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Abstract 

Soaring throughput, plummeting costs and increased sensitivity for assaying degraded 

or low concentration DNA are driving a revolution in the way we monitor biodiversity. 

Arguably the biggest  “game-changer” is environmental DNA (eDNA) – which refers 

to free-floating DNA released by organisms into their environment. Rare or elusive 

species can be detected with greater sensitivity and accuracy using eDNA than by most 

conventional methods, and we have the capability to screen and describe whole 

communities as well as performing targeted monitoring of single species. In this paper 

I discuss the basic approaches for molecular monitoring of biodiversity, provide case 

studies to demonstrate the effectiveness of the techniques, and consider any challenges 

and limitations that could impact molecular biological recording. I argue that eDNA 

surveys offer exciting new opportunities to engage the public in biological recording 

and that molecular approaches will complement conventional surveys, giving us 

unprecedented insights into species distributions. Finally, with the number of eDNA 

studies increasing at a rapid pace, I argue that we need to rapidly establish ways for 

managing molecular records. Integrating molecular records into existing biological 

records databases would enhance our understanding of species distributions and may 

be something that the Biological Records Centre should be considering to mark its 

landmark anniversary.  

------------------------------------------------------------------------------------------------------- 
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Fifty years ago the Biological Records Centre (BRC) was at the pioneering heart of a 

revolution in the way we record biodiversity. Today, we are undergoing a revolution in 

the way we describe biodiversity. In recent years we have progressed from being able 

to identify individual organisms from specific DNA sequences or “barcodes” to 

analysing hundreds of thousands of DNA barcodes from environmental samples, 

enabling us to describe whole communities. This high throughput approach, known as 

“DNA metabarcoding”, is particularly powerful for revealing cryptic biodiversity 

(Creer et al., 2010; Bik et al., 2012; Yu et al., 2012).  

 

In addition to this increase in throughput, another revolution is ongoing in the field of 

environmental DNA or “eDNA”. Organisms release DNA into their environments, for 

example through faeces, moulting, mucous secretion, or releasing gametes. The 

sensitivity of DNA-based assays means that it is possible to detect tiny amounts of 

degraded eDNA present in the environment. This has great promise for biodiversity 

monitoring because it is non-invasive, and it has already been proven effective for 

monitoring rare and/or elusive species, particularly in freshwater environments. Indeed, 

eDNA monitoring in aquatic systems was identified as one of the 15 most important 

global conservation issues in a 2013 horizon scanning exercise (Sutherland et al., 2013) 

and may be a “game changer” in biodiversity monitoring. The aim of this article is to 

evaluate how these molecular approaches are likely to contribute to biological 

recording. I briefly summarise the main approaches, present key case studies in eDNA 

monitoring of biodiversity, detection of invasive alien species (IAS) and detection of 

trophic interactions, demonstrate through an example how the public can be engaged 

in molecular biological recording, and discuss the burning issues relating specifically 

to eDNA analyses. Finally I evaluate some of the logistics of molecular biological 
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recording, such as whether it is cost-effective, and open a debate on how the data should 

be managed.  

 

The approach 

Why take a molecular approach for biological recording? 

Between 10 and 50% of species from well-studied taxonomic groups (e.g. mammals, 

birds, amphibians, higher land plants) are threatened with extinction (Millenium 

Ecosystem Assessment, 2005) and current rates of species loss could be up to 1000 

times higher than background rates (i.e. those before human influence, Millenium 

Ecosystem Assessment, 2005; Pimm et al., 2014). Despite good knowledge of certain 

taxonomic groups, it is thought that 15% more plant species and the great majority of 

animals are yet to be described (Pimm et al., 2014). We have a poorer understanding 

of the status of organisms in aquatic compared to terrestrial environments (Millenium 

Ecosystem Assessment, 2005), but freshwater ecosystems seem to be particularly 

vulnerable (McLellan et al., 2014). Indeed, populations of freshwater species declined 

by an average of 76% between 1970 and 2010 – almost double the rate of decline for 

populations of terrestrial species (McLellan et al., 2014).  

 

Reliable cost-effective methods for large-scale screening of biodiversity are essential if 

we are to slow this rate of species loss. Traditional methods, based for example, on 

trapping, netting, acoustic or observational surveys can be costly, time consuming, and 

sadly are often inefficient. Perhaps the greatest limitations of traditional surveys are 1) 

the difficulties associated with recording rare and/or elusive species, and 2) dealing 

with taxonomically similar species, juvenile life stages or cryptic biodiversity. Methods 

based on DNA barcoding are promising to complement traditional approaches and help 

https://paperpile.com/c/WYxZ0A/UK4l
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overcome these limitations. This is becoming more feasible due to the rapidly 

decreasing costs associated with DNA sequencing and technological improvements for 

assaying degraded or low concentration DNA. Another benefit of molecular methods 

is that they are easily auditable, since samples can be split and analysed in independent 

laboratories (Ji et al., 2013). However, DNA-based methods are not without their own 

limitations. It is impossible, for example, to infer age structure of populations from 

DNA data, and there are other challenges, which I discuss below.  

 

DNA barcoding or metabarcoding? 

The technology and application of DNA barcoding and metabarcoding in ecology has 

been reviewed extensively elsewhere (see for example Valentini, Pompanon, & 

Taberlet, 2009; Creer et al., 2010; Taberlet et al., 2012; Bohmann et al., 2014) therefore 

just a brief introduction is provided here. In “traditional” DNA barcoding, a short gene 

segment (500-800 bp) is amplified by polymerase chain reaction (PCR) using widely 

conserved primers, and sequenced (using Sanger sequencing) from DNA extracted 

from a single individual. The DNA sequence or “barcode” should be species specific, 

allowing taxonomic identification by comparison with a public DNA data bank such as 

the International Barcode of Life (iBOL) Consortium’s Barcode Library (Barcode of 

Life Data Systems, www.boldsystems.org). The most commonly used DNA barcodes 

are the mitochondrial cytochrome c oxidase subunit I gene (COI) for animals (Hebert, 

Ratnasingham, & deWaard, 2003), the chloroplast ribulose biphosphate carboxylase 

gene (rbcL) gene for plants (Hollingsworth & Andra Clark, 2009), and the ribosomal 

internal transcribed spacer (ITS) for fungi (Schoch et al., 2012). Mitochondrial or 

chloroplast genes generally make attractive molecular markers because of their 

uniparental inheritance, high mutation rates and the fact that they are found in multiple 

https://paperpile.com/c/WYxZ0A/6Kaz
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https://paperpile.com/c/WYxZ0A/qDWq
https://paperpile.com/c/WYxZ0A/6hoY
https://paperpile.com/c/WYxZ0A/6hoY
https://paperpile.com/c/WYxZ0A/6hoY
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copies in a cell, coupled with the fact that it is relatively straightforward to design 

conserved PCR primers. However neither COI nor rbcL are perfect. Some taxonomic 

groups, such as nematodes, are notoriously problematic to resolve using COI, and also 

exhibit extensive rearrangements in their mitochondrial genes (Powers, 2004). 

