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ABSTRACT 
Background 

Metabolic rate is poorly understood in advanced kidney disease, direct measurement being 

expensive and time-consuming. Predictive equations for Resting Energy Expenditure (REE) 

are needed based on simple bedside parameters. Algorithms derived for normal individuals 

may not be valid in the renal population. We aimed to develop predictive equations for REE 

specific for the dialysis population. 

Design 

200 subjects on maintenance dialysis underwent a comprehensive metabolic assessment 

including REE from indirect calorimetry. Parameters predicting REE were identified, 

regression equations developed, and validated in 20 separate subjects. 

Results 

Mean REE was 1658±317 kCal/day (males) and 1380±287 kCal/day (females). Weight and 

height correlated positively with REE (r2=0.54 and  0.31) and age negatively above 65 years 

(r2=0.18). The energy cost of a unitary kg of body weight increased non-linearly for lower 

Body Mass Index. Existing equations derived in normal individuals underestimated REE (bias 

50-114kCal/day for three equations). The novel derived equation was: 

 

REE(kCal/day)=-2.497∙Age∙Factorage+0.011∙height2.023+83.573∙Weight0.6291+68.171∙Factorsex 

 

 where Factorage=1 if ≥65 years and zero if <65, Factorsex=1 if male, and zero if female. 

 

This algorithm performed at least as well as those developed for normal individuals in terms 

of limits of agreement and reduced bias. In validation with Bland-Altman technique, bias 

was not significant for our algorithm (-22±96kCal/day). 95% limits of agreement were +380 

to -424 kCal/day. 

Conclusion 

Existing equations for REE derived from normal individuals are not valid in the dialysis 

population. The relatively increased REE in those with low BMI implies the need for higher 

dialysis doses in this subgroup. This disease-specific algorithm may be useful clinically and as 

a research tool to predict REE. 
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INTRODUCTION 

The primary function of the kidneys is to remove metabolic waste products and in advanced 

kidney disease dialysis needs to replace this function. However, methods used to assess 

dialysis dose in end-stage kidney disease (ESRD) do not take account of metabolic rate. 

Instead, the most commonly employed method adjusts urea clearance by dialysis over a 

single session to the subject’s total body water volume – usually estimated by the Watson 

equation1. Dialysis dose is estimated using  Kt/Vurea ,where K represents dialyser urea 

clearance,  the duration of the session and the denominator V,  body water volume2.  This 

model assumes that uremic toxin production rate is a function of body water volume. 

There are marked differences in survival in relation to gender and body size in patients 

undergoing haemodialysis (HD), in contrast to findings in the general population. Despite co-

morbidities, including diabetes associated with obesity, there is a strong negative association 

between BMI and mortality in patients on HD3, 4, and the survival advantage of women seen 

in the general population is not present in those on dialysis.  DOPPS data indicate that women 

may benefit from a greater dialysis dose than men5 and  in a large HD dose study (HEMO), 

women in the higher dialysis dose intervention group (eKt/V 1.53) had a significantly lower 

mortality than those in the standard dose group (eKt/V 1.16)6. These survival differences 

suggest that defining minimal dialysis requirements in terms of Kt/V, may result in relative 

under-dialysis of women and those with lower BMI. 

Morton and Singer have hypothesised that metabolic rate unidirectionally defines GFR in 

normal individuals, suggesting that it may be more physiological to adjust dialysis dose to a 

measure of metabolic rate7, 8 rather than body water. However, little attention has been paid 

to the use of alternative algorithms which adjust dialysis dose to metabolic rate. 

In order to study this, it is necessary to have validated algorithms for Basal Metabolic Rate 

specific to the dialysis population. Developing such algorithms would permit retrospective 

and prospective studies investigating potential use of Kt/Metabolic Rate as an alternative to 

Kt/Vurea. Furthermore, they would also find clinical utility in the estimation of dietary 

requirements in dialysed patients. Equations derived historically in normal populations9,10,11 
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may not be applicable to subjects with renal failure given their metabolic disturbance and 

their burden of co-morbidities. 

