
IEEE SMCA-10-06-0238 1



Abstract— Unmanned navigation of vehicles and mobile robots

can be greatly simplified by providing environmental intelligence

with dispersed wireless sensors. The wireless sensors can work as

active landmarks for vehicle localization and routing. However,

wireless sensors are often resource-scarce and require a resource

saving design. In this paper, a multiple Bloom-filter scheme is

proposed to compress a global routing table for a wireless sensor.

It is used as a look-up table for routing a vehicle to any

destination, but requires significantly less memory space and

search effort. An error expectation based design for a multiple

Bloom-filter is proposed as an improvement to the conventional

false positive rate based design. The new design is shown to

provide an equal relative error expectation for all branched

paths, which ensures a better network load balance and uses less

memory space. The scheme is implemented in a project for

wheelchair navigation using wireless camera motes.

Index Terms— Bloom-filter, mobile robots, navigation,

routing, wireless sensor networks

I. INTRODUCTION

utonomous navigation is a traditional research topic in

intelligent vehicles and robotics. An autonomous robot

perceives the environment from its on-board sensors, such as

cameras and laser scanners, and drives to a destination by

centralized information processing. Most research to date has

focused on the development of a brain large and smart enough

to gain autonomous capability for robots[1]. The techniques

have been developed with success, but they are nonetheless

faced with difficulties and ambiguity in understanding the

environment due to the limitations of only using on-board

sensors. If the environment is provided with pervasive

intelligence using a wireless sensor network, the difficulties

can be significantly alleviated with less environmental

uncertainty for the robot. Firstly, the distributed sensor

network can provide a topological map of the environment.

The task of routing to a geographic goal now becomes a

sensor-querying sequence in the sensor network. Secondly,

distributed sensors become active landmarks for robot

Manuscript received October 21, 2011. This work was supported in part

by the Royal Society of UK and the NSF of China.

P. Jiang is with the Department of Computer Science, University of Hull,

Hull, HU6 7RX, UK (corresponding author: phone: 0044 1482 465680; fax:

0044 1482 466666; e-mail: p.jiang@hull.ac.uk).

Y. Ji, X. Wang, and J. Zhu are with the Department of Information and

Control, Tongji University, Shanghai, 200092 China(e-mails:

jyx851110@hotmail.com, dawnyear@tongji.edu.cn, zhujin@tongji.edu.cn).

localization. This is much more reliable and efficient than map

based probabilistic localization[1-3]. Thirdly, with static

cameras mounted in the environment rather than on a mobile

robot, each sensor will be in charge of a local region; as a

result, there is less uncertainty and higher reliability in both

environment sensing and motion control. Under the control of

such a wireless sensor network, mobile robots with less on-

board intelligence can be expected to have superior mobility.

The solution is feasible in applications where a large number

of robots need to be controlled in a certain area, such as the

navigation of wheelchairs in a care centre, trading environment

intelligence for expensive on-board intelligence in every robot.

Wireless sensor networks can distribute sensing and

processing units within an environment for effective and

efficient information gathering. There are a wide range of

applications in which wireless sensor networks outperform

traditional centralized sensing systems. Examples include

monitoring the vital signs of patients in hospital[4], managing

land in agriculture[5], creating virtual fencing for animals

using acoustic stimuli[6], and monitoring sub-glacier

environments to better understand the Earth’s climate[7].

Nowadays, wireless sensor networks are no longer solely used

for data acquisition and information gathering. Active decision

making and control with pervasive intelligence has led to a

new wave of research on cyber-physical systems[8, 9]. Cloud

robotics recently became a new research field to expand a

robot's knowledge beyond its physical body, so that a robot

can become smaller, cheaper, and smarter[10]. Autonomous

navigation is an application which would benefit greatly from

external intelligence. Wireless sensors can be adopted by

intelligent transport systems to provide vehicles with

information about the conditions in its surrounding

environment[11], and they can even provide vehicles with

navigational services[12]. Wireless sensors can also actively

locate and guide the visually impaired to avoid risk[13] and

navigate people out of dangerous areas[14].

However, individual sensors in a wireless sensor network

are often tiny and resource-constrained with limited energy

and on-board computational capacity [15, 16]. Energy-

efficient designs have been a vital challenge for wireless

sensor network research[17, 18]. The resource constraints in

terms of storage as well as communication create additional

challenges to routing other than those found in traditional ad-

hoc wireless networks.

