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 

Abstract— Unmanned navigation of vehicles and mobile robots 

can be greatly simplified by providing environmental intelligence 

with dispersed wireless sensors. The wireless sensors can work as 

active landmarks for vehicle localization and routing. However, 

wireless sensors are often resource-scarce and require a resource 

saving design. In this paper, a multiple Bloom-filter scheme is 

proposed to compress a global routing table for a wireless sensor. 

It is used as a look-up table for routing a vehicle to any 

destination, but requires significantly less memory space and 

search effort. An error expectation based design for a multiple 

Bloom-filter is proposed as an improvement to the conventional 

false positive rate based design. The new design is shown to 

provide an equal relative error expectation for all branched 

paths, which ensures a better network load balance and uses less 

memory space. The scheme is implemented in a project for 

wheelchair navigation using wireless camera motes. 

 
Index Terms— Bloom-filter, mobile robots, navigation, 

routing, wireless sensor networks  

 

I. INTRODUCTION 

utonomous navigation is a traditional research topic in 

intelligent vehicles and robotics. An autonomous robot 

perceives the environment from its on-board sensors, such as 

cameras and laser scanners, and drives to a destination by 

centralized information processing. Most research to date has 

focused on the development of a brain large and smart enough 

to gain autonomous capability for robots[1]. The techniques 

have been developed with success, but they are nonetheless 

faced with difficulties and ambiguity in understanding the 

environment due to the limitations of only using on-board 

sensors. If the environment is provided with pervasive 

intelligence using a wireless sensor network, the difficulties 

can be significantly alleviated with less environmental 

uncertainty for the robot. Firstly, the distributed sensor 

network can provide a topological map of the environment. 

The task of routing to a geographic goal now becomes a 

sensor-querying sequence in the sensor network. Secondly, 

distributed sensors become active landmarks for robot 
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localization. This is much more reliable and efficient than map 

based probabilistic localization[1-3]. Thirdly, with static 

cameras mounted in the environment rather than on a mobile 

robot, each sensor will be in charge of a local region; as a 

result, there is less uncertainty and higher reliability in both 

environment sensing and motion control. Under the control of 

such a wireless sensor network, mobile robots with less on-

board intelligence can be expected to have superior mobility. 

The solution is feasible in applications where a large number 

of robots need to be controlled in a certain area, such as the 

navigation of wheelchairs in a care centre, trading environment 

intelligence for expensive on-board intelligence in every robot. 

Wireless sensor networks can distribute sensing and 

processing units within an environment for effective and 

efficient information gathering. There are a wide range of 

applications in which wireless sensor networks outperform 

traditional centralized sensing systems. Examples include 

monitoring the vital signs of patients in hospital[4], managing 

land in agriculture[5], creating virtual fencing for animals 

using acoustic stimuli[6], and monitoring sub-glacier 

environments to better understand the Earth’s climate[7]. 

Nowadays, wireless sensor networks are no longer solely used 

for data acquisition and information gathering. Active decision 

making and control with pervasive intelligence has led to a 

new wave of research on cyber-physical systems[8, 9]. Cloud 

robotics recently became a new research field to expand a 

robot's knowledge beyond its physical body, so that a robot 

can become smaller, cheaper, and smarter[10]. Autonomous 

navigation is an application which would benefit greatly from 

external intelligence. Wireless sensors can be adopted by 

intelligent transport systems to provide vehicles with 

information about the conditions in its surrounding 

environment[11], and they can even provide vehicles with 

navigational services[12]. Wireless sensors can also actively 

locate and guide the visually impaired to avoid risk[13] and 

navigate people out of dangerous areas[14].        

However, individual sensors in a wireless sensor network 

are often tiny and resource-constrained with limited energy 

and on-board computational capacity [15, 16]. Energy-

efficient designs have been a vital challenge for wireless 

sensor network research[17, 18]. The resource constraints in 

terms of storage as well as communication create additional 

challenges to routing other than those found in traditional ad-

hoc wireless networks. 

