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 

Abstract—This paper deals with acoustic event detection 

(AED), such as screams, gunshots and explosions, in noisy 

environments. The main aim is to improve the detection 

performance under adverse conditions with a very low 

signal-to-noise ratio (SNR). A novel filtering method combined 

with an energy detector is presented. The wavelet packet 

transform (WPT) is first used for time-frequency representation 

of the acoustic signal. The proposed filter in the wavelet packet 

domain then uses a priori knowledge of the target event and an 

estimate of noise features to selectively suppress the background 

noise. It is in fact a content-aware band-pass filter which can 

automatically pass the frequency bands that are more significant 

in the target than in the noise. Theoretical analysis shows that the 

proposed filtering method is capable of enhancing the target 

content while suppressing the background noise, for signals with a 

low SNR. A condition to increase the probability of correct 

detection is also obtained. Experiments have been carried out on a 

large dataset of acoustic events that are contaminated by different 

types of environmental noise and white noise with varying SNRs. 

Results show that the proposed method is more robust and better 

adapted to noise than ordinary energy detectors and it can work 

even with an SNR as low as -15dB. A practical system for real time 

processing and multi-target detection is also proposed in this 

work.  

 
Index Terms—Acoustic event detection (AED), background 

noise, filter, wavelet packets  

 

I. INTRODUCTION 

COUSTIC event detection (AED) is a challenging and 

important research area for various applications, like 

security surveillance in public places [1], smart medical care 

for patients and the elderly [2], smart meetings [3], or robots 

working in adverse environments. In these detection systems, it 

is essential to keep the detection accuracy as high as possible, 

as any missed events may be costly. However, AED in real 

world environments is often faced with complex and noisy 

backgrounds. For one thing, a target acoustic event is likely to 

be drowned out in strong noise with a low signal-to-noise ratio 
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(SNR). For another; highly non-stationary background noise 

could contain a large variety of acoustic events, and may merge 

with new events over time. Other similar but non-target sounds 

in the background may cause an increase of false detections. In 

this paper, we focus on robust AED under low SNR conditions.  

The AED problem addressed in this paper is to identify the 

target event in audio signals and to locate the time of its 

occurrence[3]. A number of researchers have explored methods 

for AED in recent years. A simple but effective way for 

detecting unknown sounds is through a threshold based energy 

detector [4]-[7], often followed by a recognition step. Dufaux et 

al. [5] proposed to analyze energy variations of input audio 

signals, which were estimated in a fixed-size time window. 

Pulses of signals were detected by measuring the energy 

difference between the input and the output from a median 

filter. An errorless detection above 0dB was achieved under 

white noise, but the performance deteriorated significantly 

when tested with real-world environmental noise. Istrate et al. 

[2] made an improvement by applying a pre-filtering technique 

where wavelet coefficients at upper levels were considered to 

be significant and summed as the energy. Better performance 

can be achieved for applications where the acoustic events to be 

detected are composed of high frequencies while the noise 

(e.g., in an apartment) has mainly low frequencies. Most 

recently, Ahmed et al. [6] proposed an analytical framework 

built on top of the detector, in [5], that allowed tuning of the 

threshold according to a given missed detection rate. It can 

optimise the trade-off between the missed detections at the 

detection stage and the computational load at the following 

recognition stage. In general, standard energy detector based 

methods perform poorly under low SNR conditions and are 

often used as preprocessors to detect an abnormality from 

ambient noise.  

Most other relevant research takes detection as a 

classification task using traditional machine learning 

techniques. The detection consists of two stages: frame-based 

feature extraction and classification [8]-[9]. Systems with 

different frameworks have been studied: hierarchical or 

nonhierarchical, supervised or unsupervised, on-line or 

off-line. A typical gunshot detection system was proposed in 

[10]. The input audio stream was first segmented into short 

frames (20ms) and various features in the time/frequency 

domain were captured. Then two Gaussian Mixture Models 

(GMMs) were trained with samples of gunshot and noise 
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classes respectively, resulting in a binary classifier to label each 

segment as a gunshot or normal. Acceptable results were 

reached with a false rejection rate of less than 11% and a false 

detection rate less than 15% when the SNR was 5dB or larger. 

A similar scheme was applied in [11] for gunshot and scream 

detection using two parallel GMM classifiers, achieving an 

accuracy of 90% and a false rejection rate of 8% under 0dB. 

One obvious drawback of these supervised methods is that they 

are designed for specific applications and are highly reliant on a 

priori knowledge of the background noise, and thus cannot 

adapt to environments with strong dynamics. Ntalampiras et al. 

[1] presented a retraining methodology via a feedback loop 

enabling the adaptation of the detection system to the 

surrounding environment. A hierarchical system based on 

Hidden Markov Models (HMM) was also designed for 

detecting abnormal events (screams, gunshots or explosions) in 

a subway environment. The proposed system demonstrated a 

good performance at the first stage for normal/abnormal 

classification, having an equal error rate of 8.53% at -5dB, but 

it rises to 22.67% at the second stage due to confusion between 

the three categories.  

In this work, a novel filtering method for AED is developed 

with the aim of improving the performance especially under 

adverse conditions with high-levels of background noise. The 

proposed framework is composed of a filtering procedure, 

which is capable of enhancing the content of the target acoustic 

event while reducing the background noise, and an ordinary 

energy detector dealing with the filtered signal. The 

improvement can be attributed to two aspects. First, the wavelet 

packet transform (WPT) is employed for analysis of 

non-stationary audio signals with a relatively large 

decomposition scale  for precise representation and 

discrimination between signals. Second, the proposed filter in 

the wavelet packet domain takes target features into account 

and is oriented to solve the problem caused by those interwoven 

features shared by the target and the background noise. Besides 

the a priori knowledge of the target event and an estimate of the 

background features is also introduced to the design of the 

filter. A complete system for real-time and multi-target 

detection is presented in this work. Experiments have shown 

that the proposed method can work with an SNR as low as 

-15dB, exhibiting both good reliability and robustness against 

noise.  