Therefore the locus of choice for nematodes (and other meiofauna) is usually the 18S 

(small subunit or “SSU”) rRNA gene, which is a nuclear gene present in typically 50-

100 copies (Floyd et al., 2002; Powers, 2004, although note that this region greatly 

underestimates diversity in some meiofaunal groups, Tang et al., 2012). Use of COI for 

barcoding a broad range of taxa has recently been criticised since the region does not 

have sufficiently conserved regions for primer design (Deagle et al., 2014). Some 

applications, for example identification of museum specimens or environmental 

samples (see below), require shorter fragments for analyses than the standard barcodes 

because of DNA degradation problems. For this reason, a considerable amount of effort 

has gone into developing “mini-barcodes” based on the minimum amount of sequence 

required for species identification. Mini-barcodes are typically a 90-250 bp long portion 

of the primary barcoding genes (e.g. for COI Hajibabaei et al., 2006; Meusnier et al., 

2008 and rbcL Little, 2014).   

 

Arguably the great disadvantage of DNA barcoding is that analysing single organisms 

using traditional DNA sequencing methods is expensive and inefficient. Rather than 

focussing on single organisms, DNA metabarcoding characterises species assemblages 

either from a homogenised “soup” of whole organisms (for example obtained from 

pitfall traps or other mass trapping methods, e.g. Yu et al., 2012) or from environmental 

DNA (see below). DNA from the whole community is PCR amplified using similar 

markers to those for standard barcoding/mini-barcoding, sequenced on a Next 

https://paperpile.com/c/WYxZ0A/L6p3
https://paperpile.com/c/WYxZ0A/Y1IR+L6p3
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https://paperpile.com/c/WYxZ0A/jZ52
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Generation Sequencing (“NGS”) platform (for example an Illumina HiSeq or MiSeq 

sequencing system) and analysed using bioinformatics pipelines. The throughput of 

next generation sequencers has increased a million fold since the turn of the century, 

while costs have plummeted (e.g. Glenn, 2011). Metabarcoding is revolutionising our 

understanding of the diversity of microscopic eukaryotes (Bik et al., 2012) in 

environments that are traditionally difficult to study such as soil (Porazinska & Giblin-

Davis, 2009), other sediments (Creer et al., 2010), and the deep sea (Fonseca et al., 

2010). This approach is considered the leading technological advance for biodiversity 

measurement (Ji et al., 2013) and could lead to a shift in the focus of biodiversity 

monitoring away from reliance on indicator species, which are not always appropriate 

surrogates for the health of whole communities (e.g. Cushman et al., 2010).  

 

A crucial question associated with metabarcoding studies is whether the method 

accurately reflects the true diversity both qualitatively and quantitatively. The validity 

of metabarcoding has been demonstrated by testing against artificially assembled 

samples of known composition (e.g. Hiiesalu et al., 2012; Yu et al., 2012) and several 

studies have demonstrated that metabarcoding generates reliable qualitative estimates 

of diversity (Fonseca et al., 2010; Hiiesalu et al., 2012; Yu et al., 2012; Yoccoz et al., 

2012; Ji et al., 2013). For example, Yu et al., (2012) individually sequenced DNA 

barcodes from over 1300 insects collected in malaise traps at three sites in China. DNA 

from the 547 individuals representing different Operational Taxonomic Units 

(“OTUs”) was then pooled into several mixtures, analogous to ecological communities 

with known composition, and mass sequenced by metabarcoding. A total of 598 OTUs 

were recovered during the bioinformatics steps from >130,000 DNA sequences. The 

number of OTUs is greater than the number identified from individual sequencing 
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https://paperpile.com/c/WYxZ0A/CGeL
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perhaps because of the ability of metabarcoding to detect prey in predators’ gut contents 

and parasite DNA in hosts (see section “Detecting records within records: molecular 

detection of trophic interactions”). Encouragingly, there was high correlation between 

sequencing methods in their estimates of unweighted alpha and beta diversity (i.e. 

diversity within and between samples respectively, based on presence-absence data 

rather than abundance), demonstrating that metabarcoding accurately recovers these 

important indices.  

 

It could be argued that validating metabarcoding based on artificially constructed 

species assemblages does not guarantee the method will translate to real world 

situations. This is an important argument if biodiversity assessments based on 

metabarcoding are to be used to inform policy-making. To address this issue, Ji et al., 

(2013) compared metabarcoding data sets against three large-scale standard 

biodiversity data sets, comprising over 55,000 morphologically identified indicator 

specimens, from China, Malaysia and the U.K. that were collected for answering policy 

questions. Encouragingly the data from metabarcoding and standard datasets were 

highly consistent, returned correlated diversity estimates, and produced the same 

conclusions for policy making (Ji et al., 2013). While these studies offer encouragement 

for the use of metabarcoding alongside standard methods for biodiversity assessment, 

one of the remaining major challenges is whether the methods are quantitative, which 

I discuss further in the section on “Challenges and limitations” at the end of this review. 

 

Environmental DNA (eDNA) 

In 2003, a pioneering study obtained environmental DNA from Pleistocene animal and 

plant communities in the Siberian permafrost, as well as from more recent (600 to 3000 

https://paperpile.com/c/WYxZ0A/6Kaz
https://paperpile.com/c/WYxZ0A/6Kaz
https://paperpile.com/c/WYxZ0A/6Kaz
https://paperpile.com/c/WYxZ0A/6Kaz
https://paperpile.com/c/WYxZ0A/6Kaz
https://paperpile.com/c/WYxZ0A/6Kaz
https://paperpile.com/c/WYxZ0A/6Kaz


9 
 

year old) cave and coastal sediments in New Zealand (Willerslev et al., 2003). Since 

then, over 1000 papers have been published on eDNA, and the technology has been 

used to reconstruct both past and present flora and fauna from soil and other sediments 

(Sønstebø Gielly, & Brysting, 2010; Andersen et al., 2012; Jørgensen et al., 2012; 

Yoccoz et al., 2012; Pedersen et al., 2013), for non-invasive tracking of animals (for 

example from their faeces, see Beja-Pereira et al., 2009 for a review, or footprints in 

snow Dalén et al., 2007), for detecting genetically modified pollen in air (Folloni et al. 

2011) and detecting prey species in predator gut contents (discussed under “Detecting 

records within records: molecular detection of trophic interactions” below). However 

perhaps the greatest potential of eDNA technology is for monitoring current 

biodiversity in aquatic environments (Table 1) and we only began to realise this 

potential quite recently. The field took a leap forward in 2008 with the application of 

eDNA to detection of invasive American bullfrogs, Rana catesbeiana, in French 

wetlands (Ficetola et al., 2008, discussed further below). Since then, eDNA has been 

used to detect a number of rare, elusive or invasive species (Table 1), and the approach 

is shifting from targeting specific species to describing whole communities using 

metabarcoding. Government agencies across the world are realising the potential of 

eDNA to contribute towards biodiversity monitoring and early detection of invasive 

species, and are investing in the approach. However, we still have many challenges 

ahead before eDNA data can be used to inform policy and decision making.  

