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SUMMARY

Multiple myeloma (MM) is the second most common haematological malignancy and results in destructive
bone lesions. The interaction between MM cells and the bone microenvironment plays an important role in
the development of the tumour cells and MM-induced bone disease and forms a ‘vicious cycle’ of tumour
development and bone destruction, intensified by suppression of osteoblast activity and promotion of osteoclast
activity. In this paper, a mathematical model is proposed to simulate how the interaction between MM cells and
the bone microenvironment facilitates the development of the tumour cells and the resultant bone destruction. It
includes both the roles of inhibited osteoblast activity and stimulated osteoclast activity. The model is able to
mimic the temporal variation of bone cell concentrations and resultant bone volume after the invasion and then
removal of the tumour cells and explains why MM-induced bone lesions rarely heal even after the complete
removal of MM cells. The behaviour of the model compares well with published experimental data. The model
serves as a first step to understand the development of MM-induced bone disease and could be applied further to
evaluate the current therapies against MM-induced bone disease and even suggests new potential therapeutic
targets. © 2014 The Authors. International Journal for Numerical Methods in Biomedical Engineering
published by John Wiley & Sons, Ltd

Received 16 May 2013; Revised 20 March 2014; Accepted 28 March 2014

KEY WORDS: multiple myeloma; MM-induced bone disease; bone microenvironment; mathematical model;
osteoblast and osteoclast activities

1. INTRODUCTION

Multiple myeloma (MM) is the second most frequent haematological malignancy, and MM-induced
bone disease is a major cause of morbidity for MM patients [1]. MM induces increased bone resorption
and suppressed bone formation leading to a negative bone balance and osteolytic lesions that rarely
heal [2, 3]. Histomorphometric studies reveal that the increased bone loss arises from enlarged bone
resorption surfaces and deeper resorption depths at individual remodelling sites [4, 5]. In parallel,
uncoupling between bone resorption and bone formation is also observed in MM patients [6].

The interaction between MM cells and the bone microenvironment (MM-bone interaction) plays
an important role in the development of MM-induced bone disease. It promotes tumour growth and
survival, as well as the consequent bone destruction [1]. Recently, many biochemical factors have been
implicated in the development of MM-induced bone disease, for example, cytokines with osteoclast
activating function, such as the receptor activator of nuclear factor kappa-B ligand (RANKL), macro-
phage colony-stimulating factor, interleukin-6 (IL-6), IL-11 and IL-15 [7], which are produced or
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stimulated by MM-bone interaction and further stimulate osteoclast activation and proliferation,
leading to increased bone resorption. In turn, growth factors released from bone resorption stimulate
the growth of myeloma cells [5], including transforming growth factor-beta (TGF-$), bone morphoge-
netic proteins, heparin-binding fibroblast growth factors and insulin-like growth factor I [8, 9]. Such
reciprocal interaction produces a vicious cycle between MM cells and the bone microenvironment,
stimulating both tumour development and bone destruction [1, 5].

Mathematical modelling has demonstrated great potential in aiding our understanding and analysis
of complex biological systems, and several mathematical models of bone remodelling have been pro-
posed in recent years to integrate our fragmented knowledge of the bone remodelling process [10-20].
However, very few mathematical models have been constructed to simulate and investigate the devel-
opment of MM-induced bone disease. As far as we are aware, currently, only two models have been
developed to analyse the role of MM-bone interaction in the development of MM disease. Ayati
et al. [21] proposed a model to simulate the dynamics of normal bone remodelling and MM disease.
However, this model does not include the specific molecular mechanisms involved in the development
of the MM-induced bone disease, and the model parameters lack corresponding biological meaning.
Wang et al. [22] constructed another model to mimic MM-bone interaction and identify the signalling
mechanisms that are believed to drive the progression of MM disease. This model includes IL-6 and
signalling pathways involved in MM and bone marrow stromal cell (BMSC) adhesion. However,
Wang et al. [22] do not consider the role of osteoblast inhibition and the antimyeloma effect of small
leucine-rich proteoglycans (SLRPs, expressed by mature osteoblasts) in the development of the MM
disease — but it is known that both are important in bone destruction and development of tumour cells
in MM patients [2, 7]. Stimulation of osteoblast differentiation is thought to be able to reduce tumour
burden and bone destruction in MM patients. Thus, drugs such as bortezomib, a boron-containing
molecule with the potential to enhance osteoblast proliferation and bone formation in MM patients,
have been proposed as a potential target for MM-induced bone disease [3, 23]. Similarly, interventions
targeting SLRPs are also suggested as potential therapies for MM disease [2]. Hence, inclusion of these
mechanisms to allow the investigation of such potential management pathways is clearly essential and
a key driver of the current work.