The rest of this paper is organized as follows: Section II 

gives an overview of the system framework and then presents a 

detailed explanation of the proposed filtering method. Section 

III gives a theoretical analysis on the effectiveness of the filter. 

Section IV describes the database and protocol used in the 

experiments and explains how the relevant parameters are 

chosen. Experimental results and comparisons with existing 

methods are illustrated in Section V. Finally, Section VI draws 

conclusions.  

 

II. DETECTION ALGORITHM 

The proposed algorithm processes a continuous audio stream 

with a fixed-size sliding window for frame-by-frame detection 

of a target event, as shown in Fig. 1. The outcomes of 

overlapped frames are integrated to generate a robust detection 

result. The dashed box to process each frame comprises a 

filtering procedure and an energy detector. First, the WPT on 

samples of the target event class is carried out, and their 

average forms a target template for configuring the filter. 

During the online detection, an input frame is decomposed in 

the time-frequency domain by the WPT as the filtering 

procedure’s input. Next, the filter formed by the target 

template, as well as the WPT features of the current input, is 

combined to yield the filtering procedure’s output. Finally, an 

energy detector is employed to measure the energy difference 

between the filtered output signal and the input signal, i.e., the 

energy increase after the filtering. Notice that Fig. 1 only shows 

the detection of a single type of acoustic event. An easy 

extension can be made for multi-target detection through a 

multi-channel structure, which will be discussed in Section 

V-B.   

 

A. Time-Frequency Representation of Signals 

Time-frequency analysis shows how the energy of a signal is 

distributed on the two-dimensional time-frequency plane and is 

intended for non-stationary signals. There exist many tools for 

generating a time-frequency representation of a signal. This 

paper adopts the WPT for acoustic signal analysis and the 

results derived in the paper can be easily extended to the cases 

with other time-frequency analysis tools.  

The motivation to use the WPT other than the simpler 

short-time Fourier transform (STFT) is that the WPT offers a 

better trade-off between time and frequency resolutions with its 

variable-sized window and can produce a more accurate 

time-frequency representation. Nevertheless, the STFT is 

 

 
 

 

 
 

 

 
 
 

 

 

Fig. 1.  Flowchart of the proposed filtering algorithm for AED 
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calculated for consecutive segments with a fixed-size window 

and thus time resolution is lost within each window. In previous 

works, researchers have found that Fourier based methods are 

perfectly suited to the analysis of narrow band signals but not 

readily adaptable for many transient signals [12]-[14]. Indeed, 

the WPT has been proved an effective and promising tool in 

signal representation for transient and non-stationary signal 

analysis. It can improve the performance of detection and 

discrimination, as shown in various experimental results. Fast 

WPT is implemented by an iteration of the filtering with a 

low-pass and high-pass filter bank, followed by a 

down-sampling-by-2 procedure. The signal is thus projected 

into different partitions of equal-sized frequency bands in the 

Nyquist frequency domain, resulting in a full wavelet packet 

tree in Fig. 2.  

Separating target signal components from background noise 

can be achieved by filtering in the time-frequency domain. 

Wavelet-based techniques have been proved  successful for 

noise reduction, termed wavelet de-noising [15], and have been 

previously used in image filtering, speech enhancement and 

transient detection. Generally, wavelet de-noising is 

implemented by thresholding wavelet coefficients to remove 

the noise. However, the selection of the threshold is critical and 

troublesome, which can be seen in the most relevant works [16], 

[17]. Moreover, a thresholding technique may lead to the 

complete loss of the signal under a very low SNR conditions.  

This paper introduces a frequency domain filter, sub-band 

filter, based on the spectral features of acoustic signals. Let 

( , )WP i k  denote the jth level coefficients of the WPT, where 

1, ,i N  is the index of frequency bands with 2 jN  , and 

1, ,k M  is the index of coefficients in each band. The 

spectral feature is set to be the averaging pth power of the 

absolute values of wavelet packet coefficients in each band. In 

this paper, we set 2p   and it is exactly the wavelet packet 

energy spectrum, denoted by  
1, ,i i N

e


e , where  

1

1
( , ) , 2

M
p

i

k

e WP i k p
M 

  .                               (1) 

Fig. 3 shows the wavelet packet energy spectra of three types 

of acoustic events and two types of noise. It can be observed 

that the spectral characteristics of different acoustic events and 

noises are different. The energy spectra of gunshot and 

explosion events, as well as Traffic noise, lie in the very low 

frequency region. Market noise is more widely distributed in 

low frequencies, and the scream event is mainly located in two 

separate regions. The scale factor or the decomposition level j 

involves a trade-off between time and frequency resolutions 

and has a direct impact on the decomposed frequency bands. 

The selection of a proper scale will be further discussed in 

Section IV-B. 

 

B. Formulation of the Target Guided Sub-band Filter 

The proposed filter in the frequency domain is based on the 

fact that different types of acoustic events and background 

noises have different spectral profiles. Ideally, the filter is 

desired to have the property of passing those frequency bands 

that belong to the target acoustic event while removing others 

that are from noise. For an input frame, let 
in
( , )WP i k  be its jth 

level wavelet packet coefficients with dimension N M  and 

2 jN  , ( )H i  be the subband filter and 
out

( , )WP i k  be the 

output after the filtering procedure, i.e.,  

out in
( , ) ( ) ( , ), 1, , ; 1, , .WP i k H i WP i k i N k M         (2) 

Assuming that the target acoustic event has a short duration 

and comparably few time-varying components, the structure of 

a preliminary filter based on the target spectral features alone 

can be given in the following form:  

 
(a)                                           (b)                                          (c)                                         (d)                                            (e) 

Fig. 3.  Raw signals (up) and wavelet packet energy spectrums (down) of acoustic events and noises when j =13. (a) Scream, (b) Gunshot, (c) Explosion, (d) 

Market noise, (e) Traffic noise.  