The principal aim of this study was to devise bedside algorithms specific to the dialysis 

population predicting Resting Energy Expenditure (REE), a close marker of Basal Metabolic 

Rate (BMR).  Emphasis was placed on ensuring simplicity in the algorithm suitable for bedside 

use. A secondary aim was to determine the relationship of metabolic rate to gender and body 

size parameters including BMI which are important determinants of survival in dialysis 

patients. This would help to define groups that might benefit from a dialysis algorithm that 

adjusts dialysis requirements to REE. 

METHODS 

Study design 

After Research Ethics Committee approval, a prospective cross-sectional study was 

performed on 200 patients established on dialysis. Subjects underwent a single 

comprehensive metabolic analysis including measurement of REE using indirect calorimetry, 

Fat-Free Mass (FFM) estimation using bioimpedance, and body-size parameters. This 

permitted development of an equation to predict REE. This equation was then validated in 

further cohort of 20 HD patients.  

Study population 

Subjects age>18 on hospital or home HD or peritoneal dialysis (PD) were included. Exclusion 

criteria were hospital admission in previous month, active or recent acute infection, chronic 

infection such as tuberculosis in the previous 12 months, blood-borne virus infection and 

untreated thyroid dysfunction.  

Metabolic analysis 

Body size parameters and nutritional investigations 
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Height and body weight were measured using calibrated scales. Blood nutrition parameters 

including blood haemoglobin, serum albumin and thyroid function were measured on the day 

of the metabolic study. 

Indirect Calorimetery 

 Subjects were requested to refrain from eating and physical activity for 2 hours prior to the 

study. For those on HD, measurements were taken pre-dialysis. Analyses were performed in 

a room at 21-250C. Subjects were asked to lie supine and still for 15 minutes prior to and 

throughout indirect calorimetry. Measurements were taken in a quiet room ensuring no 

disturbance. 

A VMax 29n metabolic cart (CardinalHealth/Sensormedics) was used, employing an overhead 

canopy to collect expired air and perform indirect calorimetry. The mass-flow sensor and gas-

analyser were calibrated for each subject. Calorimetry was performed until steady-state was 

achieved, defined as 5 minutes of <5% variation in oxygen and carbon dioxide production 

rates (VO2,VCO2) and respiratory quotient(RQ). This was almost invariably achieved within 20 

minutes, and usually in <15 minutes. In the small proportion of patients (<5%) where steady 

state could not be achieved in 20 minutes due to V02 or VCO2 variability, steady state was 

considered as the first 5 minute period of <10% variation in above parameters. V02, VCO2 and 

RQ for each patient permitted calculation of REE using the Weir equation: 

REE(kCal/day)=1.44·[3.9·VO2(ml/min)+1.1·VCO2(ml/min)] 

Bioimpedance Analysis 

FFM was estimated by whole body bioimpedance using a Xitron Hydra 4200 device with 

wrist/ankle electrode measurements according to manufacturer guidelines. Bioimpedance 

analysis was performed in supine position during the period of rest prior to indirect 

calorimetry. 
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Physical activity assessment and estimation of Total Energy Expenditure 

Physical activity was estimated from the Stanford 7-day recall questionnaire12. For each 

patient, time-averaged metabolic equivalent of task (MET) was calculated from questionnaire 

data. Time sleeping was considered to have a unitary MET value of 1. Total Energy 

Expenditure (TEE) was estimated by multiplying time-averaged MET by REE. 

 

 

Derivation of Predictive Equation 

Biometric or blood nutrition markers predicting REE were identified using Pearson’s 

correlation. The relationships of biometric parameters with REE were determined by linear or 

non-linear regression. Where linear regression was appropriate, linearity was tested using 

runs tests. Where linearity was not demonstrated, non-linear regression was used to 

mathematically describe the relationship of parameters with REE. General forms of non-linear 

regressions used were y=a*xb or y=a*xb +c. 