Osteoblast inhibition is caused primarily by the blockade of the differentiation of osteoblast precur-
sors into mature osteoblasts, with secreted factors produced by MM cells and MM-bone interaction
both resulting in the suppression of osteoblastic activity [3]. The suppressed osteoblast activity not only
increases the ratio of RANKL to osteoprotegerin (OPG), enhancing osteoclastogenesis and bone
resorption, but also stimulates antiapoptotic factors and growth factors for MM cells, which form a
positive feedback between osteoblast suppression and the growth of MM cells [1, 3]. Importantly,
several potential therapies against MM disease target the disease’s suppression of osteoblastic activity,
such as bortezomib-related therapy [3] and inhibition of TGF-£ [2]. In this paper, a mathematical
model of the interaction between the MM cells and the bone microenvironment is described. It was de-
veloped in parallel with the recently published model of Wang et al. [22], being similarly based on the
earlier work of Pivonka et al. [14], but unlike the model of Wang et al. [22], it also includes the under-
lying mechanisms of osteoblast inhibition and its role in the development of MM-induced bone dis-
ease. The model can simulate the development of MM and the induced bone destruction and
explains why MM-induced bone lesions rarely heal even after the complete removal of MM cells. It
is based on our current knowledge of the pathogenesis of MM, which inevitably will increase, but
the model can easily be refined and improved as more data become available.

2. MODEL DEVELOPMENT

2.1. Basic structure of the model

The bone microenvironment consists of many different components including multiple cell types
and matrix proteins. The contribution of each component of the bone microenvironment to the
progress and survival of tumour cells is still not completely understood [1, 3]. However, it is certain
that the suppression of osteoblast activity and the enhancement of osteoclast activity are both key
factors in the development of tumour cells and the bone destruction [2, 7].
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The basic structure of the model proposed here is shown in Figure 1 and demonstrates the vicious
cycle in MM disease, with the appearance of MM cells changing the bone microenvironment, resulting
in osteolysis, which in turn promotes the proliferation of further MM cells [5]. The model structure
consists of two parts: part A (in black and connected in black hollow connecting lines) is associated
with osteoclasts and the bone resorption aspects of the disease, whereas part B (in red and connected
in red solid connecting lines) deals with osteoblasts and bone formation activities. (Note that, for sim-
plicity, Figure 1 does not include the direct interactions between osteoblastic and osteoclastic lineages.
These mechanisms are well described in literature [e.g. [14]], but for convenience, they are summarised
in Figure Al in Appendix A).

Part A describes how MM cells increase bone resorption, which in turn stimulates the proliferation
of MM cells. Here, two positive feedback cycles exist. Firstly, IL-6 secreted by BMSC stimulates the
production of RANKL by osteoblast precursors [28], while MM cells suppress the production of OPG
by mature osteoblasts [7]. Consequently, the increased RANKL-OPG ratio promotes bone resorption
[7]. In turn, TGF-g released from bone matrix by the bone resorption stimulates the secretion of IL-6 by
BMSC [25, 26], where the IL-6 production can also be enhanced by BMSC-MM cell adhesion [20].
Secondly, IL-6 and BMSC-MM cell adhesion promotes the proliferation of MM cells, which in turn
further stimulates IL-6 production and BMSC-MM cell adhesion [24, 25, 27].

Part B describes the reciprocal relationship between the suppression of osteoblastic activity and
the stimulation of MM cell production. Both BMSC-MM cell adhesion and secreted factors
(produced or induced by MM cells) can block the differentiation of BMSCs into mature osteoblasts
and at the same time stimulate osteoblast apoptosis, which inhibits osteoblast activity and resultant
bone formation [3, 6, 29-31]. On the other hand, the blockade of differentiation into mature osteoblasts
can stimulate MM cell production, because immature osteoblasts support growth and survival of
myeloma cells, whereas mature osteoblasts enhance apoptosis of myeloma cells [2]. Thus, in the
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Figure 1. Proposed cellular interactions in multiple myeloma (MM) development. (1) Bone marrow stromal
cell (BMSC)-MM cells adhesion enhances the production of interleukin-6 (IL-6) by BMSCs [24]; (2)
transforming growth factor-beta (TGF-f) stimulates the production of IL-6 [25, 26]; (3) IL-6 stimulates
the proliferation of MM cells [25-27]; (4) immature osteoblasts support the growth and survival of MM
cells, whereas mature osteoblasts enhance the apoptosis of MM cells; (5) the blockade of differentiation into
mature osteoblasts contributes to the increase of the ratio of receptor activator of nuclear factor kappa-B
ligand/osteoprotegerin (RANKL/OPG) and thus promotes osteoclasts proliferation; (6) and TGF-§ poten-
tially inhibits later phases of osteoblast differentiation and maturation. For further information on the signif-
icance of the different colours and solid/hollow connecting lines, see the main text.
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underlying mechanism, IL-6 secreted by immature osteoblasts (BMSCs) promotes MM cell growth
and resistance to apoptosis [32], whereas matrix components such as SLRPs, including decorin, are
expressed mature osteoblasts and have an antimyeloma effect [33].