 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 2.  Wavelet packet tree and its energy spectrum 
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( ) , 1, ,
si

H i e i N                             (3a) 

where 
si

e  is the ith element of the wavelet packet energy 

spectrum of the target acoustic event according to (1). It means 

each value in the filter vector is an average energy in the ith 

frequency band of the target signal. Thus, after filtering, 

frequency bands of the input signal are enhanced in proportion 

to their contribution to the target signal. For practical use, 
si

e  is 

calculated from a dataset of the target acoustic event class and 

averaged to form a template of the target. In essence, filter (3a) 

can be considered as a matched filter that correlates a known 

target template with an unknown input signal in order to detect 

the presence of the target in the input.  

It can be seen that the filter defined by (3a) works well 

especially when the target and the background have 

comparatively uncorrelated energy spectrum components. 

However, it is more realistic in most cases that these two 

feature sets should be interwoven with some shared 

components. The filter considering only target features in (3a) 

will amplify these shared features regardless of their sources. 

Furthermore, if these shared features play a dominant role over 

other unique features in the target, i.e., in the case of a weak 

target signal versus a strong similar background interference, 

false detection may happen. Therefore, background 

interference, especially containing common features with the 

target, should be taken into account with care. An improvement 

can be made to enhance robustness based on the idea of 

background suppressing, which was proposed by the authors 

for image tracking [18]. 

Considering that the input signal contains information about 

the background noise, an improved filter in the sub-bands is 

proposed as  

( ) , 1, ,si

ni

e
H i i N

e
                           (3b) 

where 
ni

e  is the ith element of the energy spectrum of the input 

signal, regarded as an energy spectrum estimate of the 

background noise. It is introduced as the denominator into the 

previous filter, with the aim of increasing the contribution of 

significant target features whilst reducing the influence of 

background features. Values in the filter vector can then be 

considered as a series of sub-band-adaptive gains based on  the 

ratios between the target features and the background features. 

Frequency bands or features in the target that are larger than 

that in the noise are enhanced. However, frequency bands that 

have a similar strength in the noise, even they are significant in 

the target, are suppressed with smaller gains as they cannot be 

distinguished from noise. In summary, the proposed filter to 

some extent can be seen as a band-pass filter and the pass rate 

of a certain frequency band is determined by the ratio between 

the target energy and the estimated noise energy within that 

band. To have a better and sufficient estimate of the noise 

energy spectrum from the input signal, the length of the input 

signal is empirically set to be above 10 times the length of the 

target event to be detected.  

According to (3b), the filter is determined by the target 

template, i.e., the average energy spectrum of the target event 

class, the energy spectrum of the input signal, and the 

parameters of the WPT. Some intuitive properties of the 

proposed filter can be observed:  

1) It is a target guided filter that aims to detect one specific 

type of acoustic event from noise.  Those unique or 

significant features in the target play a key role in the 

detection. In fact, this filtering process works as long as the 

target event has some distinctive features compared to the 

background, which is true in most cases.  

2) The filter is adjusted in real-time to adapt to the varying 

input signal or background noise, in the denominator of the 

filter. Thus, it can be applied to different or time-varying 

environments without any retraining because of its 

adaptability to the background noise.  

3) The goal of this work is to detect and locate a target event 

in an audio stream. Unlike conventional filtering or 

de-noising methods for signal reconstruction, the original 

signal cannot be recovered from the modified wavelet 

packet coefficients. 

Further discussion of the proposed filter will be given in 

Section III. It can be proved that the proposed filter has 

selective signal boosting capability that can enhance the target 

content in a noisy background for low SNR conditions. More 

specifically, it confirms that after filtering the energy increase 

in the target signal is more likely to be greater than that in the 

noise. Therefore, detection can be accomplished even with a 

simple energy detector, which can be easily implemented in 

real-time.  

 

C. Detection Algorithm and Performance Analysis  

In order to create filter (3b) for the detection of a target event, 

a target template needs to be obtained offline. A dataset of the 

target event class is first captured. Calculate the jth level WPT 

and the corresponding energy spectrum using (1) for each 

sound in the dataset of the target. After necessary normalization, 

the results are averaged to form the target template, denoted by 

 
1, , 2 js si i

e


e .  

 

1) Detection algorithm for an input frame 

Input: target template  
1, , 2 js si i

e


e  , input frame ( )x n , 

1, ,
f

n L , which is the sampling of a segment of audio signal 

with temporal duration Tf  seconds, and parameters of the WPT 

Step1: Calculate the WPT for ( )x n  to the jth level, the same 

scale as that of the target. The result is denoted by 
in
( , )WP i k  

with dimension N M  and the corresponding energy spectrum 

is  
1, , 2 jn ni i

e


e . 

Step2: Generate the filter and conduct the filtering procedure 

as follows:  

out in
( , ) ( ) ( , )WP i k H i WP i k   with ( ) si

ni

e
H i

e
 . 

Step3: Calculate the energy increase sequence ( )E n  for the 
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current frame
1
. Let ( )y n  be the reconstructed signal from 

out
( , )WP i k  through the inverse WPT and both ( )x n  and ( )y n  

are normalized in energy as follows: 
2

in 2

1

( )
( ) , 1, ,

( )
fL f

k

x n
E n n L

x k


 


 

2

out 2

1

( )
( ) , 1, ,

( )
fL f

k

y n
E n n L

y k


 


 

For smoothness of the measured energy increase,  ( )E n  is 

summed up in an energy accumulating window with length Le:  

 
1 Energy values can be calculated either in the frequency domain or back in 

the time domain since they are equivalent by Parseval’s theorem.  

1 1

out in
( ) ( ) ( ), 1, , 1

e en L n L

f e

k n k n

E n E k E k n L L
   

 

        

Step4: Detection is made by a threshold, yielding a decision 

sequence defined by 

1, if ( )
( )

0, else

E n threshold
d n

 
 


. 