 

Perhaps the greatest advantages of this method are that it is non-invasive, and very 

sensitive, with eDNA detection rates generally outperforming conventional survey 

methods (see below for more details). eDNA can be analysed in several different ways 

depending on the environment under study and whether assays need to be targeted (i.e. 

https://paperpile.com/c/WYxZ0A/2vYo
https://paperpile.com/c/WYxZ0A/2vYo
https://paperpile.com/c/WYxZ0A/2vYo
https://paperpile.com/c/WYxZ0A/2vYo
https://paperpile.com/c/2dxFZ9/ZgLz
https://paperpile.com/c/WYxZ0A/2vYo
https://paperpile.com/c/WYxZ0A/2vYo
https://paperpile.com/c/WYxZ0A/JHqr
https://paperpile.com/c/WYxZ0A/JHqr
https://paperpile.com/c/WYxZ0A/JHqr
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species specific), or describe whole communities (see Fig. 1 for a basic overview of the 

approach). Species-specific assays use standard or quantitative PCR (qPCR) with 

primers that only amplify the target species. qPCR has the advantages of much greater 

sensitivity, so that very low DNA concentrations can be detected, and by definition the 

ability to quantify the number of copies of target DNA that are present. This can then 

be translated into estimates of relative abundance (see “Challenges and limitations” 

below for further discussion).  

 

Few metabarcoding studies have so far been carried out on eDNA, but this is set to 

rapidly change as there is huge appeal in describing whole communities from 

environmental samples. The first studies to blaze the trail for eDNA metabarcoding 

were carried out by the same group that recovered eDNA from the ancient animal and 

plant communities, described above. Andersen et al., (2012) investigated whether 

metabarcoding could accurately recover vertebrate diversity from samples of soil 

collected from enclosures in safari parks, zoos and farms. DNA sampled from the soil 

surface accurately reflected taxonomic richness, and interestingly, relative biomass of 

the species present (Andersen et al., 2012). Very few other studies have so far employed 

eDNA metabarcoding for biodiversity assessment (but see Thomsen et al., 2012a; Kelly 

et al., 2014), but the approach is being tested extensively at time of writing. The key 

question is whether this method can be used to generate sufficiently reliable estimates 

of species abundance as well as presence-absence (as discussed under “Challenges and 

limitations”). If it can, it will revolutionise the recording of biological diversity.  

 

Case studies in molecular biological recording 

Detection of invasive alien species  

https://paperpile.com/c/WYxZ0A/odJx
https://paperpile.com/c/WYxZ0A/odJx
https://paperpile.com/c/WYxZ0A/odJx
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https://paperpile.com/c/WYxZ0A/odJx
https://paperpile.com/c/WYxZ0A/odJx
https://paperpile.com/c/WYxZ0A/4ETM+SALs
https://paperpile.com/c/WYxZ0A/4ETM+SALs
https://paperpile.com/c/WYxZ0A/4ETM+SALs
https://paperpile.com/c/WYxZ0A/4ETM+SALs
https://paperpile.com/c/WYxZ0A/4ETM+SALs
https://paperpile.com/c/WYxZ0A/4ETM+SALs
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With new EU regulation on invasive alien species introduced in January 2015, there is 

recognition of a pressing need for more effective early warning systems for invasive 

species (Schulz & Vedova, 2014). One of the great promises of eDNA is that it can be 

used to detect rare species that can easily go unnoticed. This makes it a particularly 

promising tool as an early warning system for detecting IAS (or indeed for pathogens) 

before they establish, as well as for monitoring establishment and spread, particularly 

in aquatic environments (Darling & Mahon, 2011).  

 

As mentioned above, the first application of eDNA for detection of invasive species 

was on American bullfrogs, R. catesbeiana in France (Ficetola et al., 2008). American 

bullfrogs are native to eastern North America but were introduced worldwide during 

the 20th century. They are recognised as one of the world’s 100 worst invasive species 

(DAISIE, http://www.europe-aliens.org; Dejean et al., 2012) and have been linked to 

the decline of native amphibians via competition, predation and spread of disease 

(Ficetola et al., 2008 and references therein). In France there are three established 

populations and two are subject to control methods. An assay was developed based on 

standard PCR using species-specific primers (Ficetola et al., 2008) and later the 

sensitivity of the method was compared to traditional methods based on auditory 

nocturnal and visual diurnal encounter rates carried out at the same time as eDNA 

sampling (Dejean et al., 2012). American bullfrog eDNA was detected in 38 ponds out 

of 49 sampled, compared to only seven sites for the traditional methods, suggesting that 

their distribution had been previously underestimated using traditional methods 

(Dejean et al., 2012). Encouragingly, positive eDNA results were obtained for all 7 

sites where bullfrogs were detected using traditional methods (Dejean et al., 2012). One 

potential reason for the discrepancy between methods is the ability of eDNA to detect 
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bullfrogs at very low densities and at any life stage. Since these pioneering bullfrog 

studies, species specific assays have been developed and successfully deployed to 

detect other invasive species including fish, reptiles, crustaceans, molluscs, and 

echinoderms as well as fungal pathogens (Table 1), and the number is rapidly 

increasing.  

 

It is widely known that prevention is the most effective form of management for IAS 

(Leung et al., 2002; Hulme, 2009). Perhaps one of the greatest opportunities for eDNA 

methods is in routine surveillance of invasion pathways in order to detect IAS before 

they enter the environment. Invasive species can enter aquatic systems via a number of 

pathways (Hulme, 2009; Roy et al., 2014). Ship ballast water is a particularly important 

source, and discharge standards are in place in some countries (e.g. the USA) to prevent 

IAS release (Frazier et al., 2013). eDNA methods are likely to be particularly useful for 

identifying larval stages of marine invertebrates in ballast, where morphological 

identification is unreliable and impractical.  Single-species PCR assays have been 

developed for detection of the northern Pacific seastar, Asterias amurensis in mixed 

plankton or ballast water samples (Deagle et al., 2003). However assays still typically 

need to be carried out in a lab, which is too time-consuming for effective ballast 

screening. There is an urgent need for on-board screening of ship’s ballast before port 

entry to provide sufficient time to implement control measures (Mahon et al., 2011). A 

leap in this technology came in 2011, when a portable microfluidic detection platform 

was developed for ballast water screening (Mahon et al., 2011). The system combines 

DNA extraction and standard PCR with a carbon nanotube microfluidic detection chip 

to identify target species (Mahon et al., 2011). Chip-based assays were successfully 

designed and tested for three ballast-transported IAS; quagga mussel, Dreissena 
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rostriformis bugensis, Chinese mitten crab, Eriocheir sinensis, and golden mussel 

Limnoperna fortuneii (Mahon et al., 2011).  

