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Abstract：Steam accumulators are the only commercial solution for heat storage of

direct steam generation (DSG) solar thermal power plants. Current accumulators have

low storage capacity as the turbine suffers from inefficient off-design operation during

heat discharge, thereby restricting the development of DSG technology. This work

1 The short version of the paper was presented at ICAE2017, Aug 21-24, Cardiff, UK. This paper is a substantial
extension of the short version of the conference paper.
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presents a novel approach to solving this problem by using two-stage accumulators and

steam-organic Rankine cycles (RC-ORC). The system involves unique two-step heat

discharge. Heat is initially released via water vaporization in a high temperature

accumulator (HTA) to drive the RC-ORC, leading to an HTA temperature drop of

approximately 30°C. Water at a reduced temperature then flows from the HTA to a low

temperature accumulator through a heat exchanger and the heat is used only to drive

the ORC. Water temperature further drops by 130-190°C. The fundamentals of the

system are illustrated. A comparison with the conventional DSG system is conducted

at a nominal power of 10 MW with an accumulator volume of 2500 m3.

Thermodynamic performance of the system is investigated. The equivalent payback

period (ܲܲܧ) regarding the use of the second step heat discharge is estimated. Results

indicate that the second step heat discharge can increase the storage capacity by 460%,

with an ܲܲܧ of less than 5 years in most cases. Overall, the proposed solution

improves the cost-effectiveness of the DSG system.

Keywords: two-step heat discharge; two-stage accumulators; two-stage steam-organic

Rankine cycles; direct steam generation; wet steam turbine; equivalent payback period

1. Introduction

Direct steam generation (DSG) technology is an option for future cost reduction in

concentrating solar power (CSP) systems. The DSG solar power systems are
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commercial. Many plants are operational, as shown in Table 1 [1], and numerous plants

are under construction. Compared with other commercial CSP systems, a DSG system

eliminates the oil-water or molten salt-steam heat exchanger, and is more

environmentally friendly. Common collectors in DSG applications include parabolic

trough collectors (PTCs), linear Fresnel collectors (LFCs) and heliostats. PTCs have

been used in Project Direct Solar Steam [2], 8 MWht Abengoa Solar plant [3] and 5

MWe plant [4]. LFCs are a subgroup of linear concentrators using linear receivers and

reflectors. LFCs use relatively low-cost, mass-produced flat glass mirrors as reflectors,

and have desirable characteristics in the DSG system. The receiver is fixed and

expensive ball joints can be avoided. The main heat flux comes from the bottom of the

tube to enhance water boiling, and the temperature differences around its circumference

can be diminished. The technical requirements for heat collection are reduced.

Heliostats can provide high temperature superheated steam (>450°C), thereby leading

to increased power generation efficiencies. A solar tower power plant has a good degree

of flexibility in terms of plant construction, because heliostats do not need to be

positioned on an even surface [5].

Thermal storage is a crucial issue in CSP plants. Storage methods based on phase

change materials (PCMs), concretes and molten salts have been proposed for the DSG

systems. By placing encapsulation of the PCM in small containers enclosed in water, a

sufficient heat transfer rate can be achieved and steam can be generated at a constant

pressure. The integration also facilitates an increase in volumetric storage capacity [6].

An alternative design allows water/steam flow through a number of tubes immersed in
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the PCM, thus producing superheated steam at the exit [7]. A concrete system connected

to a steam accumulator or the encapsulated PCMs is advantageous in high temperature

applications for heating up the steam to a superheated state [8-9]. The combination of

a sensible heat storage unit for preheating, a latent one using PCMs for evaporation,

and a sensible one for superheating has attracted a considerable amount of interest [10-

11]. The three-stage design can reduce the heat transfer irreversibility and pressure drop

in the charge and discharge processes.

Notably, the only commercial heat storage solution for the DSG plants are steam

accumulators [12]. Owing to the rapid evaporation and condensation of water/steam

under non-equilibrium conditions, steam accumulators possess fast reaction times and

high discharge rates, thereby making them promising option for reducing the effect of

fluctuating irradiance on power generation of solar thermal systems [6]. Steam

accumulators may be integrated into the power plants through several methods, as

shown in Fig.1 [13-14]. These methods include storage at constant pressure, nearly

constant pressure, and sliding pressure. Flashing occurs inside the vessel for the sliding

pressure storage, which is also called Ruth’s accumulator. This kind of storage has been

adopted in the Puerto Errado 1, Puerto Errado 2, Planta Solar 10 and Planta Solar 20

plants. The schematic diagrams of Planta Solar 10 and Puerto Errado 2 are displayed in

Fig.2 [15-16]. For example, in Planta Solar 10, when heat is required to cover a period

of limited insolation, steam is generated at variable pressure, from 4 MPa to the

minimum pressure allowed by the system to run the turbine at a 50 % partial load [15].

By using steam accumulators, saturated steam can be directly generated for power
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conversion. The superheated section in the solar field, which is usually a challenging

part of the control systems [17-18], is thus avoided. On the other hand, wet steam

turbines with inherent high technical requirements and inefficiencies are necessary [19].

The wet steam turbines would benefit from being integrated with an organic Rankine

cycle (ORC) for several reasons. First, as a bottoming cycle the ORC decreases the

overall pressure ratio of steam turbines. A conventional steam Rankine cycle (RC)

comprises high pressure (HP) and low pressure (LP) turbines. The LP turbine can be

omitted when the ORC is used. The steam quality at the HP turbine outlet can be

increased by elevating the ORC operating temperature. Second, a dry organic fluid,

unlike water, goes into superheated state when expanding from a saturated vapor state,

thereby offering a more efficient expansion. An ORC turbine is typically a dry turbine

which can operate without the need for superheating at the inlet, and has an isentropic

efficiency of up to 90% [20]. According to the Baumann rule [21-22], 1% average

moisture causes approximately 1% drop in turbine efficiency. Therefore the ORC

turbine is likely to have a higher efficiency than a wet steam turbine. Third, the ORC

technology has reached a considerable degree of maturity in biomass and geothermal

power plants, and has great potential in the solar thermal power generation application.

Studies have been conducted on solar ORCs with respect to the cost [23], dynamic

behavior [24], configuration [25-26] and application [27]. The storage concepts related

to steam accumulators should be applicable in principle to solar ORC systems [28-29].

Plants have been built as shown in Table 2 [1,30].

At present, the main problem of the DSG technology is the lack of economically
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competitive long time storage [12,31]. Steam accumulators are high pressure vessels

and could be extremely expensive at large volumes. The conventional accumulators

operate according to the fundamental principles in the heat discharge process as follows:

(1) Water is vaporized by reducing the pressure of the saturated liquid, and the steam

flows into the turbine for power conversion.

(2) The supplied steam during discharge has a lower pressure than the nominal

condition.

(3) The final temperature drop of water in the accumulators is small to avoid inefficient

power generation, thereby resulting in a limited storage capacity.

In the Planta Solar 10 plant, a discharge pressure from 4 MPa at 100% rated load to

that at 50% load should be accompanied by a temperature drop from approximately 250

to 212 oC in accordance with the ellipse law, as further discussed in Sections 3.1.2 and

4.2. In the Khi Solar One plant, the pressure falls from 11 MPa to 3.5 MPa and 2.2 MPa

during discharge to generate steam with 50 °C of superheat. The average temperature

drop of water in the accumulator should be less than 60°C. Moreover, it takes 10.5 hours

of discharging time to produce the power equivalent to that generated in three-hour

nominal operation [31].

This work aims to develop a novel technology for the prolonged, cost-effective

storage of DSG systems which allows a significantly larger water temperature drop, as

well as a good level of thermal efficiency and power output. This goal is realized by

two-step heat discharge in a configuration of two-stage accumulators and steam-organic

Rankine cycles (RC-ORC). In the first step, heat discharge occurs in the high
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temperature accumulator (HTA), which is similarly to conventional DSG plants. The

energy is used to drive the RC-ORC. This step ceases when the total power output or

heat-to-power efficiency falls below the nominal output or efficiency of the sole ORC.

In the second step, the water at the reduced temperature gradually moves from the HTA

to the low temperature accumulator (LTA) through a heat exchanger. The heat is utilized

only to drive the ORC.

To the best of the authors’ knowledge, it is the first time that the turbine-driven RC

has been combined with the ORC in the DSG solar thermal power systems. The indirect

PTC-CSP system using the RC-ORC has been investigated [32-33]. Given a steam

turbine inlet pressure and temperature of 12.0 MPa and 390 oC, the system does not

have superiority over a solar RC system operating at a vacuum condensing pressure.

The RC-ORC does not perform better than the RC except in cold climates, in which

case the RC suffers from high specific volumes and exhaust loss at low condensation

temperatures [34-35]. As a bottoming cycle, ORC has not attracted much interest in the

conventional thermal oil and molten salt-related CSP systems, probably because the

steam at the inlet of the turbine is highly superheated and can expand at a low pressure

without causing trouble to the device by droplets. However, the ORC is beneficial for

DSG systems, as mentioned previously.

Moreover, the two-step heat discharge is unique. This heat discharge is possible

because of the RC-ORC. Water is the working fluid of the RC in the first step, whereas

it acts only as the heat transfer fluid for the ORC in the second step. The discharge

process differs from that of conventional steam accumulators and two-tank storage
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using molten salts. For conventional steam accumulators, the heat discharge is

accompanied with steam generation. For the two-tank molten salt storage, vaporization

during discharge is not expected.

The structure of the work is shown in Fig.3. The proposed solution is illustrated in

the following section. A comparison with the commercial DSG systems is carried out.

The effect of the LTA on storage capacity is evaluated. The equivalent payback period

with respect to the use of the second step heat discharge is analyzed. Finally, the cost

advantages are outlined.