Fig. 4 shows the whole detection process for an input frame. 

The test signal is a record of Market noise with a -10dB siren 

inserted at 4s. With such a low SNR, it is hard to spot the siren 

from the temporal wave in Fig. 4(b). However, after filtering, 

 

         
(a)                                                                                       (b) 

 
(c)                                                              (d)                                                                                      (e) 

Fig. 4.  Detection process of a siren mixed with Market noise at 4s and -10dB. (a) The target signal and its WPT coefficients, (b) The input signal and its WPT 

coefficients, (c) The subband filter, (d) The filtered WPT coefficients, (e) The reconstructed signal and the energy increase curve.  

 
Fig. 5.  Process of data fusion of overlapped frames by averaging 
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the content of the target is greatly enhanced and the energy 

increase curve in Fig. 4(e) exhibits a remarkable peak at the 

moment when the event occurs.  

 

2) Detection strategy for a continuous audio stream 

 Detection for a continuous audio stream is an extension of 

the single frame algorithm, as shown in Fig. 5.  

Step1: Extract overlapped frames of length Tf  from the input 

continuous audio stream with an increment Ti by which Tf  is 

divisible. 

Step2: Conduct the detection process for each frame 

according to the algorithm mentioned above, resulting in an 

outcome of energy increase sequence.  

Step3: Outcomes of the overlapped frames are averaged to 

generate a final robust result to achieve online detection.  

In Fig. 5, the test signal is an explosion event merged into the 

Subway noise with SNR being -15dB, and Tf =20s, Ti =5s. 

 

A comparison of performance between filters defined by (3a) 

and (3b) is illustrated in Fig. 6. The test signal is an explosion 

event merged into the Traffic noise. The two types of signals 

share many similar frequencies and are easily confused as 

shown in Fig. 3. Due to the background interference, the energy 

curve resulting from filter (3a) shows many fake peaks with 

their levels even higher than that of the real target event as 

shown in the left of Fig. 6, which leads to false detections when 

the SNR goes down to -20dB. However, by using filter (3b), the 

interference signals are significantly attenuated and the target 

event is highlighted with a remarkable energy increase, as 

shown in the right of Fig. 6. It can be found that filter (3b) 

outperforms (3a) with a higher energy increase at the target, 

fewer fake peaks and a better performance even under very low 

SNR conditions. The results verify the importance of 

background suppression, especially when dealing with cases 

having many interwoven features between the background and 

the target.  

III. THEORETICAL ANALYSIS OF THE PROPOSED FILTER 

In this section, the effectiveness of the proposed filter is 

discussed theoretically. It will be proved below that the filter in 

(3b) is capable of enhancing target content embedded in 

background noise and can offer a high probability of correct 

detection.  

Consider an input audio frame that is a mix of a target 

acoustic event and background noise and let   N M

ik N M




 A a  

be its time-frequency representation, where N and M stand for 

dimensions of the frequency and time domains, respectively. In 

this paper, A  is defined by the wavelet packet decomposition 

(see Section II-A). Time-frequency models and their energy 

matrices for the target signal and pure noise in the input are 

introduced as  

target model:  

1 1
ˆ ˆ(1) ( )

ˆ ˆ(1) ( )

N L

N N

L

L



 
 


 
  

m m

m m

  with energy 

2 2

1 1

2 2

ˆ ˆ(1) ( )

ˆ ˆ(1) ( )
N N

L

L

 
 
 
 
 

m m

m m

, 

and noise model: 

 

1 1
(1) ( )

(1) ( )

N M

N N

M

M



 
 


 
  

b b

b b

  with energy 

2 2

1 1

2 2

(1) ( )

.

(1) ( )
N N

M

M

 
 
 
 
 

b b

b b

 

Every row in the two energy matrices is assumed to be a 

sequence of independent and identically distributed (i.i.d.) 

random variables, denoted by 2ˆ ( )
i
m  and 2 ( )

i
b , respectively. 

Moreover, 2ˆ ( )
i
m  and 2 ( )

i
b  are mutually independent. Random 

sequences between different rows in either of the matrices are 

mutually independent, too. Based on these assumptions, it 

follows that both the target signal and the noise are stationary. It 

must be pointed out that this stationary requirement for noise is 

only restricted to the current input frame rather than the whole 

processing audio stream. Denote their expectations as 

 2 2ˆ ˆ( )
i i

E k mm  and  2 2( )
i i

E k bb , respectively.  

Suppose that a target event happens at time s. The target is 

inserted into the background noise with a certain SNR, which 

affects only L  columns (called target zone below) in A  with 

L M . A  can then be expressed as  

1 1 1 1 11
(1) ( 1) (1) ( ) ( + ) ( )

(1) ( 1) (1) ( ) ( + ) ( )
N N N N N N

s L s L M

s L s L M

 
 


 
  





b b c c b b

A

b b c c b b

 

where the random variables from the sth to (s+L-1)th column in 

the pure noise model are replaced by ( )
i
c  and 

1 1s M L    . The corresponding energy 2 ( )
i
c  is a mix of 

energies of the target and noise with the expectation that 

 2 2( )
i i

E k cc .  