This paper investigates vehicles routed to a destination 
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using a wireless sensor network, which shares massive 

centralized computing with distributed sensors. Traditionally, 

routing or global path planning for navigation is accomplished 

by an on-line shortest path search on a road map, such as 

Wavefront Expansion and Dijkstra’s search algorithm[1], or 

by multiple hops communication in a wireless sensor network, 

such as generating a navigation field[19]. However, on-line 

searching or network propagation searches should be avoided 

due to the constrained energy and bandwidth available in a 

wireless sensor network. In this paper, we take a routing table 

based approach as opposed to the on-line search. The shortest 

paths in the network are planned off-line and saved in every 

sensor node to direct a vehicle to a destination. In order to be 

efficient in communication and storage, a Bloom-filter based 

scheme is proposed for storing the routing table. 

Bloom-filters are an efficient and lossy way to describe 

membership of elements belonging to a set[20]. They are 

broadly used for efficient membership determination in many 

fields, such as the detection of an attack in network 

security[21], packet classification[22], spell-checkers[23], and 

dictionaries of passwords[24]. Since the 1990s, Bloom-filters 

have become popular in many Web applications. Fan and Cao 

et al. used a Bloom-filter to develop a summary cache for web 

cache sharing[25], where a proxy used  a Bloom-filter based 

query to determine if another proxy cache held a desired Web 

page. Czerwinski, Zhao et al. described a routing protocol in 

which the resource lists were represented by Bloom-filters[26]. 

Recently, more research efforts have been reported for 

improving the conventional Bloom-filters. Fan and Cao 

introduced counting Bloom-filters to support dynamic 

modification of content[25]. The possibility of a false negative 

occurring in counting Bloom-filters was analyzed in [27]. 

Mitzenmacher demonstrated a compressed Bloom-filter to 

reduce transmission bits[28]. Xiao and Hua presented a 

parallel Bloom-filter solution for querying multi-attribute 

items[29]. Rhea and Kubiatowicz introduced attenuated 

Bloom-filters for probabilistic location and routing of peer-to-

peer location mechanisms[30].  

To compress a set of strings, a Bloom-filter hashes the 

strings into a bit vector. To determine the membership of any 

query string, the Bloom-filter uses the same hash functions to 

check if the corresponding bits have been set when they were 

encoded, although there does exist a false positive possibility. 

The traditional design of a Bloom-filter considers a trade-off 

between the false positive probability and the memory usage. 

In order to represent several branched paths at a node, a 

multiple Bloom-filter is proposed in this paper, with each 

Bloom-filter in it saving a compressed routing table for each 

path.   

This paper first introduces multiple Bloom-filters for robot 

navigation routing. The paper then analyzes the multiple 

Bloom-filters, designed with the conventional approach to 

have a constant false positive probability, and points out that 

different branches may have unbalanced relative errors. A path 

with less encoded nodes will exhibit a higher relative error 

than a path with more nodes, which should be avoided in 

navigation. An error expectation based design is then proposed 

to overcome this issue. It is proved that the new design can 

ensure equal expectation of relative errors for all branches and 

use less memory than the conventional design. The proposed 

multiple Bloom-filter scheme is implemented in a wireless 

camera network for wheelchair navigation and verified by 

experiment.  

II. A DISTRIBUTED VISUAL SENSOR NETWORK FOR 

WHEELCHAIR NAVIGATION 

In order to develop a technical solution for navigation of a 

wheelchair using pervasive intelligence, a system with wireless 

visual sensors distributed in the environment and connected by 

wireless communication was developed in the project 

WiME(Wireless Mosaic Eyes)[31]. The system consists of 

three hardware systems, 1) networked wireless visual sensors, 

2) wireless controlled robots, and 3) a remote console. The 

networked wireless visual sensors are the main elements to 

accomplish distributed localization and navigation, with path 

routing as one of the functions. In the project, we modified an 

off-the-shelf wheelchair to be controlled by the wireless 

sensors. The only processor on-board the wheelchair was an 8-

bit Atmega 128L, which was used to link the visual sensor 

network wirelessly through the IEEE 802.15.4 protocol and to 

drive the two differential wheels of the wheelchair. Such a 

low-performance processor is not powerful enough to carry out 

global navigation. However, the visual sensors deployed in the 

environment can provide enough distributed intelligence to 

control the wheelchair.  