2. Description of the approach applied in the CSP system

Fig.4 shows the innovative DSG system using two-stage accumulators and Rankine

cycles. Steam is directly generated in the solar field. The topping cycle is the RC, which

mainly comprises steam turbine, condenser (HX1), pumps (P1 and P4), solar collectors

and HTA. In parallel to P1, there is an LTA connected to a throttle valve (TV) and a

hydraulic water turbine. The bottoming cycle is the ORC, which comprises a dry fluid

turbine, condenser (HX2) and pump (P2).

Compared with a conventional, single-stage accumulator based DSG solar power

plant, this novel system has an ORC, an HX1, a hydraulic turbine, an LTA and more

solar collectors for a larger storage capacity. The additional devices are marked in blue.

Thermodynamic states are marked by circles with corresponding numbers.

The system can operate in many modes due to the independent power cycles and

accumulators. A few basic cases are shown in line with solar radiation in Fig.5. The
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flow diagrams of the modes are depicted in red in Fig.6.

Mode 1: Sole heat collection. V4 is open and P3 runs. The unmentioned valves or

pumps are closed or off-work, as in the following cases. Water normally accumulates

in the LTA before the system begins to charge and produce electricity on a sunny day.

Water is pumped into the solar field and then arrives at the HTA under low radiation in

the morning. The control objective in this mode is stable saturated liquid at the design

temperature (e.g., 268 oC). The mass flow rate through P3 rises with the increment in

the radiation.

Mode 2: Heat collection and power conversion. The system works mostly in this

mode when solar radiation is available. V1, V2, V3 and V4 are open, while P1, P2 and

P3 run. P4 can run if controlling the dryness fraction at the solar field outlet is necessary.

Water is heated and partially vaporized by solar collectors. Saturated steam goes into

the topping turbine, thereby generating power during expansion. The exhaust is

condensed to saturated liquid in HX1, and is pressurized before sent back by P1. The

condensation heat is used to evaporate the working fluid in the ORC. Meanwhile, water

in the LTA is pumped to the HTA and heated up through the solar collectors. The mass

in the LTA gradually decreases. Water leaving the solar field is in the binary phase state

under nominal conditions. However, it can either be in a liquid or vapor state when the

solar radiation fluctuates. Depending on the radiation, the flow rate through P3 can be

altered to guarantee a constant temperature in the HTA (e.g., 268 oC) and steady power

conversion of the RC-ORC. The total electricity generation is ሶோ஼ݓ + .ሶைோ஼ݓ

A possible control strategy in this mode can be briefly described, based on the
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assumption that the heat input to the RC-ORC in the nominal operating condition is

ܳ௥௔௧௘ௗ and the solar field produces such heat at ஽ேܫ = 400ܹ /݉ ଶ.

(1) When ஽ேܫ = 400ܹ /݉ ଶ, the mass flow rate through P3 (݉ሶ௣ଷ) is 0. The mass flow

rate of P4 (݉ሶ௣ସ) is controlled to achieve the optimum steam outlet dryness. A fraction

of 60 %-80 % has been recommended [36], which is sufficiently high to avoid an

excessively large pumping power, and sufficiently low to ensure a safety margin from

tube dry-out [37]. The HTA temperature remains constant because the heat collection

(ܳ) is equal to ܳ௥௔௧௘ௗ.

(2) When ஽ேܫ < 400ܹ /݉ ଶ , ݉ሶ௣ଷ=0. ݉ሶ௣ସ is controllable. The HTA temperature

gradually decreases because ܳ < ܳ௥௔௧௘ௗ.

(3) When ஽ேܫ > 400ܹ /݉ ଶ , ݉ሶ௣ଷ is adjusted to fulfill ݉ሶ௣ଷ(ℎ௢௨௧− ℎ௜௡) = ܳ −

ܳ௥௔௧௘ௗ . ℎ௢௨௧ is the specific saturated liquid enthalpy of water at the nominal

temperature in the HTA. The HTA temperature remains constant and the total water

mass increases.

Mode 3: The first step heat discharge. When solar radiation is extremely weak or

unavailable, the heat stored in the HTA will be released. V1, V2, V3 and V5 are open,

while P1 and P2 run. Water in the HTA is vaporized to drive the RC-ORC. The HTA

temperature drops. The system can discharge at variable pressure as in the Planta Solar

10. The LTA is not involved. The total electricity generation is ሶோ஼ݓ + .ሶைோ஼ݓ

Mode 4: The second step heat discharge. V6 and V7 (or V8) are open, while P2 runs.

Water in the HTA is moved into the LTA through a throttle valve or a hydraulic turbine

and the heat is used only to drive the ORC. The total electricity generation is .ሶைோ஼ݓ
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The system has a few clear advantages over those traditionally used, including the

following:

(1) The storage capacity is remarkably increased. The temperature drop of water in a

single accumulator during heat discharge is limited to approximately 30 °C to prevent

serious performance degradation of turbines in the off-design condition. In the presence

of two-stage accumulators, water in the HTA can be transferred to the LTA with a

temperature differential exceeding 150 °C. Significantly elevating the storage capacity

is possible.

(2) The highly inefficient off-design operation of the RC and ORC can be avoided. The

temperature drop of HTA in the first step heat discharge can be small (e.g., < 20 °C)

because the storage capacity no longer relies solely on the HTA, enabling high

efficiency of turbines.

(3) The two-step heat discharge is unique and the power conversion is flexible.

Electricity can be produced by either RC-ORC ሶோ஼ݓ) + (ሶைோ஼ݓ or ORC .(ሶைோ஼ݓ) It is

worth noting that the resilient power generation is advantageous, particularly because

the consumers' demand for electricity is variable, normally high during the day and low

at night.
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3. Mathematical models

3.1. Thermodynamics

3.1.1. Solar collectors

The heat collection in the solar field is comparatively simulated by the following two

pieces of software, the System Advisor Model (SAM) created by the National

Renewable Energy Laboratory [38] and Greenius developed at the Institute of Solar

Research of the German Aerospace Center [39].

3.1.1.1. Parameter setting in SAM

To date, SAM has utilized the commercial, well-established software package

TRNSYS tool for modeling CSP systems [40]. The overall efficiency of solar collectors

(௖௢௟ߟ) is defined as the optical efficiency (௢௣௧ߟ) minus an efficiency penalty term (௟௢௦௦ߟ)

representing heat losses [41]:

=௖௢௟ߟ −௢௣௧ߟ ௟௢௦௦ߟ = −௢௣௧,଴ߟܭ
௅௤೗೚ೞೞ,ೌೡ

஺೎೚೗ூವಿ
(1)

where K is the factor which expresses the dependency of ௢௣௧ߟ on the incidence angle

of the solar radiation; ௢௣௧,଴ߟ is the peak optical efficiency when the incidence angle is

zero; L is the length of receivers (m); ௟௢௦௦,௔௩ݍ is average heat loss from receivers

(W/m); ௖௢௟ܣ is the aperture area of the solar collectors (m2); ஽ேܫ is the direct normal

solar irradiance (W/m2).

For the evacuated tube receivers, ௟௢௦௦,௔௩ݍ is calculated by

௟௢௦௦,௔௩ݍ = ଴ܽ + ହܽඥݒ௪ + ൫ܽ ଵ + ଺ܽඥݒ௪൯
௜ܶ௡ + ௢ܶ௨௧− ௔ܶ

2
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+( ଶܽ + ସܽܫ஽ேܭ) ೔்೙
మ ା்೔೙ ೚்ೠ೟ା ೚்ೠ೟

మ

ଷ
+ ଷܽ

( ೔்೙
మ ା ೚்ೠ೟

మ )(்೔೙ା ೚்ೠ೟)

ସ
(2)

where ଴ܽ… ଺ܽ are the heat loss coefficients; ௪ݒ is the wind speed (m/s); ௜ܶ௡ and

௢ܶ௨௧ are the solar field inlet and out temperature (°C); ௔ܶ is the ambient temperature

(°C).

The specific parameters and their default values of PTCs and LFCs used for heat

collection in SAM are listed in Table 3.

For PTCs, the factor K is determined by

௉்஼ܭ = ௉்஼ܯܣܫ ߠݏܿ݋ = ݉ ݅݊ (1,
௖బୡ୭ୱఏା௖భఏା௖మఏ

మ

ୡ୭ୱఏ
) cosߠ (3)

where ௉்஼ܯܣܫ denotes the incidence angle modifier; ߠ is the incidence angle (°) and

଴ܿ, ଵܿ, ଶܿ are the incidence angle coefficients.

For LFCs, the factor K is expressed by

௅ி஼ܭ = ௧௥௔௡௦ܭ௟௢௡௚ܭ (4)

௟௢௡௚ܭ = ଴ܿ,௟௢௡௚ + ଵܿ,௟௢௡௚ߠ௟௢௡௚ + ଶܿ,௟௢௡௚ߠ௟௢௡௚
ଶ + ଷܿ,௟௢௡௚ߠ௟௢௡௚

ଷ + ସܿ,௟௢௡௚ߠ௟௢௡௚
ସ (5)

௧௥௔௡௦ܭ = ଴ܿ,௧௥௔௡௦+ ଵܿ,௧௥௔௡௦ߠ௧௥௔௡௦+ ଶܿ,௧௥௔௡௦ߠ௧௥௔௡௦
ଶ + ଷܿ,௧௥௔௡௦ߠ௧௥௔௡௦

ଷ + ସܿ,௧௥௔௡௦ߠ௧௥௔௡௦
ସ (6)

where ௟௢௡௚ߠ and ௧௥௔௡௦ߠ are the longitudinal and transverse angles (°);

଴ܿ,௟௢௡௚ … ସܿ,௟௢௡௚ and ଴ܿ,௧௥௔௡௦… ସܿ,௧௥௔௡௦ are the incidence angle coefficients. The

default values are listed in Table 4.