In order to obtain a proper representation for 2 ( )
i
c , energy 

normalization is carried out on the target model. Assume that 

 
Fig. 6.  Performance comparison between filters defined by (3a) (left) and 
(3b) (right) for detecting an explosion embedded in Traffic noise at 10s 

under different SNRs: -10dB (up), -15dB (middle), and -20dB (down). 
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2 2

1 1

N N

i ii i
b c

 
   for low SNR scenarios, which is the focus of 

this paper. Then the noise energy can be estimated by 
2 2

1 ,
1

N

i iki i k
b M a


  , where 

ik
a  is a sample of the random 

variable 
ik

a  in A . The target model is normalized by the 

following equations:  

ˆ( ) ( ), 1, , ; 1, ,
i i

k k i N k L  m m             (4) 

where 
2 2

1 1
ˆ

N N

i ii i
b m

 
  . Thus  2 2 2ˆ( )

i i i
m E k m m  and  

2 2

1 1

N N

i ii i
m b

 
  . Note that 2

i
m  refers to the average energy of 

the ith frequency band and forms the template of the target, 

denoted by 2

1, ,
i

i N

m


 
 

m . Based on the fact that 2

i
c  is likely 

to be larger for a larger 2

i
m , one reasonable form for 2 ( )

i
c  can 

be expressed as  
2 2 2( ) ( ) (1 ) ( ), 0 1
i i i

         c m b                 (5) 

where   represents the effect of signal mixing. It follows that 
2 ( )
i
c  is also an i.i.d. random sequence. Its mathematical 

expectation satisfies that 2 2 2(1 )
i i i

c m b     and it is easy to 

prove that 
2 2

1 1

N N

i ii i
c b

 
  .  

Now the proposed filter in (3b) can be formulated in terms of 

the target template m  and A . Let ( )
i

c k  and ( )
i

b k  denote 

samples of the random variables in A . Then we obtain 

     

2 2

2 22

1, , 1 , , 1, ,1

2

2 2 2

( ) ( )

.
( )

i i

Mi

i iik l s s L M l Lk

i

i i i

l l

M m M m
H

b ca

M m

M b L m b

   





 


 

           (6) 

The main properties of the filter can be presented in the 

following three propositions.  

 

Proposition 1:  For the subband filter in (3b), the ith band 

gain satisfies that 

2 2

2 2

2 2

1,

  1

1,

,

i i

i i i

i i

m b

H m b

m b

 



 






 if M L .  

Proposition 1 states that the proposed sub-band filter can 

adaptively change its gain for any frequency band i according 

to the relative energies between the target and the noise in the 

band. It will amplify the signals in the band with 1
i

H   if the 

template energy is stronger than the noise energy but attenuate 

the signals with 1
i

H   otherwise. 

In order to further evaluate the performance of the filter for 

target content enhancement, the difference between the energy 

increases of the target signal and  the noise signal need to be 

analyzed. The energy increase between the filtered output and 

the original input calculated in the time-frequency domain 

referring to a single row, i.e., a frequency band, is  

 

 

 

   

2 2

2 2

( ) ( )
( )

1, , 1 , , .( ) (

1 1 , , , 1
  

)
  

,  

i i i

i

i i i

H l s l s l
l

s s L

s

M

L

lH l

s

l

        
 

  

c c
E

b b
 (7) 

Considering a single column k within the target zone, the 

difference between its energy increase and that of any other 

noise column l is 
2 2 2 2

2 2 2 2 2

, ( 1) ( 1)

(

( ) ( ) ( ) ( ) ( )

(1)( ( 1 ) ( 1) ( ) ( ) ( )))

i i i i i i i

i i i i i

k l k H k H l

H k k s

l

k s l

     

        

E E E c b

m b b b
 (8) 

where  1, ,k L  and    1, , 1 , ,l s s L M   . Thus, 

the total difference over all frequency bands is summarized as 

1
( ) (, , ).

N

ii
k l k l


  E E                         (9) 

It is expected that the difference is positive and as large as 

possible in order to increase the probability of correct detection 

for the energy based target detection in Step 4.  

 

Proposition 2:  Through the sub-band filter in (3b), the target 

signal will gain more energy increase than the noise, i.e., 

 , ) 0(E k l E , and it equals 0 if and only if 2 2

i i
m b i .  

Proposition 2 shows that, for any frequency band i, the 

mathematical expectation of the energy difference ,( )
i

k lE  is 

always positive as long as there exists energy difference 

between the target model and the noise model, i.e., 2 2

i i
m b . It 

confirms that the proposed filter has selective signal boosting 

capability that can always enhance the target content in a noisy 

background for whatever 2 2

i i
m b  or 2 2

i i
m b . Thus the 

proposed filter is suitable for low SNR situations.  

The next proposition further compares the probability 

 , ) 0(P k l E  with  , 0( )
i

P k l E  of individual i, which 

can illustrate how the scale of the wavelet packet 

decomposition affects the probability of correct detection.  

 

Proposition 3: If 
1

2 2

2
( ) ( )

i i
k km b  and 

3

2 2

4
( ) ( )

i i
k kb b , 

1
k   1, , L ,  2 3 4

, , 1, ,k k k M , 
3 4

k k , for any 

frequency band  1, ,i N , are normally distributed, the 

probability of correct detection  ( ), 0 ( )P k l g E  

increases from  ( ), 0 ( )
i i

P k l g E  for a single band i with 

i i
g g N g  , where Φ( )  is the distribution function of the 

standard normal variable.  

From proposition 3, g  is 1~ N  times the amount of 
i

g . It 

means that the probability of the energy difference calculated 

over all frequency bands being positive can be improved 

remarkably compared with the probability of that in a single 

frequency band. It provides a way to improve the probability of 

correct detection in applications, especially for low SNR 

situations. A large N is likely to achieve a high probability of 

correct detection, which requires  large scale  wavelet packet 

decomposition.  

The proofs of the three propositions are given in the 

Appendix.  
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IV. EXPERIMENTAL SET-UP 

A. Database and Metric 

The database used in the experiments includes three types of 

acoustic events: screams (184 sounds), gunshots (196 sounds), 

and explosions (153 sounds), and various noises: White, 

Restaurant, Market, Traffic, and Subway, each with a duration 

of about 4min. Sound samples are collected from various public 

sound effects libraries: BBC Sound Effects Library, Sound 

Ideals Series 6000, Sound Ideas: the art of Foley, and Best 

Service Studio Box Sound Effects. All sounds are sampled at 

20.05kHz with a 16-bit resolution. The composition of the 

database (includes the acoustic events and the Subway noise) is 

intended to be similar to the one used in [1]. 