S 1

S0

(1)

John’s Office

S1

S3S2

(2) (3)

(4)

 
Fig. 1.  Control flow of the WiME system 

 

The control flow of navigation data can be illustrated in 

Fig.1. A wheelchair with John’s office as its destination first 

sends “John”, (1) in Fig.1, to the nearest sensor S0. It queries 

S0 which path it should take in order to navigate to the 

destination with the shortest total distance. The wireless sensor 

S0 then checks routing tables on-board, which are the multiple 

Bloom filter presented in this paper, to find out and inform 

sensor S1 as a partner for the navigation service, (2) in Fig.1. 
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Sensor S0 then works with S1 together to plan a path and 

control the wheelchair going through S0 to S1, (3) and (4) in 

Fig.1, which are achieved by the snake based path planner and 

tracker presented in [32]. The process continues along the 

route, sensor-by-sensor, to direct the wheelchair to John’s 

office. In order to achieve this scenario, each distributed 

sensor needs to be provided with unambiguous semantics and 

assigned a determinate role for navigation. A configuration 

software kit was developed for this purpose.  

The configuration kit provides a tool for creating a 

geographic map and locating wireless sensors. It links the 

geographic map with the sensor topology as its road map for 

navigation. It then generates the routing tables for each node, 

where each routing table records a set of locations able to be 

reached with the shortest total distance by following a 

branched path. An example of the map configuration for an 

indoor environment is shown in Fig.2. The red dots indicate 

the deployed sensor nodes in the environment, and the blue 

lines indicate the communication links as well as the geometric 

pathways, together forming a topological map for navigation. 

There are three sorts of sensor nodes deployed: 

Goal nodes: Goal nodes are mounted at designated locations 

that can be queried as a destination, e.g. (node 21: “store 

room”), (node 22: the office of “John”), (node 23: “exit”), 

(node 15: “laboratory 1”), (node 17: the office of “Jerry”), 

(node 25: “laboratory 2”), and a group of research students in 

the laboratories, for example (node 11: “Alice”). 

Junction nodes: Junction nodes are mounted at the junctions of 

passages for the purpose of routing, e.g. node 2, node 11, node 

15 and node 18. 

Way nodes: The remaining nodes are way nodes to support 

navigation. They are placed by following a sensor deployment 

strategy, e.g. to achieve minimum set of sensors with bounded 

tracking errors [33]. 

With the aid of the routing tables, all wireless visual sensors 

are organized into a network for navigation. Each sensor can 

answer queries about direction, such as “what is the best way 

to the John’s office from here?”. This will be discussed in the 

following sections. 

III. NAVIGATION BY A MULTIPLE BLOOM-FILTER 

Global routing or global path planning is the first task of 

navigation. It is located at the top of a tiered navigation 

architecture[1]. Given a destination, a vehicle needs to know 

the most cost-effective sequence of abstract locations leading 

to it. It is traditionally implemented by a centralized search in 

a topological map. For navigation by distributed sensors, an 

intuitive approach is to adopt the routing techniques used in 

communication networks[34], e.g. searching by broadcasting 

potential values[35] or flooding a navigation field to a 

destination[19]. The drawback of these methods appears to be 

with slow response, heavy communication burden and high 

memory requirements. A wireless sensor network has limited 

on-board capacity and low communication rates. It is expected 

that routing can be accomplished with less on-line 

communication and computation, at the same time using 

moderate amounts of on-board memory space. A technique to 

improve performance of repetitive-mode queries from vehicles 

is to pre-compute some information [36]. One extreme is to 

pre-compute the entire finite set of all possible queries and 

store them in a routing table, providing rapid access time but 

with a very large storage overhead. In this section, a multiple 

Bloom-filter scheme is proposed to provide routing tables 

using less memory space. 

With wireless sensors deployed in an environment for 

navigation, we assume that the sensors have been organised 

into a network topologically equivalent to the geometric road 

map, as Fig.2. The topological map can be represented as a 

graph of {S, E}, where S={s1, s2,…,sc} is a collection of sensor 

nodes in the network;  jicjcieE ji  ];1[];1[:,   is 

a collection of edges, i.e. geometric passages, which connect 

nodes in pairs. For each node si={Ii, Ei}, Ii is the identity of the 

i
th

 node and Ei is the set of edges connecting si with other 

nodes. The routing problem is to find a sequence of edges 

from the current location to a goal with the shortest total 

distance. When a vehicle is under the control of node si, it will 

query for the next edge ei,j to follow in order to reach desired 

destination sg. The query is expected to use a human friendly 

identity Ig such as “John’s office”, “David’s office”, rather 

than an artificial code, which will allow a user without any 

knowledge about the coding method to use the navigation 

service. It also simplifies the program needed for a vehicle or 

PDA to access the wireless sensor network.   

