spectra and fluorescence spectra of L–cation mixture indicated that probe L
exhibits good selectivity toward Cu2+, while other cations or anions (Figure S4) had little
impact on the optical behavior of probe L. On other hand, under a 365 nm UV lamp,
only the L-Cu2+ mixture led to the emission light quenching dramatically (Figure S3).
Furthermore, competitive experiments were also performed to investigate the selectivity
of the probe toward Cu2+. When Cu2+ was present in the solution, the emission of the
mixture at λem = 565 nm was quenched, while without Cu2+, the emission barely changed
(Figure 4), which suggested that the coexisting ions/anions had a limited impact on the
detection of Cu2+. Thus, the interference experiments indicated that the probe displays a
high specificity and selectivity for detecting Cu2+ ions.
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2.5. Job’s Plot and Binding Constant

Based on the above experimental conditions, the fluorescence titration experiments
were performed with progressive addition of Cu2+ and are presented in Figure 5. As the
figure demonstrates, the fluorescence intensity of probe L at λmax em = 565 nm gradually
decreased as the Cu2+ ions were added. In addition, when the concentration of probe L
change from 0 to 72µM (Figure S5), there exist a good linear relationship between the probe
and the copper(II) ions (y = 432.59482 − 218.198x, R2 = 0.99276). Herein, the detection limit
was calculated by utilizing the data of the fluorescence titration experiments following the
IUPAC method (IUPAC Compendium of Analytical Nomenclature): 10 groups of blank
samples were tested in the absence of copper under the same conditions, and then the
standard deviation (SD) was calculated from the emission peak at 565 nm. After that,
following the formula: the detection limit = 3SD/S, where S is the slope of the linear
relationship during the fluorescence titration, the detection limit of probe L for Cu2+ is
calculated to be 16.4 nM. Comparing with other Cu2+ probes (Table S3), the probe L has
the advantages of lower detection limit and simpler synthetic route.
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Figure 5. (A) Fluorescence spectra on addition of Cu2+ to the probe; (B) Job’s plot for the determination of the stoichiometry
of L and Cu2+ in the mixture of THF/H2O (VTHF:VH2O = 4/1), the total concentration of L and Cu2+ was 40 µM.

Further, the binding mode of probe L and Cu2+ was investigated by a Job’s plot by
controlling the total concentration of the probe and Cu2+ at 40 µM in a mixture of THF/H2O
(VTHF:VH2O = 4/1). The results indicated that the binding stoichiometry between the probe
and Cu2+ was 1:2. On the other hand, a Benesi–Hildebrand (Figure 6) curve based on the
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above experiments could been obtained and the binding constant calculated. According to
the formula [31]:

F − F0 =4F = [Cu2+](Fmax − F0)/(1/Ka + [Cu2+]) (1)

1 

 

 

Figure 6. The Benesi–Hildebrand plot of 1/(F − F0) versus 1/[Cu2+].

Here, F and F0 are the corresponding fluorescence intensity at 598 nm in the presence
and absence of Cu2+, and Fmax is the fluorescence intensity when the probe has completely
complexed with cations. Based on the data of fluorescence titration and the slop of the
correlation curve, the binding constant (Ka) was calculated to be Ka = 1.222 × 103.