3.1.1.2. Parameter setting in Greenius

Greenius is a powerful simulation package for the calculation and analysis of

renewable power projects. In this software, the solar collector efficiency is calculated

by [42]
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=௖௢௟ߟ −௖௟௘௔௡௟௜௡௘௦௦ߟ௢௣௧,଴ߟܭ ܭ) ଴ܽ∆ܶ+
௔భ∆்ା௔మ∆்

మା௔య∆்
యା௔ర∆்

ర

ூವಿ
) (7)

∆ܶ =
்೔೙ା ೚்ೠ೟

ଶ
− ௔ܶ (8)

where ௖௟௘௔௡௟௜௡௘௦௦ߟ is the mirror cleanliness factor, which is not included in .௢௣௧,଴ߟ

The specific parameters and their default values of PTCs and LFCs in Greenius are

shown in Table 5.

For PTCs, the factor K is determined by

௉்஼ܭ = ௉்஼ܯܣܫ ߠݏܿ݋ = −ߠݏܿ݋ ( ଵܿߠ+ ଶܿߠ
ଶ + ଷܿߠ

ଷ) (9)

The values of ଵܿ, ଶܿ, ଷܿ are 0.000525, 2.86e-5 and 0.

For LFCs, the factor K is also determined by Eq.(4), but ௟௢௡௚ܭ and ௧௥௔௡௦ܭ are

derived from Table 6 through interpolation.

3.1.1.3. Calculation of the incidence angle

When the PTC is north-south oriented and has east-west tracking, the incidence angle

is calculated by [43]

ߠݏܿ݋ = ඥ1 − ௦ߙଶݏܿ݋ ௦ߛଶݏܿ݋ (10)

where ௦ߙ is the solar altitude angle (°); ௦ߛ is the solar azimuth angle (°).

When the LFC is north-south oriented and has east-west tracking, the longitudinal

and transverse angles are calculated by [44]

௟௢௡௚ߠݏܿ݋ = ඥ1 − ௦ߙଶݏܿ݋ ௦ߛଶݏܿ݋ (11)

ݐܽ ௧௥௔௡௦ߠ݊ = /௦ߛ݊ݏ݅ ݐܽ ௦ߙ݊ (12)

For horizontal PTCs and LFCs, ௦ߙ and ௦ߛ are determined by the following

equations [45]
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௦ߙ݊ݏ݅ = ߶݊ݏ݅ +ߜ݊ݏ݅ ߶ݏܿ݋ ߜݏܿ݋ ߱ݏܿ݋ (13)

௦ߛݏܿ݋ = ௦ߙ݊ݏ݅) ߶݊ݏ݅ − )/(ߜ݊ݏ݅ ௦ߙݏܿ݋ (߶ݏܿ݋ (14)

where ߶ is the geographic latitude (°), −90° ≤ ߶ ≤ 90°; ߜ is the solar declination

(°), −23.45° ≤ ≥ߜ 23.45°; ߱ is the solar hour angle (°).

ߜ is expressed by

=ߜ 23.45 ݏ݅ (݊360
ଶ଼ସା௡

ଷ଺ହ
) (15)

where n represents the nth day in a year, 1 ≤ n ≤ 365.

߱ is calculated by

߱ = ܶܵܣ)0.25 − 720) (16)

where AST is the apparent solar time (min).

AST is expressed by

ܶܵܣ = ܮܵ ܶ+ −ܶܧ 4( −ܮܵ (ܮܮ (17)

where LST is the local standard time (min); ET is the equation of time (min); SL is the

standard meridian for the local time zone (°); LL is the local longitude (°), −180° ≤

≥ܮܮ 180°.

ET is calculated by

ܶܧ = 9.87 ܤ2݊ݏ݅ − 7.53 ܤݏܿ݋ − 1.5 ܤ݊ݏ݅ (18)

ܤ = 360(݊− 81)/365 (19)

3.1.2. Turbines

The work generated by the steam turbine and ORC turbine is defined as

ሶௌ்ݓ = ݉ሶோ஼(ℎଵ− ℎଶ) = ݉ሶோ஼(ℎଵ− ℎଶ௦)ߝௌ் (20)
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ሶை்ݓ = ݉ሶைோ஼(ℎଵ଴− ℎଵଵ) = ݉ሶைோ஼(ℎଵ଴− ℎଵଵ௦)ߝை் (21)

where ௌ்ߝ and ை்ߝ are the isentropic efficiencies of steam turbine and ORC turbine,

respectively.

Regarding the off-design behavior of the turbines, the ellipse law provides a method

for calculating the turbine flow rate [46]

݉ሶ
ඥ భ்

௣భ
= ݇ට1 − ቀ

௣మ

௣భ
ቁ
ଶ

(22)

where ݇ is a constant. ݉ሶ is the off-design flow rate. ଵܶ and ଵ݌ are the inlet

temperature and pressure. ଶ݌ is the outlet pressure. The ellipse law has been used for

many years to model the off-design behavior of steam turbines.

The ratio of the off-design mass flow rate to the design can then be expressed by [47]

௠ ̇

௠ ̇ బ
= ට

బ்

భ்
ට

௣భ
మି௣మ

మ

௣బభ
మ ି௣బమ

మ (23)

where ݉ሶ଴, ଴ܶ, ,଴ଵ݌ and ଴ଶ݌ are the design flow rate, inlet temperature, inlet and outlet

pressure. It is a simplified mathematic expression of the ellipse law.

3.1.3. Heat exchanger

The heat balance in HX1 under the nominal working conditions is expressed by

݉ሶோ஼(ℎଶ− ℎଷ) = ݉ሶைோ஼(ℎଵ଴− ℎଵଷ) (24)

The heat balance in HX1 in the second step of heat discharge is expressed by

݉ሶோ஼,ଶ௡ௗ(ℎହ− ℎ଺) = ݉ሶைோ஼(ℎଵ଴− ℎଵଷ) (25)

3.1.4. Pumps

The work required by P1 and P2 in the RC-ORC is calculated by
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ሶ௉ଵݓ = ݉ሶோ஼(ℎସ− ℎଷ) = ݉ሶோ஼(ℎସ௦− ℎଷ)/ߝ௉ (26)

ሶ௉ଶݓ = ݉ሶைோ஼(ℎଵଷ− ℎଵଶ) = ݉ሶைோ஼(ℎଵଷ௦− ℎଵଶ)/ߝ௉ (27)

where ௉ߝ is the pump isentropic efficiency.

In the second step heat discharge, water flows from the HTA to the LTA and the heat

is used to drive the ORC. Pumping back the water into the HTA is necessary for further

circulation. The pump power is calculated by

ሶ௉ଷݓ = ݉ሶோ஼,ଶ௡ௗ(ℎଽ− ℎ଼) = ݉ሶோ஼,ଶ௡ௗ(ℎଽ௦− ℎ଼)/ߝ௉ (28)

where ݉ሶோ஼,ଶ௡ௗ is the water flow rate through HX1.

3.1.5. Thermal efficiency

3.1.5.1. Thermal efficiency under nominal working conditions

The RC, ORC and RC-ORC efficiencies are defined by

ோ஼ߟ =
௪̇ೃ಴

௠ ̇ ೃ಴(௛భି௛ర)
=

௪̇ೄ೅ఌ೒ି௪̇ುభ

௠ ̇ ೃ಴(௛భି௛ర)
(29)

ைோ஼ߟ =
௪̇ೀೃ಴

௠ ̇ ೀೃ಴(௛భబି௛భయ)
=

௪̇ೀ೅ఌ೒ି௪̇ುమ

௠ ̇ ೀೃ಴(௛భబି௛భయ)
(30)

ோ஼ିைோ஼ߟ =
௪̇೙೐೟

௠ ̇ ೃ಴(௛భି௛ర)
=

௪̇ೃ಴ା௪̇ೀೃ಴

௠ ̇ ೃ಴(௛భି௛ర)
(31)

where ௚ߝ is the generator efficiency and ሶ௡௘௧ݓ is the net power output.

The thermal efficiency ߟ்) ) of the DSG solar thermal power system under the

nominal working conditions is expressed by

ߟ் = =௖௢௟ߟோ஼ିைோ஼ߟ
௪̇೙೐೟

ூವಿ ஺೎೚೗
(32)

3.1.5.2. Thermal efficiency in the second step heat discharge

The net power output by the ORC in the second step heat discharge is calculated by

ሶைோ஼,ଶ௡ௗݓ = ௚ߝሶை்ݓ − −ሶ௉ଶݓ ሶ௉ଷݓ (33)
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The ORC efficiency in the second step heat discharge is then expressed by

ைோ஼,ଶ௡ௗߟ =
௠ ̇ ೀೃ಴(௛భబି௛భభೞ)ఌೀ೅ఌ೒ି௠ ̇ ೀೃ಴(௛భయೞି ௛భమ)/ఌುି௠ ̇ ೃ಴,మ೙೏(௛వೞି ௛ఴ)/ఌು

௠ ̇ ೀೃ಴(௛భబି௛భయ)
(34)

The equivalent solar electricity efficiency ߟ் ,ଶ௡ௗ is defined by

ߟ் ,ଶ௡ௗ = ௖௢௟ߟைோ஼,ଶ௡ௗߟ (35)

Since water is throttled via the TV, the power loss is defined by

ሶ௟௢௦௦ݓ = ݉ሶோ஼,ଶ௡ௗ(ℎ଺− ℎ଻௦) (36)

3.2. Cost and payback period

An evaluation of the cost and payback time of the entire system is not conducted due

to its complexity. Instead, this work focuses on the economic aspects associated with

the second step heat discharge. Compared with the traditional DGS technology, the

proposed approach can facilitate a second step heat discharge (i.e., Mode 4), thereby

facilitating generation of additional power per year. An equivalent payback period (ܲܲܧ)

with respect to the second step heat discharge is defined as

ܲܲܧ =
஼ೌ೏೏

௒మ೙೏
(37)

where ௔ௗௗܥ is the additional investment associated with the novel approach, and ଶܻ௡ௗ

is the annual yield via the second step heat discharge.