 

Targeted assays such as these are appropriate for active surveillance of priority species, 

but they have an obvious drawback: they miss non-target IAS that may be present in 

the sample. Passive surveillance of IAS pathways using metabarcoding is therefore of 

great interest and may provide a substantial benefit for IAS management. The ability 

of metabarcoding to detect very rare species in complex samples such as mixed 

plankton or ballast has been demonstrated by artificial spiking of indicator species with 

known biomass (Zhan et al., 2013). Metabarcoding assays for screening ballast are 

currently in development and undergoing field trials, but Mahon, Nathan, & Jerde, 

(2014) tested the utility of this approach for passive detection of IAS in the bait trade 

pathway of the North American Great Lakes Basin. Surprisingly, the study detected 

seven non-bait species in a total of six bait shops. Of greatest concern was the detection, 

and subsequent confirmation of invasive white perch, Morone americana, in bait shops 

in three states across the Great Lakes region (Mahon et al., 2014). Since M. americana 

was not expected to be present in the sample, this perfectly illustrates the greater power 

of metabarcoding for detecting non-target species. 

 

Monitoring biodiversity for conservation 

One of the great challenges in conservation is to effectively monitor rare and/or elusive 

species without causing disturbance. eDNA methods are particularly promising for 

monitoring of rare or elusive species due to their sensitivity and non-invasive nature. 

Thomsen et al., (2012b) evaluated the use of eDNA for targeted monitoring of rare 

freshwater species from diverse taxonomic groups (amphibians: common spadefoot 
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toad, Pelobates fuscus, great crested newt, Triturus cristatus; fish: European weather 

loach, Misgurnus fossilis; mammals: Eurasian otter, Lutra lutra; crustaceans: tadpole 

shrimp, Lepidurus apus; and insects: large white-faced darter, Leucorrhinia 

pectoralis). eDNA detection rates in natural freshwater ponds, where the species were 

known to be present, were 100% for P. fuscus, M. fossilis and L. apus, and above 80% 

for T. cristatus and L. pectoralis (Thomsen et al., 2012b). Although detection was more 

difficult in larger freshwater systems, detection rates for the two species investigated 

(L. lutra and M. fossilis) were still comparable to, and may provide a valuable 

complement to, traditional methods (Thomsen et al., 2012b). A small-scale 

metabarcoding study, using conserved vertebrate primers and carried out on the same 

pond water samples, detected all species of fish and amphibians previously recorded 

from the ponds, as well as several birds and a mammal (Thomsen et al., 2012b). This 

illustrates the potential for the monitoring of entire communities for biodiversity using 

metabarcoding, potentially shifting the focus away from a small number of indicator 

species.  

 

Monitoring biodiversity in the marine environment is obviously more challenging due 

to the scales involved. Despite additional challenges to eDNA studies from marine 

water chemistry and the dilution effects of strong tides and currents, eDNA has already 

shown promise for monitoring marine mammals (Foote et al., 2012) and fish (Thomsen 

et al., 2012a). Foote et al., (2012) evaluated whether eDNA from harbour porpoises, 

Phocena phocena, could be detected in a 4 million litre sea pen holding four porpoises, 

and in natural field sites in the Baltic Sea. Porpoise eDNA was consistently detected in 

15 ml samples from the sea pen, despite daily flushing of the pen by tidal water 

movements in the harbour basin. However eDNA detection was less consistent in the 
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natural sites, and was less successful than acoustic surveys. The study did however 

detect a non-target species; long-finned pilot whale, Globicephala melas, which is rare 

in the Baltic. One acknowledged limitation of this study was the small volume of water 

collected in the natural sites (3 x 50 ml at each acoustic monitoring site), suggesting 

that much larger volumes of water might be required to adequately sample marine 

eDNA. More encouragingly though, a metabarcoding study, carried out in the Sound 

of Elsinore, Denmark, recovered eDNA from 15 marine fish species from just three ½-

litre samples of seawater (Thomsen et al., 2012a). eDNA outperformed eight out of 

nine conventional survey methods in terms of number of species detected (Thomsen et 

al., 2012a). Common species and one rare vagrant (European pilchard, Sardina 

pilchardus) were detected, demonstrating the potential of eDNA for detecting rare 

species that are often missed by conventional methods. An extension of the technique 

for monitoring elusive species is discussed below. 

 

So far, the majority of studies have focussed on monitoring of animals, particularly in 

aquatic environments. There is no doubt that more effort needs to be put into monitoring 

of plants in both aquatic and terrestrial environments. In one excellent study, eDNA 

was extracted from soil taken from meadow and heathland, and plant community 

diversity inferred using metabarcoding (Yoccoz et al., 2012). eDNA-based diversity 

estimates were then compared to those from conventional above-ground surveys, and 

the estimates were highly consistent (Yoccoz et al., 2012). The same study also 

demonstrated that that species diversity can be recovered using eDNA even in more 

challenging tropical environments.  

 

Detecting records within records: molecular detection of trophic interactions. 
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Although “eDNA” in its strictest sense refers to free DNA in the environment, the term 

is often used more loosely to include prey DNA in the gut or faeces of predators, plant 

DNA in the guts of herbivores, parasite DNA in the host (or vice versa), or other 

interactions that leave behind traces of DNA. In an imaginative use of the technology, 

haematophagus leeches were used as a screening tool for monitoring mammalian 

biodiversity (Schnell et al., 2012). Remarkably, over 80% of leeches sampled in the 

Central Annamite region of Vietnam tested positive for mammalian DNA, and two of 

the species detected (Truong Son muntjac, Muntiacus truongsonensis and Annamite 

striped rabbit, Nesolagus timminsi) were only recently described and had not been 

confirmed in the study area despite extensive surveying, including over 2000 nights of 

camera trapping for N. timminsi (Schnell et al., 2012). Surveying elusive species with 

leeches or other haematophagous species (e.g. mosquitoes and ticks) is inexpensive 

compared to camera trapping and other conventional methods, and could be promising 

for mammal biodiversity screening in certain situations.  However, as discussed below, 

the field of “molecular detection of trophic interactions” extends far beyond single 

species interactions and biodiversity screening.  

 

Molecular tools have been used to study diet for over ten years (e.g. Symondson, 2002), 

but interest in the field has soared recently thanks to improvements in technology for 

high-throughput assaying of degraded DNA, in combination with analyses of 

ecological networks from thousands of species’ interactions (Roy & Lawson Handley, 

2012; Clare, 2014; Symondson & Harwood, 2014). Indeed, this emerging field recently 

motivated a special issue of the journal Molecular Ecology (Volume 23, Issue 15, 

August 2014), and is already providing unprecedented insight into complex ecological 

interactions, which are almost impossible to study using conventional methods (see 
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Clare, 2014 for an excellent recent review). Molecular dietary analyses have already 

been performed on a range of animals including mammals (Australian fur seals, 

Arctocephalus pusillus, Deagle, Kirkwood, & Jarman, 2009; snow leopards, Panthera 

uncia, Shehzad et al., 2012; bison, Bison bonasus, Kowalczyk et al., 2011; Asian musk 

shrew, Suncus murinus, Brown DS et al., 2014), birds (little penguins, Eudyptula 

minor, Deagle et al., 2010; Cory’s shearwaters, Calonectris diomedea, Alonso et al., 