2.6. A Possible Mechanism for Detection Cu2+

To better understand the recognition mechanism of L for detecting copper ions, 1H-
NMR spectroscopic titration experiments in d-DMSO: D2O solution were performed. As
shown in Figure 7, when there did not exist any copper ions in the solution, one single
peak (δ = 9.69 ppm) and one doublet (δ = 8.66–8.68 ppm) were observed corresponding
to the -OH and -CH=N, respectively. The proton peaks at δ = 7.16–7.59 ppm were from
the naphthalene ring and aniline ring of the probe L. When copper ions were added
into the mixture, the proton signals at 9.69 ppm and 8.66 ppm were weakened and split,
and new proton peaks at 10.72–10.74 ppm, 9.00–9.03 ppm, and 9.12–9.14 ppm could be
observed at the same time. This indicated that in the presence of Cu2+, the O atom from
the hydroxyl and the N atom from the -CH=N bond coordinated with Cu2+ firstly. On
the other hand, as the initial content of probe L exceeded that of the Cu2+ in the mixture,
there existed two coordination sites in one L molecule, and the probe molecule adopted
a pattern with partially complexed with Cu2+. Thus, the proton environment of the -OH
and -CH=N exhibited differences at different ratios of L and Cu2+, respectively. Similarly,
the proton signals from the naphthalene and benzene rings also undergo a high field shift
from 7.16–7.59 ppm to 7.09–7.57 ppm, indicating that the probe L does interact with Cu2+.
On further increasing the amount of Cu2+ (1eq–2.5eq), the proton signals of -OH and
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-CH=N became much weaker and tend to be stable after the content of Cu2+ reached 2.0 eq,
suggested that the probe L and Cu2+ may adopt a 1:2 coordination mode, consistent with
the results obtained via the Job’s plot method.
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The data from the single crystal X-ray diffraction analysis verify that two benzene
rings at the ends of the probe are parallel to each other, but the naphthalene ring is not
parallel to the benzene rings. As shown in Figure 8, the dihedral angle between the
N1/N# (connecting with the plane of benzene) and the double bond C (connecting with
the plane of naphthalene) is 167.14◦, so probe L is a nonplanar molecule. Furthermore, the
hydrogen atoms on two hydroxyl groups form a stable six membered ring structure with
the N atoms from imine groups via the O-H···N intramolecular hydrogen bonds. As the
2,6-dihydroxynaphthalene-1,5-dialdehyde reacts with aniline to form the -CH=N bond,
this functional group bridges the naphthalene and benzene ring leading to the probes
conjugated structure. When probe molecules are excited by light, an electron flow from the
naphthalene ring to the imine group can easily occur; on the other hand, in the THF/H2O
solution, there exist a fast structure convert from enol form to keto form in the molecule [32],
the intramolecular hydrogen bonds limit the nonradiative transition; thus, the probe L in
the dissolved state emits orange light [33–35]. According to the 1H-NMR spectroscopic
titration experiments, the probe coordinates with Cu2+ via the N atom of imine and the
O atom of -OH to form a stable complex. At this time, the lone pair electrons on the N
and O atoms will transfer to the empty orbitals of the copper ion, which blocks the initial
excited electron transfer process (Figure 9) [36], resulting in fluorescence quenching of the
probe solution.
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2.7. Applications

In order to further evaluate the potential application of probe L for the detection
of Cu2+ in real specimens, water samples from an artificial lake (at Guizhou Medical
University) and running water (at our laboratory) have been collected for testing. The
specific experimental process is as follows: 7.6 mL THF solution, 400 µL probe stock
solution (40 µM), 1 mL buffer solution, and 1 mL water sample (had been filtered) were
added into one volumetric flask and the mixture shaken well. At the same time, another
water sample was processed with the same steps and an appropriate amount of standard
substance (Cu(NO3)2) was added in it. After standing for 30 min, the fluorescence intensity
of the sample at 565 nm had been recorded for further calculations. As shown in Table 1,
the recoveries of the probe were calculated in the range of 99.10–102.90% in lake water and
98.49–102.37% in tap water. These results suggest that L is a sensitive and selective probe
for Cu2+ monitoring in environmental water samples.

Table 1. The detail data for Cu2+ detection in real water samples.

Sample Measured Added Detected Recovery RSD
(µmol·L−1) (µmol·L−1) (µmol·L−1) (n = 3, %) (n = 3, %)

Running water 8.99 5.00 14.03 99.71 0.93
10.00 19.28 98.49 2.01
20.00 28.32 102.37 1.15

Artificial lake 15.92 5.00 21.11 99.10 1.48
10.00 25.19 102.90 1.72
20.00 35.99 99.81 2.07
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3. Experimental Section
3.1. Materials and Characterization

Unless otherwise stated, all of the starting materials were commercially available
and used without further purification. The solution of the metal ions and anions were
prepared from their nitrate and sodium salts, respectively. 1H-NMR spectra (400 MHz)
were recorded on a Inova-400 Bruker AV 400 spectrometer (Bruker, Karlsruhe, Germany)
using d-DMSO solvent and tetramethylsilane as the internal reference. J-values are given in
Hz. High resolution mass spectra (HRMS) were recorded on a GCT premier CAB048 mass
spectrometer (Waters Corp., Milford, MA, USA) operating in a MALDI-TOF mode. UV-vis
absorption spectra were obtained on a UV-2600 Milton Ray Spectrofluorometer (Shimadzu,
Kyoto, Japan). PL spectra were recorded on a Cary Eclipse Hitachi 4500 spectrofluorometer
(Hitachi, Tokyo, Japan). The crystal structure was determined by Bruker Smart Apex single
crystal diffractometer (Bruker, Karlsruhe, Germany).