As shown in Fig.4, the proposed approach utilizes an ORC turbine, an internal heat

exchanger (HX1), a hydraulic turbine, an LTA and additional solar collectors. The size

and cost of the HX1 will be analyzed in Section 4.3.3, and it may be cheaper than a

reheater in the conventional system. The energy of high pressure water from the HTA

can be recovered by a hydraulic turbine, as an alternative to the throttle valve. The
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hydraulic turbine has not been used in the existing solar power systems. Accurately

calculating the recovered power is difficult. In this work, the high pressure water is

throttled and the cost of the hydraulic turbine is not estimated.

In the commercial DGS systems, the exhaust from the HP steam turbine is reheated

and then flows into the LP steam turbine. The LP turbine and the reheater are now

eliminated due to the bottoming ORC. At present ORC manufacturers like Ormat and

Turboden normally provide the client with a whole module or project rather than a

turbine, so it is difficult to acquire information about the cost of a single turbine.

Nevertheless, the financial investment in the ORC turbine may not be greater than that

in the LP steam turbine on account of the following aspects:

(1) The estimated cost of an ORC module consisting of turbine, evaporator, condenser,

pump and generator in the large geothermal power system (>10 MW) is usually less

than 1100 $/kW [48]. The turbine cost represents a percentage from about 28% to 44.5%

[49]. A turbine cost of about 308~489 $/kW can be deduced. Meanwhile, the cost of a

MW scale steam turbine but not necessarily a wet steam turbine is around 0.4 million

USD (400 $/kW) [50]. The ORC and steam turbines are comparable in cost.

(2) The turbine cost is determined by the number of stages and the last stage size

parameter with the power as scaling factors [51]. So far, the formulas used primarily

for approximating gas/steam turbine cost have been adopted in the ORC application

[52-53]. The working fluid seems to have much less impact than the power capacity on

the turbine cost.

(3) A steam turbine generally requires expensive maintenance and has major overhauls
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at 5-year intervals, and the situation will be even worse for a wet steam turbine. The

ORC turbine uses a dry organic fluid and is free of droplets during expansion. It has a

lesser technical requirement than the wet steam turbine. The absence of condensation

lowers the risk of corrosion on the turbine blades. ORC turbines can have a lifetime of

about 30 years instead of 15–20 years for steam turbines [54-55], and can offer minimal

maintenance cost without major overhauls [56].

In view of the preceding factors mentioned, the increase in the system capital cost is

mainly attributed to the additional solar collectors and LTA. Determining the ܲܲܧ is

reasonable by

ܲܲܧ =
஼ಽ೅ಲା஼೎೚೗,మ೙೏

௒మ೙೏
(38)

௅்ܥ ஺ and ௖௢௟,ଶ௡ௗܥ are explained below.

3.2.1. Cost of the LTA (࡭ࢀࡸ࡯)

The material cost of an accumulator is determined by

=௦௧௘௘௟ܥ ௦ܲ௧௘௘௟ܯ௦௧௘௘௟= ௦ܲ௧௘௘௟ߩ௦௧௘௘௟ܸ ௦௧௘௘௟ (39)

where ௦ܲ௧௘௘௟ is the price per kilogram of steel.

The total volume of steel ( ௦ܸ௧௘௘௟) is a function of the thickness ,(ߜ) diameter (௜ܦ) and

height ܪ) ) of the accumulator. The design thickness of the cylinder accumulator and

the design pressure are directly correlated [57]

௖௬ߜ =
௣஽೔

ଶ[ఙ]೟థି௣
(40)

where ௧[ߪ] is permissible stress, which is regulated by the technical standard [58]; ߶

is the welding coefficient. The units of ݌ and ௜ܦ are MPa and mm;
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The cylinder accumulator generally has two elliptical heads at the top and bottom.

The standard ratio of the half long axis to the half short axis of an ellipse is 2:1. The

design thickness is expressed by

௛௘௔ௗߜ =
௣

ଶ[ఙ]೟థି଴.ହ௣
(41)

Corrosion allowance is considered which leads to higher cylinder and head thicknesses

than those by Eq. (40) and (41), respectively.

Considering the manufacturing costs, the cost of the LTA is approximately twice as

much as .௦௧௘௘௟ܥ

௅்ܥ ஺ = ௦௧௘௘௟ܥ2 (42)

3.2.2. Cost of the additional collectors (ࢊ࢔૛,࢒࢕ࢉ࡯)

The storage capacity of the solar system is promoted via a second step heat discharge.

Meanwhile, additional solar collectors are installed to harness solar energy. The total

heat released from the HTA to the LTA in the second step heat discharge is expressed

by

ܳଶ௡ௗ = ௪ܯ (ℎହ− ℎ଺) (43)

where ௪ܯ is the total water in the mass transfer process, which is assumed to be the

product of water density and HTA volume.

The additional solar collectors for ܳଶ௡ௗ is calculated by

௖௢௟,ଶ௡ௗܣ =
ொమ೙೏

௧ೞ,ೝ೐೑ூವಿ ,ೝ೐೑ఎ೎೚೗,ೝ೐೑
(44)

where ௦,௥௘௙ݐ is the reference sunshine duration (h); ஽ேܫ ,௥௘௙ is the reference direct

normal solar irradiance (W/m2) and ௖௢௟,௥௘௙ߟ is the solar collector efficiency in the
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reference condition.

The cost of solar collectors is expressed by

௖௢௟,ଶ௡ௗܥ = ௖ܲ௢௟ܣ௖௢௟,ଶ௡ௗ (45)

where ௖ܲ௢௟ is the overall collector price per square meter, including costs of

manufacturing, assembly, equipment and construction activities.

3.2.3. Annual revenues (ࢊ࢔૛ࢅ)

The annual electricity output is the product of annual heat gain and the ORC

efficiency

ܹ ଶ௡ௗ = ைோ஼,ଶ௡ௗߟ ∑ ௖௢௟,ଶ௡ௗܣ஽ேܫ௖௢௟ߟ) )଼଻଺଴
ଵ (46)

The annual yield is

ଶܻ௡ௗ = ௘ܹܲ ଶ௡ௗ (47)

where ௘ܲ is the electricity price per kWh.

4. Results and discussion

The two-stage accumulators and Rankine cycles are expected to be applicable to

common DSG systems using PTCs, LFCs and heliostats. However, only PTCs and

LFCs are used as examples in the following analysis.

Benzene and pentane are selected as the ORC fluids. Theses fluids have been widely

investigated [59] and both have been utilized in practical systems [60]. Particularly,

pentane is a popular working fluid adopted by Ormat Technologies Inc. [61], which has

built more than 1000 ORC plants of up to 1701 MW [62]. The critical temperatures of
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benzene and pentane are 288.9 °C and 196.6 °C. Subcritical cycles are considered,

which offer a constant temperature and pressure in the vaporization process.

A few assumptions are made in the calculation, as shown in Table 7. In the event of

a market price from China, a current exchange rate from China Renminbi (CNY) to US

dollar (USD) of 0.16 is applied.

4.1. Thermodynamic performance under design conditions

Wet steam turbines have been used in nuclear plants for decades [68]. After

significant development, modern wet turbines can handle binary phase steam at a

dryness level lower than 90%. With respect to their well-established development, wet

steam turbines in a commercial nuclear plant, namely Qinshan Nuclear Power Plant

(300 MW, China), serve as reference. A few parameters under the nominal conditions

are listed in Table 8 [69]. The HP and LP turbines have an isentropic efficiency of

approximately 78%. The temperature and pressure are close to those in the Puerto

Errado 1 and Puerto Errado 2 plants as shown in Table 1.

In this simulation, the wet steam turbine in the topping cycle has the same design

temperature and pressure (inlet and outlet) as the HP turbine in Qinshan Nuclear Power

Plant. However, a turbine efficiency of 75% is adopted due to the lower power capacity

(about 5 MW). The design parameters in the bottoming cycle are listed in Table 9. Water

is not an organic fluid, but is considered alongside benzene and pentane to examine its

applicability. In the case of water, Point 10 is the outlet of the HX1. An additional

superheater (SH), which is not included in Fig.4, is required in order to guarantee a high
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quality of steam during expansion and the heat is supplied by the HTA.

The cycle efficiency, mass flow rate, power output and heat input are displayed in

Table 10. The total electricity output is 10 MW. The ORC efficiency ைோ஼ߟ) ) is

approximately 62 % -67 % of the overall thermal efficiency .(ோ஼ିைோ஼ߟ) ோ஼ିைோ஼ߟ for

the organic fluids varies from 25.3% to 27.6%. Compared with the organic fluids, water

absorbs heat in the superheater from 161.3 to 217.6 °C. The heat is directly transferred

from the HTA, thereby leading to significant exergy destruction. Water offers a higher

thermal efficiency (27.8%) than benzene, but the relative increment is insignificant

because the bottoming wet steam turbine has an efficiency of 75%, which is similar to

the LP turbine efficiency in the nuclear plants and is lower than the ORC turbine

efficiency (i.e., 82%).

The output of the ORC (ሶைோ஼ݓ) is greater than the RC (ሶோ஼ݓ) and the ratio ranges from

1.13 to 1.42. The heat input from the solar collectors that is, ݉ሶோ஼(ℎଵ− ℎସ) is in

inverse proportion to .ோ஼ିைோ஼ߟ The mass flow rate of ORC (݉ሶைோ஼) and RC (݉ሶோ஼)

varies with the organic fluid.