In order to produce the target template which is needed for 

generating the filter, the dataset of each acoustic event class is 

randomly divided into 75% for template training and 25% for 

testing. The collection of the sounds has taken into account 

their diversity, as well as the similarity between the samples. 

The experimental results can also verify the sensitivity of the 

filter to the target dataset for template training.  

To validate the proposed algorithm, we have built a 

simulation dataset and each file with a length of about 4min is 

generated by inserting an acoustic event from the target test 

dataset into a specific type of noise at several random moments 

with a certain SNR. The test SNR goes from 5dB to -15dB with 

a 5dB step. It must be noted that the SNR is calculated over the 

whole temporal sequence of the acoustic events.  

The performance of the proposed system is measured using 

the Detection Error Tradeoff (DET) curve, which takes into 

account both the missed detection rate (MDR) and the false 

detection rate (FDR). A missed detection means non-detection 

of a real event and a false detection means detection of a 

non-existing event. These two error rates are closely tied  to the 

sensitivity of the system, with refererence  to the threshold of 

the energy detector in the proposed framework. An overall 

detection performance is characterized by the equal error rate 

(EER). It is defined as the value of MDR or FDR when these 

two rates are equal in the DET curve. The threshold is manually 

changed to get different pairs of MDRs and FDRs necessary to 

plot DET curves.  

 

B. Choosing the Parameters 

In the implementation of the proposed detection algorithm, 

the wavelet basis and the decomposition level j of the WPT are 

two major parameters that affect system performance.  

1) Selection of the wavelet basis  

Wavelet analysis offers the flexibility of using a number of 

base functions and the most famous wavelet families include 

Harr, Morlet, Marr, Daubechies, Coiflet, etc.. The choice of the 

wavelet bases could be critical in the quality of the signal 

description due to their different properties. For specific 

detection problems, the criterion used in this paper is to 

synthetically consider the mathematical properties of the base 

functions and their experimental performance.  

This work applies the Coiflet of order 5 which exhibits good 

symmetry and orthogonality. We have done extensive tests on 

various base functions like db10, coif5, etc.. Their 

performances are evaluated by the average energy increase in 

the target dataset, because of the fact that the larger the energy 

increase, the higher the probability of correct detection. Results 

in Table I show that coif5 produces the largest energy increase 

and outperforms others.  

 
TABLE I 

AVERAGE ENERGY INCREASE VALUES OF DETECTION WITH  
DIFFERENT BASIS FUNCTIONS 

Test db5 db10 coif3 coif5 sym8 

Explosion+Market 23.74 30.18 27.30 38.18 29.51 

Scream+Market 23.18 21.62 21.99 28.88 23.38 

Gunshot+Market 14.22 17.11 15.51 23.97 18.29 

 

2) Selection of the decomposition level j 

The decomposition level or the scale factor j is another key 

parameter that directly determines the number of sub-bands 

after decomposition. As mentioned in Section II-A, a larger 

scale means a finer partition of frequencies and thus offers 

better discrimination between the target event and noise, which 

is indeed necessary for low SNR situations. Moreover, from the 

theoretical analysis in Section III, Proposition 3 verifies that a 

large scale helps to improve the probability of a correct 

detection. However, it should not be too high due to the 

consequent heavy computational load. There is also an upper 

limit due to the finite length of the signal.  

As the focus of this work is to improve the detection 

performance with an adverse background, we evaluate the 

EERs for different levels of j in order to choose the best one. A 

series of experiments have been done for target detection with 

respect to different decomposition levels varying from 6 to 14. 

Results in Fig. 7 show that the EER of detection falls 

significantly as j increases from 6 to 11 and when j >11, the 

improvement is no longer notable. In the experiments we set j 

 
Fig. 7.  EER as a function of the decomposition level of the WPT for 

detection at -15dB 
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=13.  

For the other parameters, we use Tf =20s and Ti =1s for the 

frame-extracting window and the temporal duration and the Te 

of 0.5s for the energy accumulating window. To deal with the 

heavy computation load of the 13-level WPT, the wavelet 

analysis is hardware accelerated by mapping it onto a graphic 

processing unit (GPU). The simulation is conducted on a PC 

with a 2.53GHz Intel Xeon CPU and C++ implementation 

combined with the NVIDIA Tesla C1060 computing processor. 

It is verified that the whole detection algorithm takes about 

0.225s to process one frame, and thus is able to satisfy the 

demands of real-time applications.  

 

V. EXPERIMENTS 

A. First Experiment: Single Target Detection 

The first experiment is carried out by following the single 

target detection procedure in Fig. 1. The goal is to verify the 

impact of noisy environments on detection performance. 

Experiments are done individually for scream detection, 

gunshot detection and explosion detection. Several types of 

noise (White, Restaurant, Market, Traffic, and Subway) are 

tested. Table II gives the EERs with respect to three events 

mixed with different noises at different SNRs. We have also 

compared the performances of our method and the ordinary 

energy detector based on a median filter proposed in [5]. 

Results in Table III show a significant improvement of our 

method especially at low SNRs.  

In terms of performance with different background noise, the 

best results are achieved with White noise, apparently because 

of its excellent stationary property and less embedded 

interference. The detectable SNR range under White noise is 

brought down to as low as -15dB, an outstanding result that 

demonstrates the filter’s capability in reducing the  noise  at low 

SNRs. As expected, the results degrade a little with real 

environmental noises. However, a nearly error-less detection 

above 0dB and an average EER of 13.3% at -15dB with various 

noise sources are achieved. This confirms that the proposed 

method exhibits good robustness and is capable of practical 

applications. From Table II, the best detected event is the 

gunshot compared to the other two events with an average EER 

of less than 5% where the signal is at -15dB is achieved. This 

may be due to the very concentrated distribution of its template 

in the low frequencies that will be beneficial for the sub-band 

filtering procedure. However, the scream event is the worst 

detection due to the large diversity of people’s scream sounds. 