Design of an equation to predict REE 

The relationships of body-size parameters such as height and weight with REE were non-

linear, and initially non-linear regressions for REE of the general form below were including 

height, weight and age as variables of the general form: 

REE = H * Heighth + W * Weightw + A*Agea  Equation1 

These multiple non-linear regressions had multiple solutions (multiple global minima), so 

multiple linear regression was employed after linearising the relationship of weight and 

height with REE using power function transformations. The relationship of these variables 

with REE was found to be of the form REE=a*variableb.  The optimum power function 

transformation for each variable was determined separately, by plotting log(variable) against 

log REE. The slope was used to estimate “b” using a linear regression in the form:  
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ln(REE) = b * ln(variable) + c   Equation2 

where variable represents height or weight and the slope b represents the linearising power 

transformation that can be applied to the variable to linearise its relationship with REE. 

Linearity of the transformed function was confirmed using the runs test. 

In multiple linear regression for REE, gender was treated as a binary variable. Age was 

considered to have a linear relationship with REE for subjects ≥65 years (see results). 

A multiple linear regression equation was constucted for REE by including age, heightb1, 

weightb2 and gender as factors in the model where b1 and b2 represent the linearising power 

transformations from equation 2. Multiple linear regression was performed with SPSS v 16 

software. The resulting regression equation represented the novel equation for REE based on 

the parameters above. 

Validation of an equation to predict REE 

The novel equation for REE was validated by two methods. First, by comparison in the study 

population, by the Bland-Altman technique13, of measured REE and REE predicted by the 

novel equation and existing equations derived in the normal population (Schofield10, Harris-

Benedict9 and Mifflin-St Jeor11). Secondly, the novel equation for REE was applied to a 

validation cohort (n=20) and predicted REE compared to measured REE using the Bland-

Altman technique.  

RESULTS 

Population demographics 

96.5% of subjects were on HD and 3.5% PD (Table 1). 15.6% of patients were on low-dose 

prednisolone (5-7.5mg/daily), for reasons including previous transplantation, vasculitis and 

polymyalgia rheumatica. 
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Resting Energy Expenditure, physical activity and Total Energy Expenditure in the study 
population 

REE from indirect calorimetry and physical activity level (time-averaged METs) derived from 

the Stanford questionnaire, are shown in Table 2 along with estimated TEE. Physical activity 

did not significantly differ between males and females but REE was significantly higher in 

males as was estimated TEE (Figure 1). REE correlated weakly with physical activity level (time-

averaged MET) (r2=0.03, p<0.009). The least physically active tertile had lower REE than the 

most active tertile (1483 v 1636 kCal/day, p=0.02).  

Relationship of biometric parameters with REE 

Variables correlating with REE are shown in Table 3. Age and blood hemoglobin 

concentrations had inverse correlations with REE. Height, weight, pulse rate, body 

temperature, mean daily MET, serum creatinine, FFM (bioimpedance) and residual renal urea 

clearance correlated positively with REE. Age, height and weight had highest correlation 

coefficients with other parameters explaining only a small proportion of the variance. Serum 

CRP and parathyroid hormone did not correlate with REE. There were no ethnic differences 

although our population was predominantly white with the non-white group constituting a 

relatively small proportion of the study population (see Table 1). 

Height had a non-linear relationship with REE. The optimum linearising power transformation 

derived from the regression ln(REE)=b*ln(height)+c for height was 2.023 (95% C.I. 1.618-

2.428) such that REE could be described as a function of height: 

REE=fn(height2.023)   Equation 3 

This is shown in Figure 2. Linearity of the transformed data was confirmed using the runs test 

(p=0.53). 

The relationship of weight with REE could be similarly described. The optimal power 

transformation for weight to linearize its relationship with REE was 0.629 (95% CI 0.548-

0.710). Linearity of the transformed data was confirmed using the runs test (p=0.74). 

Consequently, REE could be described as a function of weight (Figure 3) as: 
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REE=fn(weight0.6291)    Equation 4 

The relationship of age with REE was more complex, REE reducing as age increased. The 

relationship could be explained using a power function, but confidence intervals were very 

wide. It was therefore decided to describe the relationship using linear regression. A cut-off 

age above which age correlated best with REE was calculated and determined to be ≥65. For 

those with age≥65 the relationship of REE with age could be considered linear (runs test 

p=0.99), with REE reducing as age increased (r=-0.428, p=0.009, Figure 4). For those aged <65 

there was no significant relationship of age with REE (r=0.064, p=0.55). 