Due to limited communication and computation power of 

each wireless node, an on-line shortest route search should be 

avoided. Therefore, we take a routing table approach, where 

routing tables are pre-computed by the Dijkstra’s search 

algorithm. A routing table Ti,j in a node si lists all destinations 

that can be reached with the shortest distances by following the 

edge eij. Therefore, each node has the same number of routing 

tables as its edges. Taking the map shown in Fig. 2 as an 

example, we will generate 3 routing tables for node 18 as 

 
Fig. 2.  Map configuration software for sensor node deployment, where 

wireless visual sensors are in red and communication links are in blue. 



IEEE SMCA-10-06-0238 4 

below: 

T18→19={“store room” }, T18→22={“John”, “exit”}, 

T18→17={“Jerry”, “laboratory 1”, “laboratory 2”, “Alice” and 

all other students in laboratory 1, all students in laboratory 2}. 

With the routing tables saved in each node, a robot at the 

location of one node can query which passage it should take in 

order to reach a given destination with the shortest distance. 

The node can answer by determining which routing table a 

queried string’s membership belongs to. It uses memory to 

avoid an on-line search. For example, if a robot near node 18 

is looking for “Alice”, it can query the node for a navigation 

service. Node 18 checks the tables T18→17 , T18→19 , and T18→22 

to determine which edge should be taken and finds out that 

“Alice” is in T18→17. The robot will then be directed from node 

18 to node 17.  Therefore, the routing table of an edge lists all 

possible destinations by taking the edge. However, the 

required memory to store those destinations could be huge for 

a big map, which is often not feasible for a sensor node with 

scarce on-board memory. 

A Bloom-filter can be used as a routing table. To represent 

n random strings into a table T, k independent hash functions 

are used to generate digital fingerprints in T, which map 

elements belonging to the path to k integers in [0,m] and the 

corresponding bits in bit-vector T are set as shown in Fig. 3. If 

there are L branched paths for a node, L Bloom-filters, forming 

a multiple Bloom-filter, are needed for routing.  

 
Fig. 3.  A routing table in the Bloom-filter for a path with two members, John 

and Jerry 

 

A vehicle can query the multiple Bloom-filter in the sensor 

node to determine which path to take. If any of the bits in the 

Bloom-filter of a path are not set, the corresponding path 

should definitely not be taken. If all of the bits for a path are 

set, the vehicle may take the path. There is a non-zero 

probability that the decision is wrong because a bit could be 

set by other elements when they are hashed. This is known as a 

false positive. The advantage of using Bloom-filters as routing 

tables can be clarified by considering its compression 

capability, from n elements with any string length to m bits, 

and its high query efficiency, from an n elements’ search to a k 

hash functions’ check. However, there is a trade-off between 

the compression rate and the false positive rate, which is 

dependent on the element number n, the hash function number 

k and the vector length m[28]: 
kmnk

fp ep )1( /  (1) 

The minimum false positive probability can be obtained as  

pfp=1/2
k
 , when k=(m/n)·ln2. (2) 

Example: For a path with 1000 locations and 4 hash 

functions, the optimized table length is m=5771bits, i.e. 721 

bytes with a false positive rate of pfp=6.25%. It can be seen 

that the required memory space is reasonable for a wireless 

sensor to store the routing information of a medium-sized map.  

The probability of false positives can be further reduced by 

a multi-hop approach, where a query is forwarded to the next 

node in the path to double check the membership. If we use 

independent hash functions in different nodes, the probability 

of a false positive decreases as a power of hops pfp 
hops

. Taking 

the previous example with pfp =6.25%, we have pfp=0.39% for 

1 hop, pfp=0.024% for 2 hops, etc. The false positive rate can 

be reduced to a very low level with only a few hops and the 

correct path branch can be determined. 