In addition, from Table II it can be observed that the 

detection performance differs with respect to different 

combinations of acoustic events and noises. It can be possibly 

explained by different profiles of the spectra of these signals 

(see Fig. 3). The Traffic and Subway noises are mainly 

concentrated in the very low frequencies, which are similar to 

the gunshot and explosion events but distinct from the scream 

event. In the other cases, the Market and Restaurant noises 

contain many vocal sounds, which share more similar features 

with the scream event, and hence are more detrimental to 

scream detection. For example, talking or laughing are often 

detected as screams when the SNR goes down below a critical 

point. Thus results for scream detection with Market and 

Restaurant background noises are worse than those under 

Traffic and Subway noises, whilst it is the reverse for gunshot 

and explosion detection. 

 
TABLE II 

EQUAL ERROR RATES (%) OF THE PROPOSED METHOD UNDER DIFFERENT 

NOISES WITH RESPECT TO SINGLE TARGET DETECTION 

Type SNR(dB) White Restaurant Market Traffic Subway 

Screams 

5 0 0 0 0 5.88 

0 0 0 0 0 7.69 

-5 0 4.93 7.11 4.93 9.43 

-10 6.84 15.67 22.29 11.35 10.47 

-15 10.8 39.66 36.11 12.5 17.95 

Gunshots 

5 0 0 0 0 0 

0 0 0 0 0 0 

-5 0 0 0 0.12 1.69 

-10 0 0 0.21 1.46 4.38 

-15 0.63 0.51 2.61 2.76 7.95 

Explosions 

5 0 0 0 0 0 

0 0 0 0 0 0 

-5 0 0 0 1.24 1.86 

-10 0 0 1.43 5.66 5.03 

-15 1.41 2.04 4.29 12.53 21.01 

 
TABLE III 

OVERALL EQUAL ERROR RATES OF THE PROPOSED METHOD COMPARED WITH 

THE MEDIAN FILTER BASED METHOD WITH RESPECT TO SINGLE TARGET 

DETECTION 

SNR(dB) 

EER(%) of proposed 

method 

EER(%) of median filter 

based method [5] 

White Market White Market 

5 0 0 0 7.51 

0 0 0 0.35 23.46 

-5 0 2.37 5.86 53.72 

-10 0 7.91 18.21 - 

-15 5.01 13.9 40.57 - 

 

B. Second Experiment: Multi-target Detection 

In previous sections, a filtering-based algorithm is developed 

which is limited to single target detection. For more practical 

and complex applications, we extend it to a more general 

framework for multi-target detection as shown in Fig. 8. In this 

work, we concentrate on detecting screams, gunshots, and 

explosions, in a Subway background. The multi-target detection 

system is comprised of three detection channels that run in 

parallel for each of the three events. The target detector in each 

channel is described in Fig. 1. To complete detection, the data 

fusion of overlapped frames is implemented on the outputs of 

three channels, resulting in three energy increase curves for 

three events respectively. The final decision is made according 
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to an intuitive strategy: a target event is detected if at least one 

channel’s output exceeds the threshold, and its type is 

determined by the channel which presents the maximum energy 

increase. It is also convenient to add other events of interest to 

the system.  

For the proposed multi-channel detection system, false 

detections in the three channels will be accumulated. 

Furthermore, due to the high correlation between events, e.g., 

gunshots and explosions which share many similar frequencies 

(see Fig. 3), misclassification may be the main factor for 

performance evaluation. It is worth mentioning that gunshots 

under Subway noise misclassified as explosions was previously 

reported in [1] and the EER for gunshot detection remained 

high (about 25%) for an SNR varying from 15dB to -5dB. In 

order to reduce acoustic confusion between different event 

classes and finally improve performance, other features are 

taken into account. Considering that the three events have 

different durations, gunshots have a mean duration of about 

0.5s while an explosion can last 3s or longer; energy 

accumulating windows with different duration Te are applied 

for computing the energies, that is, 0.5s for gunshot detection 

and 2.5s for explosion detection.  

 
TABLE IV 

EQUAL ERROR RATES OF THE PROPOSED METHOD COMPARED WITH THE 

HMM BASED METHOD REGARDING TO MULTI-TARGET DETECTION 

Type SNR(dB) 
EER(%) of 

proposed method 

EER(%) of HMM 

based method [1] 

Screams 

5 13.52 16.50 

0 14.29 21.42 

-5 18.69 28.21 

-10 27.08 - 

Gunshots 

5 2.74 25.67 

0 9.09 26.32 

-5 14.63 26.51 

-10 23.08 - 

Explosions 

5 4.22 7.48 

0 6.22 8.54 

-5 9.52 13.29 

-10 14.29 - 

 

Experiments are done for the three target detection under 

Subway noise in our database. Table IV gives the EERs of the 

proposed method compared with the HMM based method [1]. 

The data in the last column of Table IV is directly derived from 

[1, Table 6] on the basis that we use a similar database and 

experimental protocol. Results show that the performance 

degrades a lot compared to single target detection due to 

confusion between different events. An average EER for three 

events at -10dB is 21.45%. More precisely, explosions are 

detected with EER of 14.29%, gunshots with 23.08%, and 

screams with 27.08%. In particular, the EERs for gunshot 

detection are brought down notably. Fig. 9 depicts the DET 

curves with respect to the detection of each target event class at 

different SNRs. 

 

VI. CONCLUSION 

In this paper, an effective filtering approach using wavelet 

packets is proposed for AED under low SNR conditions. 