Energy cost of body weight and its relationship to Body Mass Index 

The energy “cost”, of a unitary kg of body weight was determined for each patient from the 

ratio of REE to body weight (kCal.day-1kg-1). The relationship with BMI is shown in Figure 5. 

The relationship was non-linear - for lower BMI, REE/kg increased,. 

Predictive equation for REE in dialysis patients 

Multiple linear regression to generate a predictive equation for REE 

The multiple linear regression for REE included parameters height2.023, weight0.6291, age (if 

≥65) and gender in the form: 

REE=A·Age·Factorage+H·height2.023+W·Weight0.6291+S·Factorsex  Equation5 

where A, H, W and S are constants in the linear regression, units are height (cm), weight (kg), 

age (years). Factorage is 0 if age <65 of 1 if ≥65 and Factorsex=0 if female or 1 if male. 

Parameter estimates for A, H, W and S are shown in Table 4 with confidence intervals. All 

were significant predictors of REE in the model. The regression explained 66.3% of the 

variance in REE (r2=0.663), therefore the final predictive equation for REE was: 

REE=-2.497·Age·Factorage+0.011·height2.023+83.573·Weight0.6291+68.171·Factorsex Equation6 

Addition of a constant did not improve variance in REE explained by the model. When other 

variables correlating with REE (Table 3) were added to this regression model they were not 
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found to be significant predictors of REE except for addition of pulse rate which improved the 

model marginally (r2=0.674). However, we did not include this parameter in the final model 

as its measurement may be difficult to standardise. Exclusion of patients on peritoneal dialysis 

from the regression model did not significantly improve the variance in REE explained by the 

model (r2=0.664). 
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Validation of the novel predicted equation for REE and performance of existing equations 

developed in normal individuals. 

The performance of equation 6 and existing equations for REE in the study population (n=200) 

are shown in Table 5 compared to measured REE using Bland-Altman analyses. Existing 

equations had a tendency to under-estimate REE in this population (Table 6). Performance of 

equation 6 against measured REE is also shown graphically in Figure 6. 

Performance of Equation 6 in the validation study (n=20) is shown in Figure 7. Bias was -

22kCal/day (95% CI of bias +74 to -118kCal/day) which was not significantly non-zero. The 

upper 95% limit of agreement was 380kCal/day (95% CI of upper 95% limit of agreement 214-

546) and lower 95% limit of agreement was -424kCal/day (95% CI of 95% lower limit of 

agreement -258 to -591). Bias was not significantly correlated with the average of measured 

and predicted REE (r=0.30, p=0.2). The correlation r2 coefficient of predicted REE to measured 

REE was 0.64 in the validation group. 

DISCUSSION 

We set out to derive an algorithm specific to the dialysis population to predict metabolic rate 

using biometric parameters. The parameters best predicting REE were weight and height. 

These parameters were not linearly related with REE. It is known that weight and FFM closely 

predict REE in normal individuals14. However, FFM estimation is not easily obtainable without 

use of bioimpedance, and therefore it is unlikely to be useful in developing bedside predictive 

equations for REE or for algorithms that may be applied to population or registry-based 

studies. 

We found a complex relationship of REE with age. Below the age of 65, there was no 

significant relationship of REE with age but above this there was an inverse correlation. 

Equations developed in normal individuals, such as the Schofield equation10, have attempted 

to address this by developing different equations for REE for different age groups. However, 

in our dataset there were limited numbers of younger individuals, which is typical of dialysis 

populations, making this approach more difficult. The decision to exclude age as a factor when 

<65 was pragmatic. 
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The Mifflin-St Jeor, Harris-Benedict and Schofield equations assumed the relationships of 

weight and height with REE to be linear, though we have shown these to be non-linear. Hence 

their approach risks systematic bias as is demonstrated in our Bland-Altman analyses. We 

attempted to use multiple non-linear regression to predict REE using functions including 

weight and height as power functions. However there were wide confidence intervals for 

iterated parameters. We therefore used linear regression after applying linearizing 

transformations to height and weight. This may be criticised as there is co-linearity between 

height and weight. This limitation should be considered but is not easily resolved given the 

constraints of subject numbers that can be recruited in such studies for regression models. 