3.2. Synthesis of the Compound L

Firstly, 43.2 mg (0.2 mmol) 2,6-dihydroxynaphthalene-1,5-dialdehyde was dissolved
in 30 mL methanol, and then 50 µL (95%, 5.44 mmol) aniline was added into the mixture
and stirred for 10 min in room temperature. After that, adding 10 µL H2SO4 into the
mixture and stirring for another 5 h. The precipitate was filtered and washed with hot
methanol for three times, and dried in vacuum to obtain the target red compound (63 mg,
0.17 mmol, yield 86.12%). An appropriate amount of precipitate was dissolved in a mixture
of tetrahydrofuran and methanol (2:1), and then evaporated. After 4 days, red acicular
crystals suitable for single crystal diffraction analysis were obtained. 1H-NMR (400 MHz,
DMSO, TMS) δ 9.69 (s, 2H), 8.67 (d, J = 9.4 Hz, 2H), 7.58 (d, J = 7.8 Hz, 4H), 7.47 (t,
J = 7.7 Hz, 4H), 7.30 (t, J = 7.3 Hz, 2H), 7.17 (d, J = 9.4 Hz, 2H),. HRMS calculated: 398.11,
found 398.15.

3.3. X-ray Crystallography

Crystallographic data for ligand L was collected on a Bruker APEX 2 CCD diffractome-
ter with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) in theω scan mode [37].
The structure was solved by a charge flipping algorithm and refined by full-matrix least-
squares methods on F2 [38]. All relative standard deviation were estimated using the full
covariance matrix. Further details are presented in Table S1. CCDC: 2059923, L.

3.4. General Methods for Optical Tests

Firstly, 3.7 mg (10µM) of probe L was dissolved in 10.00 mL THF solution to prepare
1mM stock solution. Then the nitrate of metal ions and the sodium salt of anions (Ag+, Al3+,
Ba2+, Cd2+, CO2+, Cr3+, Na+, Cu2+, K+, Ni2+, Pb2+, Zn2+, Hg2+, Fe3+, Mg2+, Li+, AcO−,
ClO4

−, Br−, NO2−, CO3
2−, I−, F−, SO4

2−, Cl−, H2PO4
−, PO4

3−, HPO4
2−, C2O4

2−, SO3
2−,

HSO3
−, HCO3

−) were accurately weighed and dissolved in 10.00 mL Tris-HCl buffer
to form 10 mM ion stock solution. The preparation method of Tris-HCl buffer solution
(2 mM) was as follows: 121.20 mg of trimethylol aminomethane was dissolved in 1.00 L
ultrapure water, then its pH was adjusted to 8.00 with 0.10 M HCl solution and 0.10 M
NaOH solution.

4. Conclusions

In summary, we have developed a new simple AIEE fluorescent probe based on two
aniline units attached to a naphthalene dialdehyde core. The fluorescence intensity of the
probe in good solvents and poor solvents can differ by 40.31 times. Furthermore, in the
presence of copper(II) ions, the probe solution showed an obvious colour change from
yellow to brown under daylight and from bright to dark under UV lamp irradiation with
a detection limit as low as 1.64 × 10−8 mol·L−1. This indicates that the probe L has the
potential to be used for the detection of Cu2+ by naked eye and via instrumentation. Based
on the titration experiments, a good linear relationship was found which may apply the
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probe to the quantitative and qualitative detection of Cu2+ in real samples. We believe this
work not only provides a new example of a small molecular probe for ion detection, but
these results may inform research in broader fields such as biometrics and photodynamic
therapy, and such research is going-on in our laboratory.

Supplementary Materials: The following are available online, Figure S1: 1H-NMR of probe L
title, Figure S2: HRMS spectrum of L, Figure S3: Photographs of probe L-cation complex under
natural light and 365 nm UV lamp, Figure S4: UV-vis and Fluorescence spectra of the fluorescence
probe L interacting with different anions; Photograph of probe L-anions complex in THF/water
(VTHF/Vwater = 4/1, pH = 8.00) solution under 365 nm UV lamp, Figure S5: The absorbance and
fluorescence spectra on addition of Cu2+ to the probe (40 µM, VTHF:VH2O = 4/1, λex = 428 nm, slit:
5/5 nm, voltage: 900 v). The fluorescence intensity change plots at 565 nm on addition of Cu2+. Insert:
when [Cu2+]/[probe] is in the range of 0–1.8 ratio, the fluorescence intensity of the probe has a good
linear relationship with Cu2+ (y = 432.59482 − 218.198x, R2 = 0.99276), Table S1: Summary of crystal
data of probe L, Table S2: The fluorescence intensity(a.u.) of probe L and L-Cu2+ complex versus
different pH value within 1440 min (565 nm), Table S3: Comparison data with reported Cu2+ sensors.
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