2014), reptiles (slow worms, Anguis fragilis, Brown, Jarman, & Symondson, 2012; 

smooth snake, Coronella austriaca, Brown, Ebenezer, & Symondson, 2014), fish (e.g. 

predation of endangered Acigöl carp, Aphanius transgrediens, by invasive 

mosquitofish, Gambusia affinis, Keskin 2014), terrestrial invertebrates (centipedes, 

Lithobius spp. Eitzinger et al., 2014; spiders, Araneae: Orbicularae, Chapman et al., 

2013; Welch et al., 2014; ladybird beetles, Harmonia axyridis, Brown PMJ et al., 

2014), and marine invertebrates (rock lobsters, Jasus edwardsii, Redd et al., 2014). By 

far the greatest effort so far has been invested in the molecular investigation of diet in 

insectivorous bats (Clare et al., 2009, 2011, 2014a; Clare, Symondson, & Fenton, 

2014b; Razgour, Clare, & Zeale, 2011; Zeale, Butlin, & Barker, 2011; Burgar et al., 

2014; Sedlock, Krüger, & Clare, 2014; Alberdi et al., 2012; Bohmann et al., 2011). 

Conventional methods for studying bat diet are fraught with challenges for obvious 

reasons: bats are nocturnal, highly generalist (even species considered specialists 

consume many closely related prey species, Clare et al., 2011), cryptic, they feed on 

the wing and are fast, agile flyers (Clare et al., 2009, 2011, 2014a,b; Razgour et al., 

2011; Zeale et al., 2011; Burgar et al., 2014; Sedlock et al., 2014). The challenges are 

exacerbated in bats from biodiversity hotspots, since prey items are highly speciose and 

largely undescribed (Bohmann et al., 2011; Burgar et al., 2014). However even when 

prey species are uncharacterized, DNA sequences can still be phylogenetically grouped 
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into “molecular operational taxonomic units” or “MOTUs” (Floyd et al., 2002) and 

used to compare diets within and between species. Key insights from these studies 

include: incredibly high diversity of prey even outside biodiversity hotspots (e.g. ~600 

prey species in Canadian little brown bats, Myotis lucifugus, (Clare et al., 2014a), 

significant local variability in diet (M. lucifugus, Canada, Clare et al., 2014a), strong 

seasonal, and annual variation in diet (big brown bats, Eptesicus fuscus, America, Clare 

et al., 2014b), and resource partitioning (several species of Jamaican insectivorous bats, 

Emrich et al., 2014) or niche differentiation (European pond bat, Myotis dasycneme 

and Daubenton’s bat, M. daubentonii, Krüger et al., 2014) in sympatric species.  

 

Involving the public in molecular biological recording 

One of the most important aspects of biological recording is engaging the public in 

nature, science and conservation. An important question then is how can we do this 

with molecular recording? Does the technical nature of molecular work mean it is off 

limits to amateur volunteers? A recent eDNA study on great crested newts (GCN), 

Triturus cristatus, led by the Freshwater Habitats Trust (FHT) and carried out in the 

U.K., emphatically demonstrated that the answer to this question is “no” (Biggs et al., 

2014; 2015). In the first part of this study, a targeted qPCR assay was developed and 

intensive surveys carried out on 35 ponds during the GCN breeding season, to compare 

eDNA detection rates to traditional survey methods. Remarkably, detection rates were 

99.3% for eDNA; substantially higher than for bottle trapping (76%), torch counting 

(75%) or egg searching (44%), but similar to torch counting and bottle trapping 

combined (95%, Biggs et al., 2014). Secondly, 80 volunteers were recruited to survey 

239 ponds across England, where GCN had been recorded breeding in the previous 

year. An additional 30 sites were surveyed firstly from ponds within the GCN range 
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but with no prior record of newts, and secondly outside the GCN range, in order to 

check for false positives. Volunteers were provided with written instructions and 

standardised sampling kits (including sterile gloves, a pipette, plastic bag, sampling 

ladle and six sterile 50 ml tubes containing absolute ethanol for sample preservation) 

and asked to collect 30 ml water samples at twenty locations around the pond margin, 

without entering the water. Volunteers then combined samples from a single pond in a 

plastic bag, homogenised the sample, transferred six 15 ml subsamples to individual 50 

ml tubes containing ethanol, and posted the samples to FHT headquarters in Oxford, 

U.K. Standard Habitat Suitability Index (HIS) score sheets were also completed by 

volunteers at the same time as sample collection. GCN eDNA was detected in 91.2% 

of sites, indicating a small number of false negatives (8.8%), but encouragingly there 

was no evidence of false positives from the samples taken either from ponds within the 

range but without newts, or outside the GCN range. Twenty-six sites were also 

resurveyed by a professional in order to assess variability among surveyors. The same 

eDNA results were obtained in all but two of the volunteer and professional surveys, 

and very low eDNA concentration was responsible for the discrepancy between surveys 

at these two sites (Biggs et al., 2014).  

 

These encouraging results demonstrate that large-scale collection of eDNA samples by 

volunteers is both feasible and effective and provides benefit to both the research and 

volunteer communities. The GCN study demonstrates the enormous contribution of 

volunteers to research, since large-scale surveys over short time periods (e.g. coinciding 

with an organism’s breeding season) would be far more logistically challenging with 

only a small research team. From the volunteer’s perspective, monitoring of GCNs and 

other protected species is off limits to many potential recorders since specialist licenses 
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are needed. With eDNA surveys, volunteers can become involved without the need for 

licenses. However a drawback is that collecting water samples is less rewarding than 

counting real organisms! As with all methods of biological recording, professional 

volunteer support and prompt feedback of results is essential to ensure volunteers feel 

justifiably valued for their contributions. As discussed below, a combination of both 

conventional and eDNA methods is likely to prove the most powerful approach for 

biological recording, and engaging the public in both types of survey would be the 

ultimate outcome.  

 

Challenges, limitations and important considerations associated 

with molecular biological recording 

Quality control and validation  

Validation is always an important step in biological recording. Observational records 

from the general public are typically validated by expert verification of photographs 

that are submitted with the record to online recording schemes. eDNA methods require 

very high quality control standards and validation, particularly when the technology is 

applied for IAS detection and biodiversity monitoring for management purposes, as 

there can be serious financial implications of false positives (Darling & Mahon, 2011; 

Rees et al., 2014; Bohmann et al., 2014). It is therefore critical to adopt standardised 

quality control measures such as inclusion of sample and PCR blanks, and to carry out 

replication of sampling and PCR (for more advice on these issues, see recent papers by 

Rees et al., 2014; Bohmann et al., 2014 and Ficetola et al., 2014). For legally sensitive 

work, it could be necessary to adopt similar procedures to those used for ancient DNA, 

which requires specialised containment facilities and rigorous sterile techniques to 
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avoid contamination (Yu et al., 2012). Of course this will also require specialist training 

and increase costs. 