This paper investigates vehicles routed to a destination

Design of a Multiple Bloom-filter for

Distributed Navigation Routing

Ping Jiang, Yuanxiang Ji, Xiaonian Wang, Jin Zhu and Yongqiang Chen

A

mailto:jyx851110@hotmail.com
mailto:dawnyear@tongji.edu.cn

IEEE SMCA-10-06-0238 2

using a wireless sensor network, which shares massive

centralized computing with distributed sensors. Traditionally,

routing or global path planning for navigation is accomplished

by an on-line shortest path search on a road map, such as

Wavefront Expansion and Dijkstra’s search algorithm[1], or

by multiple hops communication in a wireless sensor network,

such as generating a navigation field[19]. However, on-line

searching or network propagation searches should be avoided

due to the constrained energy and bandwidth available in a

wireless sensor network. In this paper, we take a routing table

based approach as opposed to the on-line search. The shortest

paths in the network are planned off-line and saved in every

sensor node to direct a vehicle to a destination. In order to be

efficient in communication and storage, a Bloom-filter based

scheme is proposed for storing the routing table.

Bloom-filters are an efficient and lossy way to describe

membership of elements belonging to a set[20]. They are

broadly used for efficient membership determination in many

fields, such as the detection of an attack in network

security[21], packet classification[22], spell-checkers[23], and

dictionaries of passwords[24]. Since the 1990s, Bloom-filters

have become popular in many Web applications. Fan and Cao

et al. used a Bloom-filter to develop a summary cache for web

cache sharing[25], where a proxy used a Bloom-filter based

query to determine if another proxy cache held a desired Web

page. Czerwinski, Zhao et al. described a routing protocol in

which the resource lists were represented by Bloom-filters[26].

Recently, more research efforts have been reported for

improving the conventional Bloom-filters. Fan and Cao

introduced counting Bloom-filters to support dynamic

modification of content[25]. The possibility of a false negative

occurring in counting Bloom-filters was analyzed in [27].

Mitzenmacher demonstrated a compressed Bloom-filter to

reduce transmission bits[28]. Xiao and Hua presented a

parallel Bloom-filter solution for querying multi-attribute

items[29]. Rhea and Kubiatowicz introduced attenuated

Bloom-filters for probabilistic location and routing of peer-to-

peer location mechanisms[30].

To compress a set of strings, a Bloom-filter hashes the

strings into a bit vector. To determine the membership of any

query string, the Bloom-filter uses the same hash functions to

check if the corresponding bits have been set when they were

encoded, although there does exist a false positive possibility.

The traditional design of a Bloom-filter considers a trade-off

between the false positive probability and the memory usage.

In order to represent several branched paths at a node, a

multiple Bloom-filter is proposed in this paper, with each

Bloom-filter in it saving a compressed routing table for each

path.

This paper first introduces multiple Bloom-filters for robot

navigation routing. The paper then analyzes the multiple

Bloom-filters, designed with the conventional approach to

have a constant false positive probability, and points out that

different branches may have unbalanced relative errors. A path

with less encoded nodes will exhibit a higher relative error

than a path with more nodes, which should be avoided in

navigation. An error expectation based design is then proposed

to overcome this issue. It is proved that the new design can

ensure equal expectation of relative errors for all branches and

use less memory than the conventional design. The proposed

multiple Bloom-filter scheme is implemented in a wireless

camera network for wheelchair navigation and verified by

experiment.

II. A DISTRIBUTED VISUAL SENSOR NETWORK FOR

WHEELCHAIR NAVIGATION

In order to develop a technical solution for navigation of a

wheelchair using pervasive intelligence, a system with wireless

visual sensors distributed in the environment and connected by

wireless communication was developed in the project

WiME(Wireless Mosaic Eyes)[31]. The system consists of

three hardware systems, 1) networked wireless visual sensors,

2) wireless controlled robots, and 3) a remote console. The

networked wireless visual sensors are the main elements to

accomplish distributed localization and navigation, with path

routing as one of the functions. In the project, we modified an

off-the-shelf wheelchair to be controlled by the wireless

sensors. The only processor on-board the wheelchair was an 8-

bit Atmega 128L, which was used to link the visual sensor

network wirelessly through the IEEE 802.15.4 protocol and to

drive the two differential wheels of the wheelchair. Such a

low-performance processor is not powerful enough to carry out

global navigation. However, the visual sensors deployed in the

environment can provide enough distributed intelligence to

control the wheelchair.

S 1

S0

(1)

John’s Office

S1

S3S2

(2) (3)

(4)

Fig. 1. Control flow of the WiME system

The control flow of navigation data can be illustrated in

Fig.1. A wheelchair with John’s office as its destination first

sends “John”, (1) in Fig.1, to the nearest sensor S0. It queries

S0 which path it should take in order to navigate to the

destination with the shortest total distance. The wireless sensor

S0 then checks routing tables on-board, which are the multiple

Bloom filter presented in this paper, to find out and inform

sensor S1 as a partner for the navigation service, (2) in Fig.1.

IEEE SMCA-10-06-0238 3

Sensor S0 then works with S1 together to plan a path and

control the wheelchair going through S0 to S1, (3) and (4) in

Fig.1, which are achieved by the snake based path planner and

tracker presented in [32]. The process continues along the

route, sensor-by-sensor, to direct the wheelchair to John’s

office. In order to achieve this scenario, each distributed

sensor needs to be provided with unambiguous semantics and

assigned a determinate role for navigation. A configuration

software kit was developed for this purpose.