IV. DESIGN OF A MULTIPLE BLOOM-FILTER BASED ON ERROR 

EXPECTATION 

In section 3, a routing scheme using a multiple Bloom-filter 

is presented. An immediate question is how to determine the 

number of hash functions and the table length of each Bloom-

filter. From equation (2), the optimal number of hash functions 

should be selected based on a desired pfp. However, the number 

of hash functions in a multiple Bloom-filter is fixed for several 

independent tables and often specified beforehand to simplify 

implementation, e.g. for reducing on-line computation required 

for hash checks. Therefore, in order to ensure that queries have 

a false positive rate of less than pfp, adjusting the number of 

hash functions is often not feasible. We have to change the 

length m of each Bloom-filter for a given pfp to carry out a sub-

optimal design. From equation (1), we have 

ln(1 )k
fp

nk
m

p






 (3) 

From equation (2), the optimal 
0 2log fpk p   and 

0 0 / ln 2m nk , the actual length in comparison with the 

optimal length can be obtained as below. 

0

0

1
ln

2

1
ln(1 ( ) )

2

ok

k

k
m m

k
  



 (4) 

Fig.4 shows the relation. It can be observed that the table 

length of a Bloom-filter has to be longer than the optimal m0 in 

order to achieve the same pfp if a given k is not equal to k0.  
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Fig. 4.  Table length ratio m/m0 vs hash number ratio k/k0, where m0 and k0 

are optimal 

 
Consider node s has L edges and as a result there are L 

Bloom-filters in it. Each Bloom-filter is expected to encode 

n(i), i=1,…,L, nodes with altogether 



L

i

inn
1

)(  nodes in a 

multiple Bloom-filter. In order to design table lengths m(i) for 

L Bloom-filters, an intuitive route is to select m(i) to achieve a 

common false positive rate pfp for all branched paths based on 

(3). It will be shown that this approach may result in biased 

false positive errors for different edges. In a multiple Bloom-

filter, the numbers of encoded nodes n(i), i=1,…,L, in 

individual Bloom-filters could be quite different, e.g. some 

edges may lead to very few nodes but the others may lead to 

many. However, all Bloom-filters or sub-tables have to pass an 

equal number of queries, which could be legal or illegal for an 

edge, e.g. a query to a location encoded in another table. Equal 

pfp means equal possibility of errors occurring in all paths, 

regardless of how many nodes are resident in a path. As a 

result, a path with fewer nodes will have a higher chance of 

being wrong than one with a dense population of nodes. This 

can be verified by its error expectation. Considering there are 

altogether N possible queries, the relative error expectation for 

edge i due to N queries is: 

)(

))((
)(

in

pinN
iE

fp

EPN


  (5) 

It can be found that an equal rate of false positive, pfp, 

results in a higher relative error for a Bloom-filter with a 

smaller value of n(i) than one with larger n(i). It could be even 

worse if all queries are legal, i.e. N=n, and the distribution of 

nodes in different paths is not uniform. In this case, a path with 

very few nodes, i.e. n(i)<<N, will have much higher error 

expectation than a path which is densely lined with nodes, i.e. 

n(i)≈N, due to the term N-n(i) in (5).  The overall error 

expectation for checking L tables in a multiple Bloom-filter 

can be calculated as:  

    
1

L

d fp fp

i

E N n i p L N n p


        (6) 

Therefore, we need to take the error expectation as the 

design criterion, as opposed to the false positive rate in order 

to achieve a uniform relative error expectation for all paths. 

This is important for navigation, where the routing by any path 

should have equal relative risk. The communication bandwidth 

along all paths can then be fairly allocated if the multi-hop 

approach proposed in section 3 is used for coping with false 

positives.  

In order to ensure a uniform relative error expectation for all 

edges, we propose a biased approach that assigns a different 

false positive rate, pfp(i), i=1..L, to each edge i, for example, an 

edge with fewer nodes will be given a lower possibility. Let 

  /fp fpp i p t   with   

 

N n i n
t

n iN n


 


, (7) 

where /n n L  represents the average number of nodes in a 

branch.  