 

Dynamics of eDNA in the environment 

A particularly important question is whether presence of eDNA equates to presence of 

living organisms. To answer this, we need to understand the dynamics of eDNA, which 

determines its detectability, in different environments. Detectability of eDNA is 

governed by how much DNA is released into the environment (a product of the amount 

of DNA shed by individuals, density of animals, and their residence time in the 

environment, Pilliod et al., 2014) and how long eDNA persists in the environment (a 

product of the rate of DNA degradation - influenced by environmental chemistry, 

microbial composition, UV exposure, and temperature - and DNA transport – 

influenced by water flow rates, currents and wave action etc., Barnes et al., 2014). Little 

hard data exists on the DNA shedding rates of organisms (but see Pilliod et al., 2013 

for an exception) but knowledge of DNA persistence in different environments is 

increasing. The consensus from several studies is that rate of DNA degradation in water 

varies widely between different environments, but DNA rarely persists for more than 

two weeks (Rees et al., 2014; Barnes et al., 2014). For example, in freshwater 

mesocosm experiments, amphibian DNA concentration rapidly declined until it could 

no longer be detected two weeks after removal of animals (Thomsen et al., 2012b). 

This suggests rapid degradation of eDNA in freshwater, even in benign, controlled 

conditions (Dejean et al., 2011; Thomsen et al., 2012b). In an experiment to investigate 

DNA degradation in seawater, Thomsen et al., (2012a) found that DNA fragments 

degrade beyond detectability within 0.9-6.7 days. This high rate of DNA degradation 

provides confidence that a positive result reflects real occurrence. Interpretation of 
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results from soil and other sediments is more complicated as eDNA can persist over 

long time scales (e.g. Willerslev et al., 2003) and data therefore reflects both current 

and previous biota. For example, an analysis of plant eDNA in temperate, modern 

agricultural sites demonstrated that crops cultivated 40-50 years ago could still be 

detected (Yoccoz et al., 2012). Interestingly, this study also found a positive 

relationship between the number of DNA sequences in the soil and the years since crop 

abandonment (Yoccoz et al., 2012), indicating eDNA is degraded at a steady rate. This 

information is helpful for modelling the dynamics of eDNA in sediments and for 

accurately interpreting results. 

 

A second concern, which is often raised, is how applicable eDNA methods are for 

surveying in lotic environments or large water bodies – including the sea. eDNA 

surveys have already successfully been carried out on several stream or river-living 

species using eDNA (Table 1) and it is clear that eDNA methods are more challenging 

in fast flowing rivers, large lakes and the marine environment than in ponds and small 

streams. However this is also true for conventional surveying methods. As with 

conventional methods, probability of detection will vary with species, organism 

density, stream size, flow rate and season (Goldberg et al., 2011). A key issue with 

eDNA studies in flowing water though is how far DNA can be transported before it is 

degraded beyond levels of detection. Few studies have yet investigated the actual 

dynamics of eDNA in flowing water, and this is definitely an area that warrants further 

research. In one study though, transport of eDNA from two lake-dwelling invertebrates, 

Daphnia longispina and Unio tumidus, was detected in a river up to ~12 and 9 km 

(respectively) downstream of the lake (Deiner & Altermatt, 2014). This indicates that 
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eDNA can persist over relatively large distances in river systems, and that there may 

be species-specific transport distances for eDNA (Deiner & Altermatt, 2014).  

 

The studies mentioned here have demonstrated that eDNA surveys perform well, even 

in challenging environments, but the dynamics of eDNA in different environments are 

complex. It is clear from this that researchers need to carefully consider the ecology, 

behaviour, and to an extent the physiology, of their target organisms, as well as the flow 

dynamics and chemistry of their environment to fully understand the results of eDNA 

surveys. 

 

Are the methods quantitative? 

Perhaps the most important question currently occupying the eDNA community – 

particularly those keen on metabarcoding approaches – is whether the methods can go 

beyond describing presence/absence and reliably be used for estimating abundance or 

biomass (Rees et al., 2014; Bohmann et al., 2014). Organism abundance and/or 

biomass is critical information for those who need to monitor and manage biodiversity 

or commercially exploited stocks. Obtaining quantitative estimates from eDNA is 

challenging because of the large number of factors that influence DNA dynamics in the 

environment, discussed in the previous section. Several approaches for estimating 

abundance have been explored including: measuring DNA concentration using qPCR 

(Takahara et al., 2012; Thomsen et al., 2012b; Pilliod et al., 2013) or digital droplet 

PCR (ddPCR, Nathan et al., 2014), counting the number of sequences per OTU in 

metabarcoding (Yu et al., 2012; Kelly et al., 2014), avoiding PCR (Zhou et al., 2013) 

and site occupancy modelling  (Pilliod et al., 2013; Schmidt et al., 2013).  
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Encouragingly, methods based on qPCR have consistently demonstrated a positive (but 

non-linear) relationship between animal density or biomass and eDNA concentration 

(e.g. Takahara et al., 2012; Thomsen et al., 2012b; Pilliod et al., 2013). The drawback 

of this method though is that qPCR is time consuming and costly because it focuses on 

one target species at a time. ddPCR is a relatively new method, which also focuses on 

target species but could potentially provide a much more cost-effective, but equally 

accurate means of estimating eDNA concentration (Nathan et al., 2014). ddPCR 

essentially involves random partitioning of target DNA into several thousand individual 

droplets which are then amplified by PCR. Random sampling means that droplets can 

contain target or background DNA or both. The fraction of positive droplets is then 

used to calculate the concentration of target DNA (see Nathan et al., 2014 for more 

information).  

 

In metabarcoding studies, in principle, the number of sequences per OTU could be 

taken as an estimator of species biomass. Unfortunately though, it seems that this 

relationship is not a simple one. In the study by (Yu et al., 2012) mentioned under 

“DNA barcoding or metabarcoding?” the method accurately recovered unweighted 

alpha and beta diversity indices, but the number of sequence reads did not correlate 

with abundance. More recently, a metabarcoding experiment was carried out at 

Monterey Bay Aquarium in a large (4.5 million litre) tank with known species 

composition, to evaluate whether species biomass could be accurately recovered (Kelly 

et al., 2014). Although the rank abundances of eDNA and biomass were perfectly 

correlated, a complex, non-linear relationship was found between the proportion of 

eDNA sequences recovered and the proportion of biomass in the tank (Kelly et al., 

2014). Together, these studies indicate that relating the number of sequences per OTU 
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to biomass is complex, perhaps because there are several opportunities for bias during 

the sampling, extraction, PCR, and bioinformatics stages (Yu et al., 2012). Further 

work is needed to investigate the efficacy of metabarcoding for recovering 

abundance/biomass estimates in natural or semi-natural environments with known 

species composition. One possibility could be to use metabarcoding for describing 

species composition and qPCR or ddPCR for estimating abundance/biomass of species 

within the sample. However a combined approach would obviously be more costly and 

time consuming. Another prospect, which is generating considerable excitement, is that 

of PCR-free metabarcoding. PCR can introduce taxonomic biases, false negatives and 

positives, which can strongly influence abundance estimates (Zhou et al., 2013). In the 

PCR-free approach, whole communities are sequenced following mitochondrial 

enrichment, and the individual barcodes are then retrieved during the bioinformatics 

steps (Zhou et al., 2013). Although the method needs to be refined, one encouraging 

study demonstrated correlation between number of sequences and total biomass in bulk 

arthropod samples, suggesting this could provide a solution for estimating abundance 

(Zhou et al., 2013). 