Notably, the design parameters originating from the nuclear plants maximize the

reliability. However, these parameters might not be optimum from the viewpoint of

thermodynamics. Given the hot and cold side temperature of the RC-ORC, ோ஼ߟ

decreases with the increment of the ORC evaporation temperature ( ଵܶ଴). ோ஼ିைோ஼ߟ is

not a monotonic increasing function of ଵܶ଴ due to the trade-off between ோ஼ߟ and

,ைோ஼ߟ In general, ோ஼ିைோ஼ߟ initially increases when ଵܶ଴ rises from the environment

temperature, and reaches a maximum value. It then decreases with a further increase of
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ଵܶ଴. With the hot side temperature of 268.2 °C the optimum design ଵܶ଴ can possibly

exceed 161.3 °C, especially in the presence of benzene [70]. A high ଵܶ଴ in design is

beneficial because the pressure ratio for the wet steam turbine is decreased and the

quality of the exhaust is improved. The technical challenges associated with wet steam

turbines are reduced, thereby resulting in high turbine efficiency. Moreover, high power

efficiency in the second step heat discharge is possible.

Though heat transfer irreversibility is evident in the HX1, the RC-ORC may have a

higher efficiency than a sole RC at given hot and cold side temperatures. For the latter,

the pressure loss through a reheater can be significant. It is approximately 64 kPa in

Qinshan Nuclear Power Plant, and should be greater in the DSG systems with a lower

power capacity and heat source temperature. Steam pressure drops in the HX1 in

practice, but the drop is less significant because of the condensation process and does

not affect the power output of the steam turbine, as shown in Section 4.3.3. Instead, it

leads to a lower intake pressure of the pump (P1), and a higher pump power that is

generally less than the turbine output by two orders of magnitude.

4.2. Thermodynamic performance in the second step heat discharge

In the first step heat discharge, water is vaporized in the HTA and circulated in the

RC. Similar to a typical single-stage accumulator, temperature and pressure drop in the

HTA while the total mass is nearly constant. The first step heat discharge is conventional

and does not contribute to the benefits of the proposed approach. Therefore the

thermodynamic performance in this step is not investigated.
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The second step heat discharge is assumed to begin with an HTA temperature of

240 °C due to the following reasons. As the HTA temperature drops from 268.2 °C to

240 °C, the saturation pressure of water falls from approximately 5.3 to 3.3 MPa.

According to the Flügel formula in Eq.(22), the mass flow rate will decrease to

approximately 60% of the rated value. The relative decrement in the turbine efficiency

will be approximately 20% [71]. Given a backpressure of 0.817 MPa at 171.3 °C, the

isentropic enthalpy drop at an inlet temperature of 268.2 °C is 338.0 kJ/kg. It becomes

261.4 kJ/kg at 240 °C, and the relative decrement is 22.7%. It can be deduced that the

thermal efficiency of the topping RC will fall to approximately 60% of the design value.

The ORC efficiency is affected correspondingly by the reduced RC load. Consequently,

the thermal efficiency of the RC-ORC at a temperature lower than 240 °C may be less

than the ORC nominal efficiency as listed in Table 10.

The T-Q diagrams in the second step heat discharge are depicted in Fig.7, which

usefully reveal the relationship between fluid temperature and heat transfer rate in the

HX1. As a hot side fluid, water leaves the HTA at a constant temperature but reaches

the LTA inlet at different temperatures. The heat transfer is related to the characteristics

of the bottoming fluids. For benzene and water, the minimum temperature difference

(∆ ௠ܶ ௜௡=10°C) occurs at the saturated liquid state (i.e., pinch point). For pentane,

∆ ௠ܶ ௜௡ takes place at its inlet.

Benzene and water are accompanied by a high LTA inlet temperature attributed to

the large latent heat of vaporization. The ratio of specific latent heat of water and

benzene in the evaporation process to the total energy in the heating process (i.e., ℎଵ଴−
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ℎଵଷ) is 79.6% and 58.2%, respectively, while it is 36.5% for pentane. Most of the heat

is used for vaporization in the case of water and benzene, thereby resulting in the high

average temperature of the hot side fluid.

The thermodynamic performance correlated with the heat transfer in Fig.7 is listed

in Table 11. The bottoming cycle can work in nominal conditions for each fluid.

݉ሶோ஼,ଶ௡ௗ may be different from nominal values because the hot side water in the second

step heat discharge process is only heat transfer media rather than expander fluid. A

total of 9 to 13 hours of cycle operation (ைோ஼ݐ) are necessary for the organic fluids to

complete the second step heat discharge process, which is evidently longer than that for

water.

Given the volume of the accumulators, the total power that can be generated in the

second step heat discharge (ܹ ଶ௡ௗ) is defined by the product of the heat transfer in the

HTA and the cycle efficiency ைோ஼,ଶ௡ௗߟ) ). ைோ஼,ଶ௡ௗߟ is calculated by Eq.(34). The

discharge and the pumping process of water from the LTA to the HTA might not proceed

simultaneously, but the pump power (ሶ௣ଷݓ) must be included in the ைோ஼,ଶ௡ௗߟ for a

circulation loop. ሶ௣ଷݓ ranges from 297.4 to 579.8 kW. More pump power is demanded

when the bottoming fluids are water and benzene due to the relatively large flow rate

through P3. ሶ௣ଷݓ is approximately equal to 5.4% of the nominal ORC output in the case

of pentane. The power loss (ሶ௟௢௦௦ݓ) in the throttling process varies from 139 to 254 kW.

ሶ௟௢௦௦ݓ is significantly lower than ሶ௣ଷݓ owing to the pumping irreversibility and the

pressure difference between Points 9 and 6 ଽ݌) > .(଺݌ The parameter distribution of the

topping water in the second step heat discharge is shown in Table 12. Vaporization in
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the throttling process occurs but the vapor fraction is only about 0.1%. A preheater can

be placed between the throttle valve and LTA to address the vapor if necessary.

ܹ ଶ௡ௗ ranges from 35.6 to 67.3 MWh. Assuming an average efficiency of 80% of

the nominal value during the first step heat discharge, ܹ ଵ௦௧ is estimated to be 16.0,

14.6 and 16.4 MWh for benzene, pentane and water, respectively, with a temperature

drop from 268.2 to 240 °C. Therefore, ܹ ଶ௡ௗ/ܹ ଵ௦௧ is 3.1, 4.6 and 2.2. The second step

heat discharge can increase the system storage capacity by 460%.

Benzene offers a higher nominal ORC efficiency than pentane, but it does not

guarantee greater ܹ ଶ௡ௗ, due to the higher temperature at Point 6. ܹ ଶ௡ௗ using pentane

is approximately 1.9 times that using water. Water does not seem to be an attractive

bottoming cycle fluid and will not be considered in the following discussion due to a

considerably smaller storage capacity and the additional superheater requirement.

Variation of the hot side water temperature at the HX1 outlet (T6) with the minimum

temperature difference ∆ ௠ܶ ௜௡ at a given ହܶ of 240 °C is displayed in Fig.8. Water

outlet temperature has the same increment as ∆ ௠ܶ ௜௡ when the bottoming fluid is

pentane, because ∆ ௠ܶ ௜௡ occurs at the HX1 outlet. The water outlet temperature in the

presence of benzene is also correlated to ∆ ௠ܶ ௜௡, but it increases at a faster rate.

4.3. Cost regarding the use of the second step heat discharge

4.3.1. Cost of additional solar collectors

The second step heat discharge increases the system storage capacity, but additional

solar collectors must be used to harness solar energy during the day. The reference direct
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normal solar irradiance ஽ேܫ) ,௥௘௙) is 800 W/m2, and is perpendicular to the collector

aperture. The reference wind speed ௪ݒ) ,௥௘௙) is 5 m/s. The PTC efficiency (௉்஼ߟ) and

LFC efficiency (௅ி஼ߟ) are displayed in Table 13. In the same situation, the efficiency

calculated by SAM is higher than that by Greenius. The additional aperture area

(௖௢௟,ଶ௡ௗܣ) of the solar collectors determined by Eq.(44) is shown in Table 14. The

reference sunshine duration (௦,௥௘௙ݐ) is 8.37, 6.89, 6.39, 5.53, 7.65 and 4.73 h for Phoenix,

Sacramento, Cape Town, Canberra, Lhasa and Delingha, respectively, based on the

typical weather data [72]. ௖௢௟,ଶ௡ௗܣ is proportional to the total heat released in the

second step heat discharge. Benzene offers a lower ௖௢௟,ଶ௡ௗܣ than pentane, which is

attributed to the smaller storage capacity. ௖௢௟,ଶ௡ௗܣ is inversely proportional to .௦,௥௘௙ݐ

The least area is used in Phoenix with the most abundant solar resource. The aperture

area is approximately 19% larger than that of the PTCs for any given organic fluid and

region due to the low overall efficiency of LFCs. However, the cost of the LFCs is

lower than the PTCs, regardless of the larger collector area. This finding confirms the

economic advantage of LFCs.

4.3.2. Cost of the LTA

As shown in Table 12, in the case of pentane, the LTA operates at a temperature below

100 °C, thereby resulting in a low accumulator cost. The LTA for the bottoming fluid

of benzene may have a higher technical requirement. 10 accumulators are placed in

parallel to produce a total volume of 2500 m3. For one accumulator of 250 m3 at a

design temperature of 120 °C, the recommended diameter ,(௜ܦ) wall thickness (௖௬ߜ)



30

and height (௖௬ܪ) are approximately 4670 mm, 9.30 mm and 16.06 m, respectively. The

corresponding cost of the LTA is 24000 USD (150000 CNY) [70]. Therefore, the total

cost of the LTA of 2500 m3 is 0.24 million USD.

4.3.3. Cost of the HX1

The HX1 serves as the condenser for the topping cycle and the evaporator for the

bottoming cycle. Though heat exchangers of two side fluids undergoing phase change

have not been used in CSP systems, these heat exchangers have been widely used in the

cascade refrigeration systems [73-74]. Commercial products are available from many

manufacturers [75-76] and the HX1 is technically feasible.