The configuration kit provides a tool for creating a

geographic map and locating wireless sensors. It links the

geographic map with the sensor topology as its road map for

navigation. It then generates the routing tables for each node,

where each routing table records a set of locations able to be

reached with the shortest total distance by following a

branched path. An example of the map configuration for an

indoor environment is shown in Fig.2. The red dots indicate

the deployed sensor nodes in the environment, and the blue

lines indicate the communication links as well as the geometric

pathways, together forming a topological map for navigation.

There are three sorts of sensor nodes deployed:

Goal nodes: Goal nodes are mounted at designated locations

that can be queried as a destination, e.g. (node 21: “store

room”), (node 22: the office of “John”), (node 23: “exit”),

(node 15: “laboratory 1”), (node 17: the office of “Jerry”),

(node 25: “laboratory 2”), and a group of research students in

the laboratories, for example (node 11: “Alice”).

Junction nodes: Junction nodes are mounted at the junctions of

passages for the purpose of routing, e.g. node 2, node 11, node

15 and node 18.

Way nodes: The remaining nodes are way nodes to support

navigation. They are placed by following a sensor deployment

strategy, e.g. to achieve minimum set of sensors with bounded

tracking errors [33].

With the aid of the routing tables, all wireless visual sensors

are organized into a network for navigation. Each sensor can

answer queries about direction, such as “what is the best way

to the John’s office from here?”. This will be discussed in the

following sections.

III. NAVIGATION BY A MULTIPLE BLOOM-FILTER

Global routing or global path planning is the first task of

navigation. It is located at the top of a tiered navigation

architecture[1]. Given a destination, a vehicle needs to know

the most cost-effective sequence of abstract locations leading

to it. It is traditionally implemented by a centralized search in

a topological map. For navigation by distributed sensors, an

intuitive approach is to adopt the routing techniques used in

communication networks[34], e.g. searching by broadcasting

potential values[35] or flooding a navigation field to a

destination[19]. The drawback of these methods appears to be

with slow response, heavy communication burden and high

memory requirements. A wireless sensor network has limited

on-board capacity and low communication rates. It is expected

that routing can be accomplished with less on-line

communication and computation, at the same time using

moderate amounts of on-board memory space. A technique to

improve performance of repetitive-mode queries from vehicles

is to pre-compute some information [36]. One extreme is to

pre-compute the entire finite set of all possible queries and

store them in a routing table, providing rapid access time but

with a very large storage overhead. In this section, a multiple

Bloom-filter scheme is proposed to provide routing tables

using less memory space.

With wireless sensors deployed in an environment for

navigation, we assume that the sensors have been organised

into a network topologically equivalent to the geometric road

map, as Fig.2. The topological map can be represented as a

graph of {S, E}, where S={s1, s2,…,sc} is a collection of sensor

nodes in the network;  jicjcieE ji ];1[];1[:,  is

a collection of edges, i.e. geometric passages, which connect

nodes in pairs. For each node si={Ii, Ei}, Ii is the identity of the

i
th

 node and Ei is the set of edges connecting si with other

nodes. The routing problem is to find a sequence of edges

from the current location to a goal with the shortest total

distance. When a vehicle is under the control of node si, it will

query for the next edge ei,j to follow in order to reach desired

destination sg. The query is expected to use a human friendly

identity Ig such as “John’s office”, “David’s office”, rather

than an artificial code, which will allow a user without any

knowledge about the coding method to use the navigation

service. It also simplifies the program needed for a vehicle or

PDA to access the wireless sensor network.

Due to limited communication and computation power of

each wireless node, an on-line shortest route search should be

avoided. Therefore, we take a routing table approach, where

routing tables are pre-computed by the Dijkstra’s search

algorithm. A routing table Ti,j in a node si lists all destinations

that can be reached with the shortest distances by following the

edge eij. Therefore, each node has the same number of routing

tables as its edges. Taking the map shown in Fig. 2 as an

example, we will generate 3 routing tables for node 18 as

Fig. 2. Map configuration software for sensor node deployment, where

wireless visual sensors are in red and communication links are in blue.

IEEE SMCA-10-06-0238 4

below:

T18→19={“store room” }, T18→22={“John”, “exit”},

T18→17={“Jerry”, “laboratory 1”, “laboratory 2”, “Alice” and

all other students in laboratory 1, all students in laboratory 2}.

With the routing tables saved in each node, a robot at the

location of one node can query which passage it should take in

order to reach a given destination with the shortest distance.