 

Finally, statistical modelling offers another opportunity to improve quantitative 

estimates. Estimating abundance of animal populations via conventional methods is 

notoriously difficult unless individuals can be individually identified. One route around 

this problem is to estimate site occupancy – i.e. the proportion of an area occupied by 

a species (MacKenzie et al., 2002). Although this is obviously different to species 

abundance, the two measures are positively correlated (MacKenzie & Nichols, 2004), 

so site occupancy can be considered a proxy for abundance. Several recent papers have 

advocated the use of site occupancy modelling (SOM) for eDNA surveys (Pilliod et al., 
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2013; Schmidt et al., 2013; Ficetola et al., 2014). SOMs account for imperfect detection 

(an inherent feature of eDNA studies) and can be used to obtain more reliable estimates 

of species prevalence, estimate detection probability, determine the number of samples 

and site visits needed to obtain a high probability of detection (Kéry & Schmidt, 2008; 

Pilliod et al., 2013; Schmidt et al., 2013; Ficetola et al., 2014) and test for the effects 

of site characteristics, such as animal density, on detection probability  (MacKenzie et 

al., 2002; Kéry & Schmidt, 2008; Pilliod et al., 2013; Schmidt et al., 2013; Ficetola et 

al., 2014). Incorporating site occupancy modelling as routine into eDNA surveys could 

therefore lead to major improvements in the method.  

 

Is it cost effective?  

The costs associated with molecular analyses are plummeting, but how do eDNA 

surveys compare to conventional methods? On the whole they seem to be cheaper and 

less time consuming, with higher catch per unit effort than traditional methods (Jerde 

et al., 2011; Dejean et al., 2012). For example, it was estimated that eDNA surveys for 

American bullfrogs were 2.5 times cheaper and 2.5 times less time consuming than 

traditional surveys (Dejean et al., 2012). For great crested newts, the estimated savings 

are even greater, with eDNA surveys potentially costing 6-10 times less than torch 

counting and bottle trapping (Biggs et al., 2014). Nevertheless the cost of undertaking 

eDNA surveys is far from trivial, especially when a large number of replicates are 

required for validation purposes. 

 

Will it replace traditional methods? 

A key take home message from this review is that eDNA sampling should never be 

undertaken naively. It is just as important to understand the ecology of the study 
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organism and its environment as it is with conventional surveying. eDNA surveys 

should be designed on a case-by-case basis with the target organisms and environment 

in mind. eDNA methods cannot determine the age class of organisms, which is an 

important component of biodiversity monitoring and there are therefore clear 

advantages in combining both methods. The most effective approach will be to use 

them in combination.  

 

Conclusion: the next phase in the life of the BRC? 

To conclude, I have hopefully demonstrated that the molecular revolution will 

contribute to biological recording and that it will complement traditional surveys and 

offer new and exciting opportunities for engaging the public in citizen science. A final 

important consideration is how we should manage the data generated from molecular 

surveys. Should molecular data be integrated into current biological records databases 

or maintained separately? Although the International Barcode of Life Data Systems 

portal (http://www.boldsystems.org/) has over 3.5 million georeferenced DNA 

sequences, its purpose is quite distinct from biological records databases and it was 

never intended as a tool for mapping species distributions. The Atlas of Living Australia 

(ALA, http://www.ala.org.au/), which is the Australian node of the Global Biodiversity 

Information Facility (GBIF http://www.gbif.org/), is an incredible resource that 

incorporates biological records, mapping functions, taxonomic information, and 

species descriptions (even including vocalisations of certain animals). The ALA portal 

also links with the GenBank search engine for retrieving DNA sequences from 

individual species. However this is still quite different to treating the molecular data as 

a biological record. To my knowledge this has yet to be attempted. Integrating 

molecular records into existing national biological records databases would increase 

http://www.boldsystems.org/
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our understanding of species distributions and facilitate direct comparisons of the 

methods. This will not be a trivial enterprise, but is perhaps something that the 

Biological Records Centre (and their equivalent organisations outside the U.K.) should 

be pioneering to take biological recording into its next phase.  
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Figure legend 

Fig. 1. A basic overview of the steps taken in eDNA barcoding or metabarcoding 

studies.  

1Replicate samples should always be taken. General guidelines advise a minimum of 

three samples from a small pond, but this should be adapted to the specific environment 

under study. The number of samples required to obtain a high detection probability can 

be estimated using site occupancy modelling, as discussed in the text (see section “Are 

the methods quantitative?”). Numerous protocols exist for DNA capture and 

extraction. See Rees et al., 2014 for advice.  
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Table 1: Examples of targeted aquatic eDNA case studies by taxa. Species are ordered alphabetically by scientific name, within taxon group. 

 

Taxon Environment Objective Method References 

Amphibians     

Rocky Mountain tailed frogs 

(Ascaphus montanus) 

Streams Monitoring biodiversity Standard and qPCR Goldberg et al., 

2011; Pilliod et al., 

2013 

Idaho giant salamanders 

(Dicamptodon aterrimus) 

Streams Monitoring biodiversity Standard and qPCR Goldberg et al., 

2011; Pilliod et al., 

2013 

Spadefoot toad (Pelobates 

fuscus) 

Ponds  Monitoring biodiversity qPCR Thomsen et al., 2012 
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https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/swY2+0PH9
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
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American bullfrog, (Rana 

catesbeiana) 

Ponds Detection of IAS Standard PCR Ficetola, Bonin, & 

Miaud, 2008; Dejean 

et al., 2012 

Great crested newt (Triturus 

cristatus) 

Ponds Monitoring biodiversity qPCR Thomsen et al., 

2012b; Biggs et al., 

2014 

Fish     

Goldfish (Carassius auratus) Bait shop tanks Detection of IAS via bait trade 

pathway 

Standard PCR Nathan et al., 2014 

Prussian carp (Carassius 

gibelio) 

River basin Detection of IAS Standard PCR Keskin, 2014 

North African catfish (Clarias 

gariepinus) 

River basin Detection of IAS Standard PCR Keskin, 2014 

African jewelfish 

(Hemichromis letourneuxi) 

Artifical ponds Assess detection method in 

controlled lentic system1.  

qPCR Moyer et al., 2014 

https://paperpile.com/c/XAsHvG/I9zs+KGS2
https://paperpile.com/c/XAsHvG/I9zs+KGS2
https://paperpile.com/c/XAsHvG/I9zs+KGS2
https://paperpile.com/c/XAsHvG/I9zs+KGS2
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/2Eom
https://paperpile.com/c/XAsHvG/2Eom
https://paperpile.com/c/XAsHvG/Tm5Q
https://paperpile.com/c/XAsHvG/Tm5Q
https://paperpile.com/c/XAsHvG/Tm5Q
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Silver carp 