Selection of the HX1 is subject to the working conditions in Modes 2 and 4. However,

the HX1 determined by Mode 2 should be sufficient for the heat transfer in Mode 4.

One reason for this is that ∆ ௠ܶ ௜௡=10°C is assumed in Mode 2 for the sake of the overall

cycle efficiency. In Mode 4, ∆ ௠ܶ ௜௡ can be higher as shown in Fig.8, in which case the

average temperature difference between water and the organic fluids would be enlarged.

It will have no influence on the ORC efficiency in the second step heat discharge,

although the storage capacity is slightly decreased. Using pentane as an example, when

∆ ௠ܶ ௜௡ in Mode 4 is elevated from 10 to 20°C, ܹ ଶ௡ௗ is reduced by approximately 5%,

whereas the logarithmic mean temperature difference rises from approximately 16.1 to

27.1°C. Another reason is that the velocity of water through HX1 driven by the pressure

difference between the HTA and LTA can be high, thereby leading to a high heat transfer

coefficient in Mode 4.
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HTRI software, which is considered to be the industry’s most advanced thermal

process design and simulation software [77], is used to estimate the heat transfer area

and cost of the HX1. A U-tube heat exchanger with fluids of water/steam and pentane

is exemplified, as shown in Fig.9. Pentane runs upward through the tubes and is

vaporized. Water/steam flows over the tubes and is condensed. The parameters of the

HX1 are listed in Table 15. The required heat transfer area is approximately 2000 m2

and the estimated cost is approximately 0.24~0.32 million USD (1.5~2.0 million CNY).

The HX1 might not lead to a significantly higher cost than a superheater/reheater,

though the latter has a smaller heat transfer rate. The heat transfer coefficient of

superheated steam is significantly lower than that of saturated steam [78]. Typically, for

a horizontal coil surrounded with water (similar to a reheater or superheater embedded

in the HTA), the overall heat transfer coefficient might be as low as 50 to 100 W/m2°C

if the inner fluid is superheated steam, but 1200 W/m2°C in the case of saturated steam

[79].

The influence of HX1 on the system cost can be indirectly evaluated by considering

the following points. Numerous ORC-based geothermal power plants exist worldwide

with a water temperature around 100 oC [61]. An example is the newly built Akca Enerji

plant [80]. This plant has a gross electricity generation of 3.878 MW, which is driven

by geothermal brine at a temperature of 105 oC. First, the difference between the ORC

evaporation and condensation temperature is around 50-60 oC, which is considerably

less than that in this work (126 oC). Given the same net electricity output, the heat input

of the plant should be at least twice that of an ORC system operating at 161 oC. Second,
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for the sake of efficient power conversion the mean temperature difference between the

geothermal fluid and ORC fluid in the evaporator of the plant should be lower than that

of the HX1 in Table 15. Third, the cost of the geothermal plant is mainly due to the

ORC turbine, drilling, condenser and evaporator. Drilling costs typically range from 20

to 50% of the total investment cost of a geothermal power plant [81]. Therefore, the

evaporator should not play a significant role in the total cost of the geothermal plant.

Similarly, the impact of the HX1 on the ORC system cost should be limited.

4.3.4. Cost of ORC turbine

As mentioned in Section 3.2, the ORC turbine is possibly more cost-effective than

an LP steam turbine due to the higher efficiency and lower technical requirement. An

additional investment on turbines is not expected.

4.3.5. Cost of land

Land cost is not considered due to its significant variability. For a PTC with an

aperture width of 5.8 m and an LFC with an aperture width of 11.5 m, the distance

between neighboring rows may be 18 and 2 m, respectively [82]. The land cost is

approximately 3.1% of the total CSP system investment [83], while the cost of the solar

collectors is around 40% of the total investment [84-85]. Therefore, the land cost is

supposed to be less than 8.0% of the solar collectors.

4.4. Equivalent payback period (ࡼࡼࡱ)

The annual heat gain per square meter from the collectors is listed in Table 16 and
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the ܲܲܧ is presented in Table 17. The results are first categorized by the fluids used,

and then subcategorized by simulation tools and collector types. Notably, given the

working fluid, region and solar collector, ܲܲܧ is nearly independent of the solar

collector aperture area owing to the insignificant LTA cost. More solar collectors lead

to linearly increased collector investment and annual electricity yield. Therefore, the

ratio of investment to yield remains nearly the same. The advantages of adding the LTA

is evident. The ܲܲܧ is less than 5 years in areas of rich solar resource such as Phoenix,

Sacramento, Cape Town, Canberra and Lhasa.

The PTCs offer a lower ܲܲܧ than the LFCs. Although the initial investment in

LFCs is smaller, an extended payback time might be necessary. The investment is

determined at ஽ேܫ ,௥௘௙ = 800ܹ /݉ ଶ. In the yearly operation of the solar system, the

incidence angle of solar radiation varies with time and season. LFCs have a higher

cosine loss and lesser operation hours than those of the PTCs. Given the solar collector

area, region and working fluid in Table 14, the annual solar energy received by LFCs is

less than that by PTCs.

The ܲܲܧ should be remarkably shorter than that of conventional DSG systems

using a single-stage accumulator because the equivalent solar electricity efficiency

ߟ்) ,ଶ௡ௗ ) in the second step heat discharge is more than half ߟ் ,଴ in the nominal

operation (Mode 2). For example, ைோ஼,ଶ௡ௗߟ is 17.1% and 14.9% for benzene and

pentane, respectively, which is approximately 59 %-62 % of the nominal RC-ORC

efficiency as shown in Table 10. ߟ் ,ଶ௡ௗ of 7.5 %-8.5 % can be expected while the

investment is mostly in the solar collectors. For the single-stage accumulator based
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system, the proportion of the collector cost in the entire system investment should be

less than 50%. Even for a high temperature, large-scale PTC-CSP system involving a

stricter technical requirement for heat collection and a proportionally lower power

block cost, the cost proportion of solar collectors is below 40% [83]. By launching a

second step heat discharge, electricity can be produced at an efficiency higher than 50%

of the single-stage accumulator system but the investment is less than 50%. From this

viewpoint, the proposed system of two-stage accumulators is more profitable than the

conventional DSG systems.

The proposed system is also expected to be more economical than the conventional

solar ORC systems. In the latter, irreversibility is significant in the heat transfer from

the solar field HTF to the organic fluids. Though the HTF temperature can reach above

300 °C, the ORC evaporation temperature generally ranges from 150 °C to 190 °C. For

example, the pentane evaporation temperature is approximately 170 °C in the Saguaro

Power Plant (PTC-ORC) [86], with a pressure of 2.23 MPa and a gross electricity

efficiency of 7.5%, which is close to ߟ் ,ଶ௡ௗ. The proposed system structurally differs

from the conventional solar ORC in the steam turbine. The two kinds of systems should

have similar heat collection efficiencies, but the heat quality for the former is higher

because water leaves the collectors in a saturated steam state rather than a pure liquid

state. For any given collector area and storage size of a solar ORC, by employing an x

MW steam turbine at the topping cycle the heat supplied to the ORC will be reduced

by approximately x MW according to the first law of thermodynamics and the ORC

output will be decreased by xߟைோ஼. Therefore the net increment in the power output will



35

be approximately x(1-ߟைோ஼). Given a daily steam turbine operation time of 8 hours and

turbine cost of 0.4 million USD/MW [50], the annual revenue will be approximately

0.44 million USD and the payback time for the turbine will be less than one year.

Finally, a comparison between the proposed system and the mainstream CSP plants

can be carried out. For the latter, thermal oil as the HTF and molten salts for storage are

commonly adopted [87]. The gross electricity efficiency is around 15% at the solar field

outlet temperature and pressure of 393 °C and 10 MPa, respectively. The proposed

system should have a solar electricity efficiency near that of the mainstream CSP

systems on a thermodynamic basis. The steam saturation temperature at 10 MPa is

approximately 311 °C. Most heat transferred to the Rankine cycle is utilized to vaporize

water and the heat absorbed by water at the superheated state is significantly less. For

example, given the pressure of 10 MPa, the enthalpy of steam only increases by

approximately 372 kJ/kg when the temperature rises from 311 to 400 °C, which is less

than 1/8 of the total heat input. The improvement of ோ஼ߟ by a high degree of superheat

is limited. The Carnot efficiency is approximately 46% at 311 °C and 42% at 260 °C.

The proposed system has a lower heat-to-power conversion efficiency than the

mainstream CSP systems. However, it has some technical advantages that can lead to a

smaller capital cost:

(1) The control strategy is relatively simple. In mainstream CSP systems, the

superheater and reheater are essential and complex measures must be taken in the

process of heat transfer from oil to water under fluctuating solar radiation to guarantee

the safe operation of the turbine. Contrary to these CSP systems, water leaving the HTA
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in the proposed system can be either in liquid, liquid-steam mixture or saturated steam

state. As shown in Fig.4, the mass flow through P3 during the day can be adjusted

depending on solar irradiance. Due to heat capacity in the HTA, the inlet conditions of

the steam turbine can remain constant and do not require a sophisticated control strategy.

(2) Heat collection and storage are easier. The operating temperature of solar collectors

of about 270 °C is appreciably lower than that of the mainstream CSP systems (400°C

or higher). Sealing failure/degradation of the receiver may be eased. The concentration

ratio can also be lowered, thereby reducing the technical requirements of the tracking

system. Thermal oil that requires periodical replacement is eliminated. The problems

related to the low thermal conductivity and high melting point (which causes the

freezing) of molten salts are overcome.