The final equation developed for REE from multiple linear regression (equation 6) included 

height, weight, gender and age. Addition of further parameters (Table 3) to the model was 

possible, but without substantial improvement in the variance explained by the model with 

the exception of pulse rate which improved the model very marginally. Pulse rate was 

excluded from the final model as its measurement requires careful standardisation and its 

inclusion in the model would have limited the usefulness of the equation in registry datasets. 

Residual renal urea clearance correlated significantly with REE was not included in the final 

regression as its inclusion did not improve the model. 

Performance of Equation 6 in the original study population compared to existing equations 

developed in normal individuals showed no significant bias and improved limits of agreement. 

However, this should be interpreted with caution as this validation procedure was performed 

in the same study population as that from which the formula had been derived.  

Consequently, a second validation was performed in 20 separate subjects using the Bland-

Altman technique13. Again, REE predicted from Equation 6 showed similar limits of agreement 

and no significant bias as in the first Bland-Altman plot, although confidence intervals are 

wider due to the smaller number of subjects in this validation study. We therefore conclude 

that the novel equation for REE performs at least as well as existing equations for REE in terms 

of limit of agreement, and reduces bias when compared to the Schofield, Mifflin-St Jeor and 

Harris-Benedict equations.  

There is only one other study in the literature which describes a predictive equation for REE 

in the dialysis population. This is a recent pilot study with low numbers (N = 67). The best 
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model included age, REE, serum albumin and CRP. The predictive power of this model at R2 = 

0.489 was less than that of the three generic equations described here15. 

Equations for REE derived in normal populations tended to underestimate REE in the dialysis 

population. We caution, however, against a potentially false conclusion that REE is relatively 

raised in patients on dialysis compared to the general population. This may not be correct as 

these equations were derived in historic populations of normal individuals which bear little 

resemblance to a modern dialysis population. Without a control group of normal individuals 

in this study it is not possible to draw conclusions about the effect of renal failure and the 

uraemic state on REE. Our own results differ somewhat from those reported by Kamimura et 

al of REE in patients with kidney disease in Brazil where they demonstrated that the Harris-

Benedict and Schofield equations tended to over-estimate REE16. However, this study 

population was very different from ours in that gender mix was reversed, ages were 

considerably lower, ethnicity different, and the study included subjects with non-dialysed 

chronic kidney disease. Limited available data from small studies suggest that REE may be 

increased in those on HD compared to normal controls17, 18 but reduced in those with chronic 

kidney disease16, 19, 20. Reduction in REE in CKD compared to normal controls may be due to 

lower level of physical activity21. This demonstrates the need to validate equations for REE in 

the population in which they are to be used. 

Equation 6 is likely to be both useful clinically particularly when used in combination with an 

estimate of mean MET to allow estimation of total daily energy expenditure. In keeping with 

previous data22 we found low levels of physical activity in this group. The contribution of 

estimated physical-activity-related energy expenditure to total energy expenditure was 

approximately one third in men and women. Due to the small degree of inter-individual 

variation in physical activity level, it is possible to estimate that TEE is therefore REE*1.44 for 

men and 1.42 for women (Table 2) and therefore it is possible to obtain a rapid bedside 

estimate of TEE in patients on dialysis. In the normal population, physical activity is more 

variable so this estimation is much less likely to be accurate12. Low physical activity level in 

patients with ESKF has also been previously demonstrated in studies assessing physical 

activity using questionnaire-based techniques and accelerometers23. Similar findings have 
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been found with even early CKD24. The relationship (though weak) between REE and physical 

activity level may be related higher FFM in more physically active individuals.   