Parts A and B also have direct connections with each other (the interaction between parts A and B
are marked in solid black connecting lines in Figure 1), that is, the blockade of differentiation into ma-
ture osteoblasts contributes to an increase in the RANKL/OPG ratio, because RANKL is produced
primarily by immature osteoblasts, whereas OPG is produced primarily by mature osteoblasts
(marked as black solid arrow no. 5 in Figure 1) [14, 34]. In addition, TGF-g released by bone resorp-
tion inhibits osteoblast activity, because TGF-§ potentially inhibits later phases of osteoblast differen-
tiation and maturation (marked as black solid arrow no. 6 in Figure 1) [2].

2.2. Model equations

The model equations are mathematical representations of the basic mechanisms and relationships
shown in Figure 1. Differentiation into active osteoclasts and osteoblasts from their progenitors
involves several intermediate stages. For example, as many as seven stages have been identified for
osteoblastic differentiation from BMSCs to osteocytes and bone lining cells [35], whereas the osteo-
clast lineage develops from haematopoietic precursor cells through monocyte differentiation and fu-
sion to osteoclast formation [36, 37]. Here and following Pivonka et al. [14], four stages of
osteoblastic differentiation (uncommitted progenitors (BMSCs); osteoblasts precursors; active osteo-
blasts; and osteocytes, bone lining cells or apoptotic osteoblasts) and three stages of osteoclastic dif-
ferentiation (osteoclast precursors, active osteoclasts and apoptotic osteoclasts) are considered in our
model, with three stages of MM cells (MM cell precursors, active MM cells and apoptotic MM cells).

Thus, overall, the proposed model contains four state variables: osteoblast precursors (OB,), active
osteoblasts (OB,), active osteoclasts (OC,) and active MM cells (MM). ‘Hill functions’ are used to rep-
resent the cellular interaction via the single ligand to receptor binding and are denoted by 7 functions
[14]. Thus, Equations (1) and (2) denote the stimulating and inhibiting functions of the ligand-receptor
binding respectively, where ‘L’ represents the concentration of the ligand, ‘B’ represents maximal ex-
pression level of the promoter, ‘n’ is the coefficient that regulates the steepness of the function ‘z” and
‘k;” and ‘k,’ represent dissociation constants. To ensure consistency with Pivonka et al. [14], both ‘B’
and ‘n’ are both assumed to equal 1.

L)
f(x) = Pl = klﬁ#(-i()ll)n (1)
f(x) = ﬂ”rep = L )

1+ (é)

Using the same nomenclature as Pivonka et al. [14] for convenience, the equations describing the
dynamics of cell concentrations are then proposed as follows:

dOB,

00 Do 5l OB, — Do, 15 545800, ®

O Do 5, 38 OBy ~ o 758 0B, @

d?itcu = Doc, Tyepoc, *0Cp — Tacroc, Aoc, OCa ®)

B Duny el e M. (1 - ) = Awnr ooy MM ©

where OB,,, OB,, OC, and MM represent concentrations of osteoblast precursors, active osteoblasts,

dOB,
dt

active osteoclasts and active MM cells, respectively, and is the variation of OB, with time, for
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example. Similarly, OB, and OC, are concentrations of uncommitted osteoblastic progenitors and
osteoclastic precursors and are set as constants in the model, because their populations are relatively
large. Dog,» Dog,» Doc, and Dy, represent the differentiation rates of uncommitted osteoblast progen-
itors, osteoblast precursors, osteoclast precursors and MM cell precursors, respectively, and Agpp,,
Aopc, and Ay, are apoptosis rates of active osteoblasts, active osteoclasts and active MM cells,
respectively. MM, is the maximum concentration of MM cells. The production of MM cells is
regulated by several secreted factors, such as IL-6, insulin-like growth factor 1, vascular endothelial
growth factor and macrophage inflammatory protein-1 [1, 5, 7, 22]. Dy, represents the proliferation
of MM cells regulated by IL-6 and BMSC-MM cell adhesion. Note that under normal/healthy condi-

tions without MM cells, the terms 7"C}%; and 7,/o5! still exist in Equations (3) and (4), because

vascular cell adhesion molecule 1 (VCAM-1, expressed on BMSCs) is always present [7, 25]. Pivonka
et al. [14] ignored the effect of VCAM-1 in their formulation, and hence, the behaviour of the two
models differs under normal conditions.