From (7), if   , 1n i n t   and pfp(i)≤pfp, a lower false 

positive rate is set; if   , 1n i n t   and pfp(i)> pfp, a higher 

false positive rate is set. We expect that this modification can 

make all edges exhibit an equal relative error expectation 

regardless of how many nodes in a Bloom-filter. 

Theorem 1: If 
















 
 1/)(

n

nN
pNin fp

, i) pfp(i) defined in 

(7) can be used as a false positive probability for a multiple 

Bloom-filter design; ii) all edges will have equal relative error 

expectation; iii) the overall error expectation of the new design 

will be the same as the equal pfp design shown in (6).  

Proof: If the pfp(i) in (7) can be used as a probability, pfp≤t 

must be true. From (7), it can be obtained that 

















 
 1/)(

n

nN
pNin fp

. This proves i). 

The relative error expectation of edge i due to N queries can 

be calculated by using the pfp(i): 

   
fp

fpfp

EPN p
n

nN

t

p

in

inN

in

ipinN
iE 










)(

)(

)(

)()(
)(  

which is a constant for any n(i) in an edge. This proves ii). 

The overall error expectation of the new design for all edges 

can be obtained as: 

   

  fpfp

L

i

fp

L

i

fp
L

i

fpd

pnNLpnL
n

nN

pin
n

nN

t

p
inNipinNE









 


)(

)(
)(

)()()(
111

 
which is identical to the expectation of the equal pfp based 

design in (6). This proves iii). 

 

Therefore the proposed variable false positive rate (7) for 

the multiple Bloom-filter design balances the relative error 

expectations of all edges but without compromising overall 

error expectation. Since in most applications N>>n and pfp<<1, 

the condition 
















 
 1/)(

n

nN
pNin fp

 is often true. 

However, it would be difficult to estimate the number of all the 
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possible queries, N. In real applications considering a large N, 

(7) can be simplified to: 

n

in
pip fpfp

)(
)(   (8) 

Therefore, the false positive probability of each edge can be 

easily obtained from the number of resident nodes in the edge. 

V. MEMORY USAGE OF THE ERROR EXPECTATION BASED 

MULTIPLE BLOOM-FILTERS 

Wireless sensor nodes often have less memory capacity. A 

key factor to be concerned is the amount of memory usage.  

Assume there are L Bloom-filters in a sensor node and each 

Bloom-filter encodes n(i), i=1,…,L, members. Following the 

conventional design, we specify the table lengths so that all 

tables achieve an equal false positive rate, pfp. From (3), we 

know the table length of the i
th

 Bloom-filter should be: 

( )
( )

ln(1 )k
fp

n i k
m i

p


 



 (9) 

The overall table length of the multiple Bloom-filter 

becomes: 

   k
fp

L

i
k

fp

FPB
p

kn

p

kin
m











 1ln1ln

)(

1

 (10) 

If we follow the new design based on equal error 

expectation, the pfp(i) will be adjusted by (8). The overall table 

length becomes: 

  
 




L

i k
fp

EEB

ninp

kin
m

1 /)(1ln

)(  (11) 

The following theorem tells us the memory usage of the 

proposed method in comparison with the conventional design.  

 
Theorem 2: The table length (11) of a multiple Bloom-filter to 

achieve equal error expectation is no longer than that of the 

false positive rate based design in (10). They have equal length 

only when nLnnn  )()2()1(  . 
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From (13), there is a critical point at 
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It has the same length as the conventional design in (10). 

We need to further prove it is the maximum for all n(i). The 
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in (10). 
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From Theorem 2, a multiple Bloom-filter using the 

expectation based design will not only achieve uniform 

relative error expectation, but will also save memory usage in 

comparison with the false positive rate based design. 

VI. EXPERIMENTAL RESULTS 

A practical WiME system was developed with wireless 

visual sensors mounted on the ceiling of a building. Software 

packages and communication protocols were developed for 

wheelchair navigation, with the proposed multiple Bloom-filter 

as a global path planner. A demonstration video of wheelchair 

navigation in the building can be found in [31].   

In order to evaluate the performance of the proposed error 

expectation based multiple Bloom-filter design, we randomly 

generated a topological map with altogether n=1000 nodes. 