5. Future work

The ORC evaporation temperature could be optimized in the future by establishing

mathematical models for the wet steam turbine. The thermo-economic performance of

the system would be investigated by considering investments in the turbines, solar field

and HTA. As an alternative to the wet steam turbine, an ORC turbine could be used in

the topping cycle. This usage would entail a secondary heat transfer between the

water/steam in the HTA and the organic fluid, but a higher turbine efficiency is expected

with a lower technical challenge.
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6. Conclusion

The proposed approach has great potential to solve the storage problem inherent in

the DSG technology. In principle, the two-stage accumulator system differs from

existing solar thermal storage technologies. The HTA first experiences a mass-unvaried

heat discharge process, and then undergoes an isothermal process. The two-stage

accumulators combine the advantages of the conventional single-stage accumulator and

two-tank storage system, and are a perfect match to the two-stage steam-organic

Rankine cycles.

By enlarging the water temperature drop during heat discharge, the storage capacity

of the system can be increased from about 14.6 MWh with a single-stage accumulator

to 67.3 MWh with an additional LTA. Simultaneously, highly inefficient operation of

the RC is avoided and the ORC can work stably, especially during the second step heat

discharge.

Water is not an attractive fluid of the bottoming cycle owing to the large latent heat

of vaporization and the superheating requirement. Compared with benzene and pentane,

water has a slightly higher heat-to-power efficiency (27.8%) under the nominal

conditions but a significantly smaller storage capacity in the second step heat discharge

(35.6 MWh).

A shorter ܲܲܧ is achieved when using benzene due to a higher solar thermal

electricity efficiency. The ܲܲܧ related to the LTA and additional solar collectors is

generally less than 5 years in Phoenix, Sacramento, Cape Town, Canberra and Lhasa.

The RC-ORC-driven DSG solar thermal power system of two-accumulator storage



38

is an improvement on that using a single-stage accumulator. With the second step heat

discharge, cost-effective storage for the DSG system becomes possible for a long time

period.
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Figure Legends

Fig.1. Main configurations of direct storage systems for steam power plants, as a

combination of storage methods and discharge modes [13-14].

Fig.2. Schematic diagrams of two solar plants: (a) Planta Solar 10 [15]; (b) Puerto

Errado 2 [16].

Fig.3. Overview of the work.

Fig.4. DSG solar power system with two-stage accumulators and Rankine cycles.

Fig.5. A few basic modes of the proposed solar system in different time periods.

Fig.6. Flow diagrams for different operating modes: (a) Mode 1; (b) Mode 2; (c) Mode

3; (d) Mode 4.

Fig.7. T-Q diagrams in the HX1: (a) water-benzene; (b) water-pentane; (c) water-water.

Fig. 8. Effect of minimum temperature difference on the temperature of hot side water

leaving the HX1.

Fig.9. Scheme of the shell and tube heat exchanger.
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Fig.1. Main configurations of direct storage systems for steam power plants, as a

combination of storage methods and discharge modes [13-14].
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(a)

(b)

Fig.2. Schematic diagrams of two solar plants: (a) Planta Solar 10 [15]; (b) Puerto

Errado 2 [16].
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Fig.3. Overview of the work.
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the conventional DSG technology
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Fig.4. DSG solar power system with two-stage accumulators and Rankine cycles.
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Fig.5. A few basic modes of the proposed solar system in different time periods.
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(a)
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(b)
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(c)
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(d)

Fig.6. Flow diagrams for different operating modes: (a) Mode 1; (b) Mode 2; (c)

Mode 3; (d) Mode 4.
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(a)

(b)
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(c)

Fig.7. T-Q diagrams in the HX1: (a) water-benzene; (b) water-pentane; (c) water-

water.
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Fig. 8. Effect of minimum temperature difference on the temperature of hot side water

leaving the HX1.

Fig.9. Scheme of the shell and tube heat exchanger.
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Table 1 A few operational DSG plants worldwide [1].

Project

name
Location Type

Solar field

temperature

(°C)

Steam

pressure

(MPa)

Storage

Power

capacity

(MW)

Planta Solar 10
Sevilla,

Spain

Power

tower

inlet: /

outlet:250-300

4.5

1 h steam

accumulator

(Ruths tank)

11.0

Planta Solar 20
Sevilla,

Spain

Power

tower

inlet: /

outlet:250-300

4.5

1 h steam

accumulator

(Ruths tank)

20.0

Khi Solar One
Upington,

South Africa

Power

tower

inlet: /

outlet: 530
11

2 h steam

accumulator
50.0

ISEGS
Primm,

United States

Power

tower

inlet: 248

outlet: 565

16.0
fossil backup 377.0

Puerto Errado 1
Calasparra,

Spain
LFC

inlet:140

outlet:270

5.5
steam

accumulator

(Ruths tank)

1.4

Puerto Errado 2
Calasparra,

Spain
LFC

inlet:140

outlet:270

5.5
0.5 h steam

accumulator

(Ruths tank)

30.0

Thai Solar Energy 1
Huai Kachao,

Thailand
PTC

inlet:201

outlet:340

3.0
None 5.0
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Table 2 Selected solar ORC plants worldwide [1,30].

Project

name
Location Type

Solar field

temperature

(°C)

Heat

transfer

fluid

Storage

Power

capacity

(MW)

Saguaro Power

Plant

Red Rock,

US
PTC

inlet:120

outlet:300

Xceltherm

600
None 1.16

Aalborg CSP-

Brønderslev CSP

with ORC project

Brønderslev,

Denmark
PTC

inlet:252

outlet:312
water None 16.6

Airlight Energy Ait-

Baha Pilot Plant

Ait Baha,

Morocco
PTC

inlet:270

outlet:570

air at

ambient

pressure

5 hours

Packed-bed

of rocks

3.0

Stillwater GeoSolar

Hybrid Plant

Fallon,

US
PTC / water None 2.0

eCare Solar

Thermal Project
Morocco LFC

inlet:160

outlet:280
water

2 hours

steam drum
1.0

ENAS Project
Ottana,

Italy
LFC / / / 0.6

Rende-CSP Plant
Rende,

Italy
LFC

inlet:-

outlet:280

diathermic

oil
None 1.0

IRESEN CSP-ORC

pilot project

Benguerir,

Morocco
LFC

inlet:180

outlet:300
mineral oil

1/3 hour

buffer
1.0
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Table 3 Specific parameters of PTCs and LFCs in SAM.

Terms PTCs LFCs

Length, ܮ 150 m 44.8 m

Aperture reflective area, ௖௢௟ܣ 817.5 m2 513.6 m2

Peak optical efficiency, ௢௣௧,଴ߟ 76.77% 64.31%

Heat loss coefficient, ଴ܽ 4.05

Heat loss coefficient, ଵܽ 0.247

Heat loss coefficient, ଶܽ -0.00146

Heat loss coefficient, ଷܽ 5.65e-006

Heat loss coefficient, ସܽ 7.62e-008

Heat loss coefficient, ହܽ -1.7

Heat loss coefficient, ଺ܽ 0.0125

Table 4 Incidence angle coefficients in SAM.

଴ܿ 1.00 ଴ܿ,௟௢௡௚ 1.003 ଴ܿ,௧௥௔௡௦ 0.9896

ଵܿ 8.84e-4 ଵܿ,௟௢௡௚ -0.00394 ଵܿ,௧௥௔௡௦ 7.68e-4

ଶܿ -5.37e-5 ଶܿ,௟௢௡௚ 1.64e-4 ଶܿ,௧௥௔௡௦ -2.20e-5

ଷܿ,௟௢௡௚ -8.74e-6 ଷܿ,௧௥௔௡௦ -1.24e-6

ସܿ,௟௢௡௚ 6.70e-8 ସܿ,௧௥௔௡௦ 0
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Table 5 Specific parameters of PTCs and LFCs in Greenius.

Terms PTCs LFCs

Peak optical efficiency, ௢௣௧,଴ߟ 75% 63.5%

Mirror cleanliness factor, ௖௟௘௔௡௟௜௡௘௦௦ߟ 0.97 0.97

Heat loss coefficient, ଴ܽ 0 0

Heat loss coefficient, ଵܽ 0.03298 0.032913

Heat loss coefficient, ଶܽ 0 0

Heat loss coefficient, ଷܽ 0 0

Heat loss coefficient, ସܽ 1.356e-9 1.4838e-9
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Table 6 ௟௢௡௚ܭ and ௧௥௔௡௦ܭ in Greenius.

ࣂ ࢍ࢔࢕࢒ࡷ ࢙࢔ࢇ࢚࢘ࡷ

0 1 1

5 0.96 1.04

10 0.94 1

15 0.91 1.03

20 0.87 1

25 0.82 1.01

30 0.77 1

40 0.64 0.96

50 0.48 0.95

60 0.31 0.78

70 0.14 0.55

80 0.02 0.3

90 0 0.07
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Table 7 Specific parameters for the solar RC-ORC system.

Term Value Term Value

Rated net electricity output, ௡௘௧ݓ̇ 10 MW Price of steel [63] 576 USD/ton

Steam turbine efficiency, ௌ்ߝ 0.75 Price of PTC [64] 170 USD/m2

ORC turbine efficiency, ை்ߝ 0.82 Price of LFC [65-66] 120 USD/m2

Generator efficiency, ௚ߝ 0.95 Price of electricity [67] 0.184 USD/kWh

Pump isentropic efficiency, ௉ߝ 0.75 Reference wind speed, ௪ݒ ,௥௘௙ 5 m/s

Minimum temperature

difference, ∆ ௠ܶ ௜௡

10 °C

Reference direct normal solar

irradiation, ஽ேܫ ,௥௘௙

800 W/m2

Total volume of HTA 2500 m3 Accumulator corrosion allowance 5 mm

Total volume of LTA 2500 m3 Accumulator welding coefficient 0.8

Table 8 Nominal parameters in Qinshan Nuclear Power Plant [69].