Use of this equation will allow the design of both retrospective and prospective research 

studies to examine the hypothesis that dialysis dose would be better adjusted according to 

metabolic rate, rather than Watson Volume8, 25, 26. It has already been demonstrated that 

adjusting dialysis dose according to body surface area (BSA) rather than Watson volume 

would deliver greater dialysis to women and men of lower body mass index27, 28, the groups 

who seem relatively under-dialysed by the current Kt/V algorithm. This may be because of a 

close mathematical relationship of REE to BSA. 

Potential reasons for the relative under-dialysis of certain subgroups by the Kt/Vurea model 

are suggested in this study. The relationship of BMI with the unitary energy “cost” of 1kg of 

body weight demonstrates that the cost increases at low body mass index. At low body mass 

index, the relatively higher metabolic rate per unit of body mass may be reflected in increased 

uremic toxin generation. This important relationship requires further exploration and may 

underlie body size differences in survival3. Our data is supported by a recent study of urea 

generation rate in patients on dialysis which showed higher urea generation rate per unit 

body mass in small women29. 

A limitation of this study is that the population was largely on HD as our unit has only a small 

PD programme. Although these patients were included in the study, numbers were low and 

the validity of the novel equation for the PD population cannot be assumed. We felt it 

advantageous to include a mixture of patients on HD and PD to generate an algorithm for REE 

that is broadly applicable to the dialysis population. The small size of PD programmes in 

comparison to HD is likely to limit development of equations for REE specific to the PD 

population. The majority of our subjects were Caucasian which may limit the applicability of 

the equation to other groups. If TEE is also estimated from REE then it should also be 

considered that there may be variation in physical activity level according to ethnic group30. 

A further limitation is that the thermic effect of food was not fully excluded by our instructions 

that patients fast for 2 hours prior to the indirect calorimetry, potentially resulting in slight 

over-estimation of REE. The thermic effect of food is related to its energy content and is likely 
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to have been of <50kCal magnitude for patients who ingested food in the 12 hour period prior 

to indirect calorimetry31. Considering the high proportion of patients with diabetes we felt it 

unlikely that a more prolonged fast would be rigorously adhered to by patients. 

In conclusion, this study proposes a novel equation for REE specific to patients on dialysis 

which may be clinically useful.  Its use in registry-based datasets might help determine 

whether adjusting dialysis dose according to REE might expose relatively under-dialysed 

groups and the effect of this on their survival. 

Practical Application 

Resting Energy Expenditure, similar to Basal Metabolic Rate, is the amount of energy 

expressed in kCal/day required for one day in conditions of rest. The algorithm presented, 

specific to the dialysis population, provides a method of its estimation based on simple body-

size measures and may be useful for nutritional assessment. 
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Table 1 
 
Demographics of 200 subjects recruited in study of metabolic rate in patients on dialysis 
 

  Mean ± SD or proportion(%) 
Dialysis modality  

Hospital HD 95.0% 
Home HD 1.5% 
Peritoneal dialysis 3.5% 

Age (years) 62.7 ± SD 15.2  
Gender  59.5% male 40.5% female  
Height (cm) 168.5 ± SD 10.3  
Weight (kg) 75.0 ± SD 18.6  
Dry weight  73.6 ± SD18.4  
Body Mass Index  26.2 ± SD5.9  
Body surface area (Dubois formula, m2) 1.84 ± SD0.25 
Waist diameter (cm) 100.7 ±SD16.2 
Hip diameter (cm) 89.5 ±SD12.5 
Waist:hip ratio 1.13 ±SD0.16 
Ethnicity  

White 82.5% 
Non-white 17.5% 

Comorbidities  
Diabetes 27.1% 
Ischemic heart disease 30.3% 
Structural heart disease 17.1% 
Peripheral vascular disease 16.7% 
Malignancy 9.5% 
Thyroid dysfunction 9.0% 
      Treated hyperthyroidism 1.5% 
      Treated hypothyroidism 7.5% 
Stroke or TIA 12.6% 
Treatment with corticosteroids 15.6% 

Blood haemoglobin (g/dL) 11.4± SD1.2 
Serum albumin(mg/L) 35.3± SD4.7 
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Table 2 
 
Energy expenditure in males and females in the dialysis population 
 

 Males 
(Mean ± SD) 