(Hypophthalmichthys molitrix)  

Chicago area waterway 

(large river and canal 

complex) 

Detection of IAS Standard PCR Jerde et al., 2011; 

Mahon et al., 2013 

Bighead carp (H. nobilis) Chicago area waterway 

(large river and canal 

complex) 

Detection of IAS Standard PCR Jerde et al., 2011; 

Mahon et al., 2013 

Bluegill sunfish (Lepomis 

macrochirus) 

Ponds Detection of IAS qPCR Takahara et al., 2013 

European weather loach 

(Misgurnus fossilis) 

Ponds and streams Monitoring biodiversity qPCR Thomsen et al., 

2012b 

Round goby (Neogobius 

melanostomus) 

Bait shop tanks Detection of IAS via bait trade 

pathway 

Standard PCR Nathan et al., 2014 

Nile tilapia (Oreochromis 

niloticus) 

River basin Detection of IAS Standard PCR Keskin, 2014 

https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/sWLW+Kb3M
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/2Eom
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Tubenose goby (Proterorhinus 

semilunaris) 

Bait shop tanks Detection of IAS via bait trade 

pathway 

Standard PCR Nathan et al., 2014 

Topmouth gudgeon 

(Pseudoasbora parva) 

River basin Detection of IAS Standard PCR Keskin, 2014 

Bull trout (Salvelinus 

confluentus) 

Streams Monitoring of species displaced 

by S. fontinalis, testing assay 

sensitivity and accuracy. 

qPCR Wilcox et al., 2013 

Brook trout (Salvelinus 

fontinalis) 

Headwater streams Detection of IAS and testing assay 

sensitivity and accuracy; 

investigating DNA dynamics in 

streams 

qPCR Wilcox et al., 2013; 

Jane et al., 2014 

Eurasian rudd (Scardinius 

erythrophtalmus) 

Bait shop tanks Detection of IAS via bait trade 

pathway 

Standard PCR Nathan et al., 2014 

Reptiles     

https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/2Eom
https://paperpile.com/c/XAsHvG/p72H
https://paperpile.com/c/XAsHvG/p72H
https://paperpile.com/c/XAsHvG/p72H
https://paperpile.com/c/XAsHvG/p72H+w4S4
https://paperpile.com/c/XAsHvG/p72H+w4S4
https://paperpile.com/c/XAsHvG/p72H+w4S4
https://paperpile.com/c/XAsHvG/p72H+w4S4
https://paperpile.com/c/XAsHvG/p72H+w4S4
https://paperpile.com/c/XAsHvG/p72H+w4S4
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
https://paperpile.com/c/XAsHvG/d73d
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Burmese python (Python 

bivittatus) 

Large wetlands  Detection of IAS Standard PCR Piaggio et al., 2014 

Mammals     

Eurasian otter (Lutra lutra) Streams and lakes Monitoring biodiversity qPCR Thomsen et al., 

2012b 

Harbour porpoise (Phocena 

phocena) 

Seawater from a sea pen 

and open sea 

Monitoring biodiversity qPCR Foote et al., 2012 

Crustaceans     

Water hog-louse (Asellus 

aquaticus) 

Rivers and lakes Detecting indicator species Standard PCR Mächler et al., 2014 

Northern River Crangonyctid 

(Crangonyx pseudogracilis) 

Rivers and lakes Detection of IAS Standard PCR Mächler et al., 2014 

Daphnia longispina Rivers (downstream of 

lake where species 

present) 

Investigating DNA dynamics in 

rivers 

Standard PCR Deiner & Altermatt, 

2014 

https://paperpile.com/c/XAsHvG/FolC
https://paperpile.com/c/XAsHvG/FolC
https://paperpile.com/c/XAsHvG/FolC
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/AiYB
https://paperpile.com/c/XAsHvG/AiYB
https://paperpile.com/c/XAsHvG/AiYB
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/DKHK
https://paperpile.com/c/XAsHvG/DKHK
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Chinese mitten crab, (Eriocheir 

sinensis)  

Ships ballast Detection of IAS Microfluidic chip Mahon et al., 2011 

River shrimp (Gammarus 

pulex) 

River Detecting indicator species Standard PCR Mächler et al., 2014 

Tadpole shrimp (Lepidurus 

apus) 

Temporary pools Monitoring biodiversity qPCR Thomsen et al., 

2012b 

Red swamp crayfish 

(Procambarus clarkii) 

Ponds Detection of IAS qPCR Tréguier et al., 2014 

Molluscs     

Ancylus fluviatilis Rivers and lakes Detecting indicator species Standard PCR Mächler et al., 2014 

Zebra mussel (Dreissena 

polymorpha) 

Lakes and rivers Detection of IAS Standard PCR Lance & Carr 2012 

Quagga mussel, (Dreissena 

rostriformis bugensis) 

Ships ballast; lakes and 

rivers 

Detection of IAS Microfluidicchip; 

standard PCR 

Mahon et al., 2011; 

Lance & Carr 2012 

https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/aRSX
https://paperpile.com/c/XAsHvG/aRSX
https://paperpile.com/c/XAsHvG/aRSX
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/TaMt
https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/TaMt
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Golden mussel, (Limnoperna 

fortuneii) 

Ships ballast Detection of IAS Microfluidicchip Mahon et al., 2011 

Unio tumidus Rivers (downstream of 

lake where species 

present) 

Investigating DNA dynamics in 

rivers 

Standard PCR Deiner & Altermatt, 

2014 

Echinoderms     

Northern Pacific seastar 

(Asterias amurensis) 

Mixed plankton or 

ballast 

Detection of IAS Standard PCR Deagle et al., 2003 

Insects     

Scarce olive riverfly (Baetis 

buceratus) 

Rivers Monitoring biodiversity: 

vulnerable 

Standard PCR Mächler et al., 2014 

White-faced darter 

(Leucorrhinia pectoralis) 

Ponds Monitoring biodiversity qPCR Thomsen et al., 

2012b 

Tinodes waeneri Rivers and lakes Detecting indicator species  Mächler et al., 2014 

https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/R5GJ
https://paperpile.com/c/XAsHvG/DKHK
https://paperpile.com/c/XAsHvG/DKHK
https://paperpile.com/c/XAsHvG/pESP
https://paperpile.com/c/XAsHvG/pESP
https://paperpile.com/c/XAsHvG/pESP
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/ETXv
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
https://paperpile.com/c/XAsHvG/BWo2
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Fungal Pathogens     

Crayfish plague (Aphanomyces 

astaci) 

Large lakes Pathogen detection qPCR Strand et al., 2014 

Batrachochytrium 

dendrobatidis (amphibian 

fungal pathogen) 

Pond water and 

sediments 

Pathogen detection qPCR Kirshtein et al., 

2007; Hyman & 

Collins 2012.  

 

1 Note H. letourneuxi is an IAS in southern Florida. 

https://paperpile.com/c/XAsHvG/wUS8
https://paperpile.com/c/XAsHvG/wUS8
https://paperpile.com/c/XAsHvG/wUS8
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