The node can answer by determining which routing table a

queried string’s membership belongs to. It uses memory to

avoid an on-line search. For example, if a robot near node 18

is looking for “Alice”, it can query the node for a navigation

service. Node 18 checks the tables T18→17 , T18→19 , and T18→22

to determine which edge should be taken and finds out that

“Alice” is in T18→17. The robot will then be directed from node

18 to node 17. Therefore, the routing table of an edge lists all

possible destinations by taking the edge. However, the

required memory to store those destinations could be huge for

a big map, which is often not feasible for a sensor node with

scarce on-board memory.

A Bloom-filter can be used as a routing table. To represent

n random strings into a table T, k independent hash functions

are used to generate digital fingerprints in T, which map

elements belonging to the path to k integers in [0,m] and the

corresponding bits in bit-vector T are set as shown in Fig. 3. If

there are L branched paths for a node, L Bloom-filters, forming

a multiple Bloom-filter, are needed for routing.

Fig. 3. A routing table in the Bloom-filter for a path with two members, John

and Jerry

A vehicle can query the multiple Bloom-filter in the sensor

node to determine which path to take. If any of the bits in the

Bloom-filter of a path are not set, the corresponding path

should definitely not be taken. If all of the bits for a path are

set, the vehicle may take the path. There is a non-zero

probability that the decision is wrong because a bit could be

set by other elements when they are hashed. This is known as a

false positive. The advantage of using Bloom-filters as routing

tables can be clarified by considering its compression

capability, from n elements with any string length to m bits,

and its high query efficiency, from an n elements’ search to a k

hash functions’ check. However, there is a trade-off between

the compression rate and the false positive rate, which is

dependent on the element number n, the hash function number

k and the vector length m[28]:
kmnk

fp ep)1(/ (1)

The minimum false positive probability can be obtained as

pfp=1/2
k
 , when k=(m/n)·ln2. (2)

Example: For a path with 1000 locations and 4 hash

functions, the optimized table length is m=5771bits, i.e. 721

bytes with a false positive rate of pfp=6.25%. It can be seen

that the required memory space is reasonable for a wireless

sensor to store the routing information of a medium-sized map.

The probability of false positives can be further reduced by

a multi-hop approach, where a query is forwarded to the next

node in the path to double check the membership. If we use

independent hash functions in different nodes, the probability

of a false positive decreases as a power of hops pfp
hops

. Taking

the previous example with pfp =6.25%, we have pfp=0.39% for

1 hop, pfp=0.024% for 2 hops, etc. The false positive rate can

be reduced to a very low level with only a few hops and the

correct path branch can be determined.

IV. DESIGN OF A MULTIPLE BLOOM-FILTER BASED ON ERROR

EXPECTATION

In section 3, a routing scheme using a multiple Bloom-filter

is presented. An immediate question is how to determine the

number of hash functions and the table length of each Bloom-

filter. From equation (2), the optimal number of hash functions

should be selected based on a desired pfp. However, the number

of hash functions in a multiple Bloom-filter is fixed for several

independent tables and often specified beforehand to simplify

implementation, e.g. for reducing on-line computation required

for hash checks. Therefore, in order to ensure that queries have

a false positive rate of less than pfp, adjusting the number of

hash functions is often not feasible. We have to change the

length m of each Bloom-filter for a given pfp to carry out a sub-

optimal design. From equation (1), we have

ln(1)k
fp

nk
m

p






 (3)

From equation (2), the optimal
0 2log fpk p  and

0 0 / ln 2m nk , the actual length in comparison with the

optimal length can be obtained as below.

0

0

1
ln

2

1
ln(1 ())

2

ok

k

k
m m

k
  



 (4)

Fig.4 shows the relation. It can be observed that the table

length of a Bloom-filter has to be longer than the optimal m0 in

order to achieve the same pfp if a given k is not equal to k0.

IEEE SMCA-10-06-0238 5

0/ kk

0
/m

m

00 , mmkk 

Fig. 4. Table length ratio m/m0 vs hash number ratio k/k0, where m0 and k0

are optimal

Consider node s has L edges and as a result there are L

Bloom-filters in it. Each Bloom-filter is expected to encode

n(i), i=1,…,L, nodes with altogether 



L

i

inn
1

)(nodes in a

multiple Bloom-filter. In order to design table lengths m(i) for

L Bloom-filters, an intuitive route is to select m(i) to achieve a

common false positive rate pfp for all branched paths based on

(3). It will be shown that this approach may result in biased

false positive errors for different edges. In a multiple Bloom-

filter, the numbers of encoded nodes n(i), i=1,…,L, in

individual Bloom-filters could be quite different, e.g. some

edges may lead to very few nodes but the others may lead to

many. However, all Bloom-filters or sub-tables have to pass an

equal number of queries, which could be legal or illegal for an

edge, e.g. a query to a location encoded in another table. Equal

pfp means equal possibility of errors occurring in all paths,

regardless of how many nodes are resident in a path. As a

result, a path with fewer nodes will have a higher chance of

being wrong than one with a dense population of nodes. This

can be verified by its error expectation. Considering there are

altogether N possible queries, the relative error expectation for

edge i due to N queries is:

)(

))((
)(

in

pinN
iE

fp

EPN


 (5)

It can be found that an equal rate of false positive, pfp,

results in a higher relative error for a Bloom-filter with a

smaller value of n(i) than one with larger n(i). It could be even

worse if all queries are legal, i.e. N=n, and the distribution of

nodes in different paths is not uniform. In this case, a path with

very few nodes, i.e. n(i)<<N, will have much higher error

expectation than a path which is densely lined with nodes, i.e.

n(i)≈N, due to the term N-n(i) in (5). The overall error

expectation for checking L tables in a multiple Bloom-filter

can be calculated as:

    
1

L

d fp fp

i

E N n i p L N n p


       (6)

Therefore, we need to take the error expectation as the

design criterion, as opposed to the false positive rate in order

to achieve a uniform relative error expectation for all paths.

This is important for navigation, where the routing by any path

should have equal relative risk. The communication bandwidth

along all paths can then be fairly allocated if the multi-hop

approach proposed in section 3 is used for coping with false

positives.

In order to ensure a uniform relative error expectation for all

edges, we propose a biased approach that assigns a different

false positive rate, pfp(i), i=1..L, to each edge i, for example, an

edge with fewer nodes will be given a lower possibility. Let

  /fp fpp i p t with  

 

N n i n
t

n iN n


 


, (7)

where /n n L represents the average number of nodes in a

branch.

From (7), if   , 1n i n t  and pfp(i)≤pfp, a lower false

positive rate is set; if   , 1n i n t  and pfp(i)> pfp, a higher

false positive rate is set. We expect that this modification can

make all edges exhibit an equal relative error expectation

regardless of how many nodes in a Bloom-filter.

Theorem 1: If
















 
 1/)(

n

nN
pNin fp

, i) pfp(i) defined in

(7) can be used as a false positive probability for a multiple

Bloom-filter design; ii) all edges will have equal relative error

expectation; iii) the overall error expectation of the new design

will be the same as the equal pfp design shown in (6).

Proof: If the pfp(i) in (7) can be used as a probability, pfp≤t

must be true. From (7), it can be obtained that

















 
 1/)(

n

nN
pNin fp

. This proves i).

The relative error expectation of edge i due to N queries can

be calculated by using the pfp(i):

   
fp

fpfp

EPN p
n

nN

t

p

in

inN

in

ipinN
iE 










)(

)(

)(

)()(
)(

which is a constant for any n(i) in an edge. This proves ii).

The overall error expectation of the new design for all edges

can be obtained as:

   

  fpfp

L

i

fp

L

i

fp
L

i

fpd

pnNLpnL
n

nN

pin
n

nN

t

p
inNipinNE









 


)(

)(
)(

)()()(
111

which is identical to the expectation of the equal pfp based

design in (6). This proves iii).

Therefore the proposed variable false positive rate (7) for

the multiple Bloom-filter design balances the relative error

expectations of all edges but without compromising overall

error expectation. Since in most applications N>>n and pfp<<1,

the condition
















 
 1/)(

n

nN
pNin fp

 is often true.

However, it would be difficult to estimate the number of all the

IEEE SMCA-10-06-0238 6

possible queries, N. In real applications considering a large N,

(7) can be simplified to:

n

in
pip fpfp

)(
)( (8)

Therefore, the false positive probability of each edge can be

easily obtained from the number of resident nodes in the edge.

V. MEMORY USAGE OF THE ERROR EXPECTATION BASED

MULTIPLE BLOOM-FILTERS

Wireless sensor nodes often have less memory capacity. A

key factor to be concerned is the amount of memory usage.

Assume there are L Bloom-filters in a sensor node and each

Bloom-filter encodes n(i), i=1,…,L, members. Following the

conventional design, we specify the table lengths so that all

tables achieve an equal false positive rate, pfp. From (3), we

know the table length of the i
th

 Bloom-filter should be:

()
()

ln(1)k
fp

n i k
m i

p


 



 (9)

The overall table length of the multiple Bloom-filter

becomes:

   k
fp

L

i
k

fp

FPB
p

kn

p

kin
m











 1ln1ln

)(

1

 (10)

If we follow the new design based on equal error

expectation, the pfp(i) will be adjusted by (8). The overall table

length becomes:

  
 




L

i k
fp

EEB

ninp

kin
m

1 /)(1ln

)((11)

The following theorem tells us the memory usage of the

proposed method in comparison with the conventional design.

Theorem 2: The table length (11) of a multiple Bloom-filter to

achieve equal error expectation is no longer than that of the

false positive rate based design in (10). They have equal length

only when nLnnn )()2()1( .