Females 
(Mean ± SD) 

Males v 
Females 
(T-test, p) 

Time-average METs 1.44 ± 0.13 1.42 ± 0.11 p=0.26  

Resting Energy Expenditure(kCal/day) 1658 ± 317 1380 ± 287 <0.001 
Exercise-related Energy Expenditure 
(kCal/day) 743± SD303  583 ±SD195  <0.001 

Calculated Total Energy Expenditure 
(kCal/day) 2401 ± SD565  1963 ± SD433  <0.001 
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Table 3 

Factors correlating significantly with REE 

 

Parameter  r  r2 p  

Age  -0.35 0.12 <0.001  

Height  0.55 0.31 <0.001  

Weight  0.74 0.54 <0.001  

Pulse  0.25 0.06 <0.001  

Body Temperature  0.14 0.02 0.05 

Mean daily Metabolic Equivalent of Task  0.18 0.03 0.009 

Serum hemoglobin  -0.19 0.04 0.006 

Residual renal urea clearance 0.21 0.04 0.003 

Fat free mass (bioimpedance) 0.68 0.46 <0.001 

Creatinine (pre-dialysis in HD or plateau in PD) 0.20 0.04 0.006 
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Table 4 
Parameter estimates in a multiple linear regression for REE based on age, height, weight and 
sex described in equation 5 

Parameter 
Parameter 
estimate Standard Error 

95% Confidence Interval 
Lower 
bound 

Upper 
bound 

A -2.497 0.363 -3.213 -1.78 
H 0.011 0.003 0.004 0.018 
W 83.573 6.608 70.541 96.605 
S 68.171 32.198 4.673 131.67 
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Table 5 
Bland-Altman analyses comparing measured REE with that predicted by existing equations 
and equation 6. Bias was significant for the Schofield, Harris-Benedict and Mifflin-St Jeor 
equations which indicated that they under-estimate REE. The greatest In terms of r2, the best 
performing equation was the novel equation. 

 

  Schofield 
equation1 

Harris-
Benedict 

equation  

Mifflin-St 
Jeor 

equation 

Equation 
6 

Upper 95% CI of upper 95% limit of 
agreement 

503 491 560 426 

Upper 95% limit of agreement 454 443 511 379 

Lower 95% CI of upper 95% limit of 
agreement 

404 396 462 332 

          

Upper 95% CI of bias 78 83 142 27 

Bias 50 55 114 0 

Lower 95% CI of bias 21 27 85 -27 

          

Upper 95% CI of lower 95% limit of 
agreement 

-304 -286 -235 -332 

Lower 95% limit of agreement -354 -334 -284 -379 

Lower 95% CI of lower 95% limit of 
agreement 

-404 -381 -333 -426 

          

Correlation with measured REE (r2)  0.62 0.65 0.63 0.66 
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Legend of Figures 

Figure 1 
Total Energy Expenditure in the study population was considered to be a combination of REE 
and exercise-related energy expenditure. Error bars shown represent the standard error of 
the means. 

Figure 2 
Non-linear relationship of REE and height 
The shallow curve shown shows a non-linear regression in the form REE=height2.023+c 
(equation 3) 

Figure 3 
Non-linear relationship of weight and REE 
The curve shown shows a non-linear regression in the form REE=weight0.629+c (equation 4). 

Figure 4 
Relationship of age with REE 
Using an age cutoff of ≥65, below this there was no significant relationship of REE with age. 
Above this age correlated negatively with REE, this relationship being linear. The linear 
regression line with 95% C.I. is shown. 

Figure 5 
Body Mass Index and its relationship with energy "cost" of a unitary 1kg of body weight. 
 
Figure 6 
Bland Altman plot comparing measured REE with that predicted by equation 6 in the study 
population (n=200).  
Broken lines show bias, which was not significant, and the upper and lower 95% limits of 
agreement (see Table 5). 
 
Figure 7 
Bland Altman plot comparing measured REE with that predicted by equation 6 in the 
validation dataset (n=20 patients). 
Broken lines show bias, which was not significant, and the upper and lower 95% limits of 
agreement. 
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