With k=4 hash functions and a desired false positive rate 

pfp=0.01, the false positive rate based(FPB) and the error 

expectation based(EEB) multiple Bloom-filters were 

developed. For a node with 4 branches (Path1, Path2, Path3 

and Path4), which have 23, 193, 332 and 452 nodes 

respectively, the two multiple Bloom-filters were queried by 4 

groups of 10
6
 random strings. Table 1 and 2 show the errors 

for each group of queries. 
TABLE 1: ERRORS USING THE FALSE POSITIVE RATE BASED DESIGN  

Group 1 2 3 4 Average 

Errors 

Relative 

Errors 

Path 1 

Path 2 

Path 3 

Path 4 

9987 

9976 

10014 

9982 

10013 

9984 

9985 

9986 

9979 

9981 

9998 

10011 

10025 

10012 

10002 

9993 

10001 

9988 

9999 

9993 

434.83 

51.75 

30.12 

22.11 

 
TABLE 2: ERRORS USING THE ERROR EXPECTATION BASED DESIGN 

Group 1 2 3 4 Average 

Errors 

Relative 

Errors 

Path 1 

Path 2 

Path 3 

Path 4 

937 

7702 

13178 

17882 

945 

7734 

13297 

18123 

914 

7724 

13206 

18105 

909 

7727 

13308 

17934 

926 

7722 

13247 

18011 

40.26 

40.00 

39.90 

39.84 

 

From Table 1, the conventional false positive rate based 

design results in much higher relative errors for a path with 

fewer nodes than a path with more nodes. For example, path 1 

exhibits a 434.83 relative error. From the working process of a 

multiple Bloom-filter proposed in section 2, any query needs 

to be checked by all the Bloom-filters. Therefore, a path with 

fewer nodes will suffer more errors from queries which do not 

belong to it. The errors will cause more than one Bloom-filter 

to pass the hash check. As a result, the multi-hop checks have 

to be carried out for further confirmation, which increases the 

communication cost in paths with fewer nodes. The proposed 

expectation based design guarantees a uniform distribution of 

relative errors. In Table 2, all paths show a similar amount of 

relative errors, about 40, which means an equal risk for any 

path. The comparison results verify Theorem 1. 

In terms of overall memory usage, we randomly generated 

1000 topological maps with 1000 nodes each. The table 

lengths by using the false positive rate based design and the 

error expectation based design are shown in Fig. 5. 

 

Fig. 5. Memory usages of the EEB design(blue) and the FPB design(red) 

It is clear that the proposed method outperforms the 

conventional design, which verifies Theorem 2. To have a 

quantitative comparison, we list the memory usage of the 

Bloom-filter based routing tables and the routing table without 

using Bloom-filters for the 4 groups of results in Table 3. 

 
TABLE 3: MEMORY USAGE OF ROUTING TABLES(KBITS) 

Group 1 2 3 4 Percentage  

No Bloom-filter 

FPB Bloom-filters  

EEB Bloom-filters 

48 

10.52 

9.449 

48 

10.52 

9.452 

48 

10.52 

9.483 

48 

10.52 

9.462 

100% 

21.9% 

19.7% 

 

From Table 3, the memory usage is reduced to 21.9% by 

introducing Bloom-filters as routing tables, where the Bloom-

filters are designed to achieve equal false positive rates. The 

memory usage is further reduced to 19.7% by using the error 

expectation based design, which is around 10.1% of the false 

positive rate based design. 

VII. CONCLUSIONS 

A multiple Bloom-filter technique has been proposed for 

storing a large amount of routing information into a wireless 

sensor node, where energy and memory are scarce resources. 

An error expectation based design, instead of the typical false 

positive rate based design, was proposed to achieve a uniform 

false positive expectation for every sub-table. As a result, 

communication costs, as well as power consumption, were 

balanced to be in proportion to the number of resident nodes in 

a path. The table length of a multiple Bloom-filter was shown 

to be shorter than the conventional design. Therefore, memory 

usage in the wireless node is reduced. The proposed method 

has been practically implemented in the WiME project for 

wheelchair navigation using wireless visual sensors, and can 

be taken as a general approach for navigation routing using a 

distributed sensor network. For example, the increasing 

number of CCTV cameras can also be used to provide 

navigational services to vehicles on a motorway or wheelchairs 

in a building. 
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