Term Value Term Value

Mainstream inlet pressure, MPa 5.345 LP turbine inlet pressure, MPa 0.753

Mainstream inlet temperature, °C 268.2 LP turbine inlet temperature, °C 253.6*

Mainstream inlet quality, % 99.5 LP turbine inlet quality, % superheated

HP turbine outlet pressure, MPa 0.817 LP turbine outlet pressure, MPa 0.0049

HP turbine outlet temperature, °C 171.28 LP turbine outlet temperature, °C 32.52

HP turbine outlet quality, % 87.73 LP turbine outlet quality, % 90.54

* Steam from the HP turbine is reheated before entering the LP turbine
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Table 9 Parameters of the bottoming cycle under design conditions.

Point Parameter Benzene Pentane Water

10 pressure, kPa 728.4 1934 638.4

temperature, ℃ 161.3 161.3 161.3

quality, % 100 100 100

SH*

(10a)

pressure, kPa N/A N/A 638.4

temperature, ℃ N/A N/A 217.6

quality, % N/A N/A superheated

steam

11 pressure, kPa 19.79 98.35 5.627

temperature, ℃ 66.67 87.06 35

quality, % superheated

vapor

superheated

vapor

90.54

12 pressure, kPa 19.79 98.35 5.627

temperature, ℃ 35 35 35

quality, % 0 0 0

13 pressure, kPa 728.4 1934 638.4

temperature, ℃ 35.33 36.07 35.07

quality, % subcooled

liquid

subcooled

liquid

subcooled

liquid

* superheater outlet (10a)
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Table 10 Thermodynamic performance in the design conditions.

Fluid

࡯ࡾࡻࣁ

(%)

࡯ࡾࣁ

(%)

࡯ࡾࡻି࡯ࡾࣁ

(%)

࡯ࡾ̇࢝

(MW)

࡯ࡾࡻ̇࢝

(MW)

̇࢓ ࡯ࡾ

(kg/s)

̇࢓ ࡯ࡾࡻ

(kg/s)

Heat input

(MW)

Benzene 18.40 11.38 27.58 4.13 5.87 17.61 55.58 36.26

Pentane 15.79 11.38 25.28 4.50 5.50 19.21 63.78 39.56

Water* 19.06 11.38 27.79 3.928 6.072 16.76 11.63 35.98

*ORC means the bottoming steam Rankine cycle in the case of water.

Table 11 Increased storage capacity using different bottoming cycle fluids.

Working

fluid

࡯ࡾࡻ࢚

(h)

̇࢓ ࢊ࢔૛,࡯ࡾ

(kg/s)

̇࢓ ࢊ࢔૛,࡯ࡾࡻ

(kg/s)

૜࢖̇࢝

(kW)

࢙࢙࢕࢒̇࢝

(kW)

ࢊ࢔૛,࡯ࡾࡻࣁ

(%)

ࢃ ૛ࢊ࢔

(kWh)

Benzene 9.20 58.2 55.58 425.2 194.4 17.07 50095.3

Pentane 12.92 41.38 63.78 297.4 139.0 14.94 67254.6

Water 6.488 82.48 11.63 579.8 254.0 17.21 35633.2

̇࢓* ࢊ࢔૛,࡯ࡾࡻ is the same as ݉ሶைோ஼ under nominal conditions
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Table 12 Parameter distribution of hot side water in the second step heat discharge.

Point

Cold side fluid

Benzene Pentane Water

5 pressure, kPa 3346.9 3346.9 3346.9

temperature, ℃ 240 240 240

quality, % 0 0 0

6 pressure, kPa 3346.9 3346.9 3346.9

temperature, ℃ 116 46.43 153.9

quality, % subcooled

liquid

subcooled

liquid

subcooled

liquid

7 pressure, kPa 174.77 10.32 528.07

temperature, ℃ 116 46.43 153.9

quality, % 0.10 0.12 0.08

8 pressure, kPa 174.77 10.32 528.07

temperature, ℃ 116 46.43 153.9

quality, % 0 0 0

9 pressure, kPa 5349.7 5349.7 5349.7

temperature, ℃ 116.85 47.04 154.85

quality, % subcooled

liquid

subcooled

liquid

subcooled

liquid
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Table 13 Collector efficiency in design conditions, unit: %.

Working

fluid

SAM Greenius

࡯ࢀࡼࣁ ࡯ࡲࡸࣁ ࡯ࢀࡼࣁ ࡯ࡲࡸࣁ

Benzene 76.0 63.9 72.0 60.9

Pentane 76.1 64.0 72.2 61.1
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Table 14 Additional aperture area of solar collectors and the cost.

Region Collector

Benzene Pentane

SAM Greenius SAM Greenius

Phoenix

PTC

Area (×104 m2) 5.72 6.02 8.79 9.26

Cost (×106 $) 9.72 10.23 14.94 15.74

LFC

Area (×104 m2) 6.79 7.13 10.45 10.95

Cost (×106 $) 8.15 8.56 12.54 13.14

Sacramento

PTC

Area (×104 m2) 6.94 7.32 10.68 11.25

Cost (×106 $) 11.80 12.44 18.16 19.13

LFC

Area (×104 m2) 8.25 8.67 12.70 13.31

Cost (×106 $) 9.90 10.40 15.24 15.97

Cape Town

PTC

Area (×104 m2) 7.49 7.90 11.51 12.13

Cost (×106 $) 12.73 13.43 19.57 20.62

LFC

Area (×104 m2) 8.90 9.34 13.69 14.35

Cost (×106 $) 10.68 11.21 16.43 17.22

Canberra

PTC

Area (×104 m2) 8.65 9.12 13.29 14.01

Cost (×106 $) 14.71 15.50 22.59 23.82

LFC

Area (×104 m2) 10.27 10.79 15.81 16.57

Cost (×106 $) 12.32 12.95 18.97 19.88

Lhasa

PTC

Area (×104 m2) 6.26 6.60 9.62 10.14

Cost (×106 $) 10.64 11.22 16.35 17.24

LFC Area (×104 m2) 7.43 7.81 11.44 11.99
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Cost (×106 $) 8.92 9.37 13.73 14.39

Delingha

PTC

Area (×104 m2) 10.12 10.67 15.56 16.40

Cost (×106 $) 17.20 18.14 26.45 27.88

LFC

Area (×104 m2) 12.02 12.63 18.50 19.40

Cost (×106 $) 14.42 15.16 22.20 23.28
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Table 15 Parameters of the HX1 in Mode 2.

Process data

Hot shell side Cold tube side

Inlet Outlet Inlet Outlet

Temperature, °C 170.97 170.10 36 161.87

Pressure, kPa 811 794 2000 1985

Quality, % 88.6 0 subcooled 100

Mass flow rate, kg/s 19.21 63.78

Velocity, m/s 12.4 1.51

Overall heat transfer coefficient, W/m2°C 1048.18

Effective overall temperature difference, °C 18.0

Total heat, MW 36
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Table 16 Annual heat gain, unit: kWh/m2.

Benzene Petane

Regions SAM Greenius SAM Greenius

PTC LFC PTC LFC PTC LFC PTC LFC

Phoenix 1639 1110 1531 1033 1644 1112 1538 1040

Sacramento 1301 876 1214 813 1306 878 1221 819

Cape Town 1252 901 1170 836 1257 904 1176 842

Canberra 1144 792 1067 731 1149 794 1074 738

Lhasa 1319 913 1230 844 1323 915 1237 850

Delingha 905 613 841 553 911 615 849 560
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Table 17 Equivalent payback time, unit: year.

Benzene Petane

Regions SAM Greenius SAM Greenius

PTC LFC PTC LFC PTC LFC PTC LFC

Phoenix 3.38 3.54 3.62 3.80 3.82 4.00 4.08 4.27

Sacramento 4.25 4.46 4.54 4.81 4.80 5.05 5.12 5.41

Cape Town 4.40 4.33 4.71 4.67 4.98 4.90 5.32 5.26

Canberra 4.81 4.92 5.14 5.32 5.44 5.57 5.81 5.99

Lhasa 4.20 4.29 4.49 4.64 4.74 4.85 5.06 5.22

Delingha 6.06 6.33 6.51 7.02 6.85 7.17 7.35 7.87
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Nomenclature

A aperture area, m2 IAM incidence angle modifier

a heat loss coefficient LFC linear Fresnel collector

AST apparent solar time, min LP low pressure

C cost, $ LTA low temperature accumulator

c angle coefficient ORC organic Rankine cycle

D diameter, mm P pump

EPP equivalent payback period, year PCM phase change material

ET equation of time, min PTC parabolic trough collector

H height, m RC steam Rankine cycle

h enthalpy, kJ/kg RC-ORC steam-organic Rankine cycle

I solar irradiance, W/m2 TV throttle valve

K incidence angle modifier factor V valve

k constant ΔT temperature difference

L length, m Subscript

LL longitude of local area, ° 0…13 number

LST local standard time, min 1st first step

M mass, kg 2nd second step

݉̇ mass flow rate, kg/s a ambient

n nth day of a year add additional

P price, $ av average
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p pressure, MPa cleanliness mirror cleanliness factor

Q heat, kJ col collector

q receiver heat loss, W/m cy cylinder

SL standard meridian for local time zone, ° DN direct normal

T temperature, °C e electricity

t time, h g generator

V volume, m3 head head

v speed, m/s i diameter

W work, kJ in inlet

ݓ̇ work, kW l heat loss

Y yield, $ long longitudinal angle

ߙ altitude angle, ° loss heat loss

ߛ azimuth angle, ° power loss

ߜ solar declination, ° min minimum

thickness, mm net net power

ߝ device efficiency, % OT ORC turbine

ߟ system efficiency, % opt optical

ߠ incidence angle, ° out outlet

ߩ density, kg/m3 P pump

௧[ߪ] permissible stress, MPa rated nominal value

߶ geographic latitude, ° ref reference

welding coefficient ST steam turbine
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߱ solar hour angle, ° s isentropic

Abbreviation solar

CSP concentrating solar power steel steel

DSG direct steam generation T thermal

HP high pressure trans transverse angle

HTA high temperature accumulator w water

HX heat exchanger wind