Proof: Considering optimization of (11) with respect to

variables of n(i), i=1…L, subject to the constraint of

nin
L

i


1

)(, we can define the associated Lagrange function

as:

  













 



L

i

L

i k
fp

nin
ninp

kin
LiinU

11

)(
/)(1ln

)(
)1),(( (12)

where λ is a Lagrange multiplier.

Let  k
fp ninping /)(1))(( ,i=1…L, the optimization

can be solved by the partial derivatives of U with respect to

n(i) and λ:




























0)(

.1,0
))(((ln))((

))((1))((ln())((

)(

1

2

nin

Li
inging

ingingingk

in

U

L

i


 (13)

From (13), there is a critical point at

nLnnn )()2()1( . Substituting it into (11), we have

an extremum of U:


 









L

i
k

fp
k

fp

EEB
p

kn

p

kin
ninm

1)1ln()1ln(

)(
))((.

It has the same length as the conventional design in (10).

We need to further prove it is the maximum for all n(i). The

second derivative of mEEB(n(i)) in (11) with respect to n(i) can

be obtained as:

)(ln

)(
)(

)(222

2

gg

gf
in

g

in

mEEB










 , (14)

where
))((ln(

))((1
2))((1))(((

ing

ing
ingkingf


 .

Because 0
)(

)(

1


















n

p

n

in
p

in

g fpK

K

fp
, the extremum

must be the maximum if f(g)≥0.

Because of g≥0 and k≥1, we have

)(
))((ln(

))((1
2))((1))(((1 gf

ing

ing
ingingf 


 (15)

Taking its derivative with respect to g, we have

 ./22)ln(2)(ln where

 ,
)(ln

)(

)(ln

/)1()ln(
21

2

2

2

2

2

1

gggf

g

gf

g

ggg

g

f










 (16)

Further,

.22)ln(2 where, 32

32 



gggf

g

f

g

f (17)

)ln(23 g
g

f




 . (18)

We will track back now to prove 0
)(2

2






in

mEEB for

1))((0  ing , because of k
fp iping)(1))(( .

From (18), we have 1.0for 03 



g

g

f Hence f3 is non-

increasing. From f3(1)=0, we know f3(g)≥0 and therefore

1.0for 02 



g

g

f It indicates f2 is non-decreasing for g

from 0 to 1. From f2(1)=0, we have f2(g)≤0 from 0 to 1, hence

1.0for 01 



g

g

f f1 is non-increasing for g from 0 to 1.

Because 0
/1

1
lim22)(lim

1
1

1





 g
gf

gg

, we have f1(g)≥0 for

g from 0 to 1, and thus f(g) ≥0 in (15). Substituting it into (14),

we know .10for 0
)(2

2





g

in

mEEB The critical point at

nLnnn )()2()1( reaches the maximum value of

EERm , which is the table length of the conventional design. For

any other n(i), i=1…L,
EERm in (11) is always less than

FPBm

in (10).

IEEE SMCA-10-06-0238 7

From Theorem 2, a multiple Bloom-filter using the

expectation based design will not only achieve uniform

relative error expectation, but will also save memory usage in

comparison with the false positive rate based design.

VI. EXPERIMENTAL RESULTS

A practical WiME system was developed with wireless

visual sensors mounted on the ceiling of a building. Software

packages and communication protocols were developed for

wheelchair navigation, with the proposed multiple Bloom-filter

as a global path planner. A demonstration video of wheelchair

navigation in the building can be found in [31].

In order to evaluate the performance of the proposed error

expectation based multiple Bloom-filter design, we randomly

generated a topological map with altogether n=1000 nodes.

With k=4 hash functions and a desired false positive rate

pfp=0.01, the false positive rate based(FPB) and the error

expectation based(EEB) multiple Bloom-filters were

developed. For a node with 4 branches (Path1, Path2, Path3

and Path4), which have 23, 193, 332 and 452 nodes

respectively, the two multiple Bloom-filters were queried by 4

groups of 10
6
 random strings. Table 1 and 2 show the errors

for each group of queries.
TABLE 1: ERRORS USING THE FALSE POSITIVE RATE BASED DESIGN

Group 1 2 3 4 Average

Errors

Relative

Errors

Path 1

Path 2

Path 3

Path 4

9987

9976

10014

9982

10013

9984

9985

9986

9979

9981

9998

10011

10025

10012

10002

9993

10001

9988

9999

9993

434.83

51.75

30.12

22.11

TABLE 2: ERRORS USING THE ERROR EXPECTATION BASED DESIGN

Group 1 2 3 4 Average

Errors

Relative

Errors

Path 1

Path 2

Path 3

Path 4

937

7702

13178

17882

945

7734

13297

18123

914

7724

13206

18105

909

7727

13308

17934

926

7722

13247

18011

40.26

40.00

39.90

39.84

From Table 1, the conventional false positive rate based

design results in much higher relative errors for a path with

fewer nodes than a path with more nodes. For example, path 1

exhibits a 434.83 relative error. From the working process of a

multiple Bloom-filter proposed in section 2, any query needs

to be checked by all the Bloom-filters. Therefore, a path with

fewer nodes will suffer more errors from queries which do not

belong to it. The errors will cause more than one Bloom-filter

to pass the hash check. As a result, the multi-hop checks have

to be carried out for further confirmation, which increases the

communication cost in paths with fewer nodes. The proposed

expectation based design guarantees a uniform distribution of

relative errors. In Table 2, all paths show a similar amount of

relative errors, about 40, which means an equal risk for any

path. The comparison results verify Theorem 1.