Taking advantage of the time-frequency representation by the 

WPT, acoustic signals can be filtered in sub-bands to separate 

target components from noise. The sub-band filter proposed 

considers that different acoustic events and noises show 

different spectral characteristics. Background noise can be 

effectively suppressed by simultaneously taking into account 

the target spectrum and an estimate of the noise spectrum. In 

fact, this filter can be considered as a band-pass filter that can 

automatically pass frequency bands that are more significant in 

the target than in the noise. It is proved that the filtering method 

is capable of enhancing the target content while suppressing the 

background noise under low SNR conditions. It is also found 

that a larger decomposition level of the WPT helps improve the 

probability of correct detection.  

Two series of experiments have been done on a large dataset 

for single target and multi-target detection. For single target 

detection, the detectable SNR can be brought down to -15dB 

with various background noises. This superb performance 

demonstrates the effectiveness of the proposed detection 

solution with the sub-band filter followed by a simple energy 

detector. The second experiment extends our method to 

multi-target detection for screams, gunshots, and explosions. A 

satisfying overall EER of 14.28% at -5dB is achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 8.  Framework of the multi-target detection system 
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APPENDIX 

PROOFS OF PROPOSITIONS 

Proposition 1:  For the subband filter in (3b), the ith band 

gain satisfies that 

2 2

2 2

2 2

1,

  1

1,

,

i i

i i i

i i

m b

H m b

m b

 



 






 if M L .  

Proof: When 2 2

i i
m b , we have 2 2 2 2( )

i i i i
Mb L m b M m   , 

and hence 1
i

H   from (6). Other results can be obtained for the 

rest two cases in a similar way.                                                   

 

Proposition 2:  Through the subband filter in (3b), the target 

signal will gain more energy increase than the noise, i.e., 

 , ) 0(E k l E , and it equals 0 if and only if 2 2

i i
m b i .  

Proof:  From (8) and (9), the mathematical expectation is 

given by  

   
1

,( ) ( , )
N

ii
E k l E k l


  E E                 (10) 

where   

  2 2 2( ), ( 1)( ).
i i i i

E k l H m b  E              (11) 

From Proposition 1, we have that if 2 2

i i
m b , then  

2 2 2( 1) sign(s gn )i
i i i

H m b   , and hence  , =( )
i

E k lE  

2 2 2( 1)( ) 0
i i i

H m b     and it equals 0 if and only if 2 2

i i
m b . So 

   
1

, 0( (, ) )
N

ii
E k l E k l


  E E  and it equals 0 if and only 

if 2 2

i i
m b i .                                                                             

 

Proposition 3: If 
1

2 2

2
( ) ( )

i i
k km b  and 

3

2 2

4
( ) ( )

i i
k kb b , 

1
k   1, , L ,  2 3 4

, , 1, ,k k k M , 
3 4

k k , for any 

frequency band  1, ,i N , are normally distributed, the 

probability of correct detection  ( ), 0 ( )P k l g E  

increases from  ( ), 0 ( )
i i

P k l g E  for a single band i with 

i i
g g N g  , where Φ( )  is the distribution function of the 

standard normal variable.  

Proof:  Because the period of the target signal is 

comparatively short, i.e., L M , the filter can be reduced to 
2 2

i i i
H m b . Equation (8) can then be rewritten as  

2 2 2 2

2 2

( ) ( ) ( ) ( )

(

, ( ( 1 )

( )1 ))( )

i i i i i i

i i

k l m b k s

k s

k

l

     

   

E m b

b b
         (12) 

where 2 2 2 2( ) ( ) 0
i i i i

m b b    . 

Following the conditions of this proposition, we have that 
2 2( ) ( )1
i i

sk k  m b  and 2 21( ) ( )
i i

k s l  b b  in (12) are 

normally distributed. It is easy to verify that these two random 

variables are jointly normal. Thus, ,( )
i

k lE  is normally 

distributed based on the fact that for a multivariate normal 

distribution, any linear combination of its components is 

normally distributed. Furthermore, ,( )k lE  is also normally 

distributed according to the invariance of linear transform of 

 
(a) 

 
(b) 

 
(c) 

Fig. 9.  DET curves of three target events under Subway noise at different 

SNRs with respect to multi-target detection. (a) Scream detection, (b) 
Gunshot detection, (c) Explosion detection.  

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

12 

independent normal random variables. Let 

, ~( )
i

k lE
2( , σ )

i i
N   and 2

1 1
, ~ (( , ))

N N

i ii i
k l N  

 
  E , 

where 
i

  2 2 2( ) 0
i i i

m b   , 2 2 2 2 2 2σ σ̂( )
i i i i i

m b   and 2σ̂
i

 is the 

variance of the expression in the last brackets of ,( )
i

k lE  in 

(12). From the fact that  0 Φ( )P   X  for 

2~ ( , )N  X , where Φ( )  is the distribution function of the 

standard normal variable, the probability increases as the ratio 

   increases.  

Referring to the energy difference in a single subband 

,( )
i

k lE , we define the ratio 2 2

i i i i i i
g m b     . Then 

for the energy difference over all subbands ,( )k lE , we have  

2 2 2

1 1

2 2 2 2 2 2

1 1

( )

ˆ(σ σ)
.

N N

i i i ii i

N N

i i i i ii i

m b
g

m b

 



 

 


 



 

 
                 (13) 

Define 2 2

1, ,
i i

i N

m b


  
 

d  and  
1, ,i N

i
diag 



B . If 

ˆ ˆ
i

  i , then we obtain  

 
T

T T

T ˆ ˆˆ
g

 
  

Bd dd Bd u d

Bdd BBd
                  (14) 

where u Bd Bd  is a unit vector along Bd .  

1) Considering the best case that maximizes g , we obtain 

u d  and it follows that 
i

i    (for instance, in the 

case of white noise background). Then 

2 2 2

1
( ) ˆ

N

i ii
g m b 


  . If 2 2

i i
m b i   , we finally get 

ˆ
i

g N N g   .  

2) Considering the worst case  
T

0 0 1 0 0u , 

where only the ith element is 1, we get 

2 2 ˆ
i i i i

g m b g   . 

Therefore, we can conclude 
i i

g g N g  .                               
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