In terms of overall memory usage, we randomly generated

1000 topological maps with 1000 nodes each. The table

lengths by using the false positive rate based design and the

error expectation based design are shown in Fig. 5.

Fig. 5. Memory usages of the EEB design(blue) and the FPB design(red)

It is clear that the proposed method outperforms the

conventional design, which verifies Theorem 2. To have a

quantitative comparison, we list the memory usage of the

Bloom-filter based routing tables and the routing table without

using Bloom-filters for the 4 groups of results in Table 3.

TABLE 3: MEMORY USAGE OF ROUTING TABLES(KBITS)

Group 1 2 3 4 Percentage

No Bloom-filter

FPB Bloom-filters

EEB Bloom-filters

48

10.52

9.449

48

10.52

9.452

48

10.52

9.483

48

10.52

9.462

100%

21.9%

19.7%

From Table 3, the memory usage is reduced to 21.9% by

introducing Bloom-filters as routing tables, where the Bloom-

filters are designed to achieve equal false positive rates. The

memory usage is further reduced to 19.7% by using the error

expectation based design, which is around 10.1% of the false

positive rate based design.

VII. CONCLUSIONS

A multiple Bloom-filter technique has been proposed for

storing a large amount of routing information into a wireless

sensor node, where energy and memory are scarce resources.

An error expectation based design, instead of the typical false

positive rate based design, was proposed to achieve a uniform

false positive expectation for every sub-table. As a result,

communication costs, as well as power consumption, were

balanced to be in proportion to the number of resident nodes in

a path. The table length of a multiple Bloom-filter was shown

to be shorter than the conventional design. Therefore, memory

usage in the wireless node is reduced. The proposed method

has been practically implemented in the WiME project for

wheelchair navigation using wireless visual sensors, and can

be taken as a general approach for navigation routing using a

distributed sensor network. For example, the increasing

number of CCTV cameras can also be used to provide

navigational services to vehicles on a motorway or wheelchairs

in a building.

IEEE SMCA-10-06-0238 8

REFERENCES

[1] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile

Robots. Cambridge: USA: MIT Press, 2004.

[2] S. I. Roumeliotis and G. A. Bekey, "Bayesian estimation and Kalman

filtering: A unified framework for mobile robot localization," presented

at Proc. IEEE International Conference on Robotics and Automation

(ICRA-2000), San Francisco, CA, 2000.

[3] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, "Robust Monte Carlo

localization for mobile robots," Artificial Intelligence, vol. 128, pp. 99-

141, 2001.

[4] H. Baldus, K. Klabunde, and G. Muesch, "Reliable set-up of medical

body-sensor networks," Lecture Notes in Computer Science, vol. 2920,

pp. 353-363, 2004.

[5] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P.

Valencia, D. Swain, and G. Hurley, "Transforming agriculture through

pervasive wireless sensor networks," IEEE Pervasive Computing, vol. 6,

pp. 50-57, 2007.

[6] Z. Butler, P. Corke, R. Peterson, and D. Rus, "From robots to animals:

virtual fences for controlling cattle," International Journal of Robotics

Research, vol. 25, pp. 485 - 508, 2006.

[7] K. Martinez, R. Ong, and J. Hart, "Glacsweb: a sensor network for

hostile environments," presented at The First IEEE Communications

Society Conference on Sensor and Ad Hoc Communications and

Networks, Santa Clara, USA, 2004.

[8] R. Poovendran, "Cyber-physical systems: close encounters between two

parallel worlds," Proceedings of the IEEE, vol. 98, pp. 1363-1366,

2010.

[9] M. D. Ilic, L. Xie, U. A. Khan, and J. M. F. Moura, "Modeling of future

cyber-physical energy systems for distributed sensing and control,"

IEEE Trans on Systems, Man and Cybernetics, Part A, vol. 40, pp. 825-

838, 2010.

[10] E. Guizzo, "Robots with their heads in the clouds," in IEEE Spectrum,

2011.

[11] D. Tacconi, D. Miorandi, L. Carreras, F. Chiti, and R. Fantacci, "Using

wireless sensor networks to support intelligent transportation systems,"

Ad Hoc Networks, vol. 8, pp. 462-473, 2010.

[12] V. P. Srini, "A vision for supporting autonomous navigation in urban

environments," Computer, vol. 39, pp. 68-77, 2006.

[13] A. Mpitziopoulos, C. Konstantopoulos, D. Gavalas, and G. Pantziou, "A

pervasive assistive environment for visually impaired people using

wireless sensor network infrastructure," Journal of Network and

Computer Applications, vol. 34, pp. 194-206, 2011.

[14] M. Li, Y. Liu, J. Wang, and Z. Yang, "Sensor network navigation

without locations," presented at Proceedings 28th IEEE International

Conference on Computer Communications, Rio de Janeiro, Brazil,

2009.

[15] D. Estrin, D. Culler, and K. Pister, "Connecting the physical world with

pervasive networks," IEEE Pervasive Computing, vol. 1, pp. 59-69,

2002.

[16] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A

survey on sensor networks," IEEE Communication Magazine, vol. 40,

pp. 102-114, 2002.

[17] X. Lin, Y. Kwok, and H. Wang, "Energy-efficient resource management

techniques in wireless sensor networks," in Guide to Wireless Sensor

Networks, S. Misra, Ed. London: Springer-Verlag, 2009.

[18] A. Rogers, E. David, and N. R. Jennings, "Self-organized routing for

wireless microsensor networks," IEEE Trans on Systems, Man and

Cybernetics, Part A, vol. 35, pp. 349-359, 2005.

[19] M. A. Batalin and G. S. Sukhatme, "Mobile robot navigation using a

sensor network," presented at IEEE International Conference on

Robotics and Automation, New Orleans, LA, 2004.

[20] B. H. Bloom, "Space/time trade-offs in hash coding with allowable

errors," Communications of the ACM, vol. 13, pp. 422-426, 1970.

[21] G. Antichi, D. Ficara, S. Giordano, G. Procissi, and F. Vitucci,

"Counting bloom filters for pattern matching and anti-evasion at the

wire speed," IEEE Network, vol. 23, pp. 30-35, 2009.

[22] H. Lim and S. Y. Kim, "Tuple pruning using Bloom filters for packet

classification," IEEE Micro, vol. 30, pp. 48-59, 2010.

[23] M. D. McIlroy, "Development of a Spelling List," IEEE Transactions on

Communications, vol. 30, pp. 91-99, 1982.

[24] E. H. Spafford, "Opus: preventing weak password choices," Computer

and Security, vol. 11, pp. 273-278, 1992.

[25] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, "Summary cache: a

scalable wide-area web cache sharing protocol," IEEE/ACM

Transactions on Networking, vol. 8, pp. 281-293, 2000.

[26] S. Czerwinski, B. Y. Zhao, T. Hodes, A. D. Joseph, and R. Katz, "An

architecture for a secure service discovery service," presented at

Proceedings of the Fifth Annual ACM/IEEE International Conference

on Mobile Computing and Networking (MobiCom '99), New York,

1999.

[27] D. Guo, Y. Liu, X. Li, and P. Yang, "False negative problem of counting

Bloom filter," IEEE Knowledge and Data Engineering, vol. 22, pp.

651-664, 2010.

[28] M. Mitzenmacher, "Compressed bloom filters," IEEE/ACM

Transactions on Networking, vol. 10, pp. 604-612, 2002.

[29] B. Xiao and Y. Hua, "Using parallel Bloom filters for multiattribute

representation on network services," IEEE Transactions on Parallel and

Distributed Systems, vol. 21, pp. 20-32, 2010.

[30] S. C. Rhea and J. Kubiatowicz, "Probabilistic location and routing,"

presented at Proceedings of the Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies, New York, USA,

2002.

[31] P. Jiang, Z. Feng, Y. Cheng, Y. Ji, X. Wang, F. Tian, J. Baruch, and F.

Hu, "A mosaic of eyes for wireless navigation and control of mobile

robots," IEEE Robotics and Automation Magazine, vol. 18, pp. 104 -

113, 2011.

[32] Y. Cheng, P. Jiang, and Y. F. Hu, "A distributed snake algorithm for

mobile robots path planning with curvature constraints," presented at

IEEE International Conference on Systems, Man and Cybernetics,

Singapore, 2008.

[33] C. H. Lin and C. T. King, "Sensor-deployment strategies for indoor

robot navigation," IEEE Trans on Systems, Man and Cybernetics, Part

A, vol. 40, pp. 388-398, 2010.

[34] J. N. Al-Karaki and A. E. Kamal, "Routing techniques in wireless sensor

networks: a survey," IEEE Wireless Communications, vol. 11, pp. 6-28,

2004.

[35] Q. Li and D. Rus, "Navigation protocols in sensor networks," ACM

Trans. on Sensor Networks, vol. 1, pp. 3-35, 2005.

[36] Y. Saab and M. VanPutte, "Shortest path planning on topographical

maps," IEEE Trans on Systems, Man and Cybernetics, Part A, vol. 29,

pp. 139-150, 1999.