The RANK-RANKL-OPG pathway plays an important role in the regulation of osteoclast
activity, and RANKL can stimulate osteoclastogenesis by binding to RANK on the osteoclast progen-
itors, while RANKL-mediated osteoclastogenesis is inhibited by OPG, a soluble decoy receptor for
RANKL [38]. Growth factors, such as TGF-f, released during bone resorption can stimulate osteo-

blast recruitment and the migration and proliferation of osteoblast precursors [39—41], while inhibiting

production of mature osteoblasts. As in the model of Pivonka ez al. [14], nZCG,%ﬁBu, n,Te(]%}Bp, ﬂggfpoﬂca and

nff,{\(’)KCLp represent the effect of TGF-f and RANKL on osteoclastic and osteoblastic lineages. Thus,

nZL.G,Z/’)BN represents the stimulation of uncommitted osteoblastic progenitors into osteoblastic
precursors, aneiFOﬁBp represents the inhibition of the differentiation of osteoblastic precursors into active

osteoblasts, ”ngoﬂcu represents the promotion of the apoptosis of active osteoclasts by TGF-f and

nngOI{CLp reflects the fact that RANKL produced by osteoblastic precursors stimulates the differentia-

tion of osteoclastic precursors into active osteoclasts. 7R4¥KL  also includes OPG secreted by active
) P

osteoblasts inhibiting the differentiation osteoclastic precursors, by binding to RANK expressed on
osteoclastic precursors. According to the proposed forms of the Hill functions in Equations (1) and
(2), the 7 functions involving TGF-§ and RANKL are defined as follows:

TGFp  _ TGFp

) 7
”act,OBu KD],TGFﬁ + TGFB ( )
n_TGF/?' — ! (8)
rep. OBy — 17 (TGFB/Kpa76rp)
TGFp
el ’
ﬂact,OCa KDS,TGFﬁ + TGFﬂ ( )
RANKL
KL o

act.0C, K1 pankr + RANKL
where

e TGF-f and RANKL represent the concentrations of TGF- and RANKL, respectively, and their
definitions are included in Tables I and II, and
e the definitions and values of KD],TGF/)’s KD2,TGF/)” KD3,TGF/)’ and KD,RANKL are included in Table III.

In Equation (6), nfﬁf‘ e Tepresents IL-6 regulation of the proliferation of MM cells. MM-bone

interaction is carried out through the binding of CAMs, such as very late antigen-4 (0441 integrin
present on the surface of MM cells) to VCAM-1, which is expressed on BMSC [7], and n;’gf%} is
used to represent the effect of MM-BMSC on the proliferation of MM cells. The underlying mecha-
nism of MM-BMSC adhesion regulating the osteoblast lineage is complicated. It inhibits osteoblast
activity by reducing the activity and expression of runt-related transcription factor 2, a critical
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Table I. Definitions of the concentrations of RANKL, OPG, TGF-f, PTH, IL-6,
SLRPs, VLA-4 and VCAM-1.

RANKL Prankr.d+Prankr OBy

B
(1 +Ka.0rG - OPG + Ka rang 'RANK)‘ RRANKL AN +DRANKL
"act,RANKL " "act,RANKL

PTH
PorG.a+Popc - OBa- T rep.OPG

OPG

borG - OBa =11
(WM+DOPG +Dopcum-MM
TGFp @Kres-OCa + Starp
DrGrp
PTH Preru tPFI'H.zI(t)
Dpri
TGF VLA4
16 Prsa+Bis - OBu Tl ins* Tacrits
OB A TOF L VIAT
Pies - OBu 76 Taciire D
o T Pis
SLRPs Bsiwps - OBa+ Psireea(t)
fsLres OBa | T
( SiPmax T DSLRPs
VLA4 Pvinsa + Pyiaa - MM
(14K veamn - VCAM 1, )- (244 4 Dy )
VCAMI TCAM.

1+ Kavcami - VLA4

These definitions are derived on the basis of similar principles to those described in Pivonka et al. [14].
RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; TGF-5,
transforming growth factor-beta; PTH, parathyroid hormone; IL-6, interleukin-6; SLRP, small leu-
cine-rich proteoglycan; VLA-4, very late antigen-4; VCAM-1, vascular cell adhesion molecule 1.

Table II. Definitions of the 7 functions used in the concentration equations in Table I.

PTH stimulates the production of RANKL Tl RaNKL = Koo

PTH inhibits the production of OPG nZZIOPG = m

IL-6 stimulates the production of RANKL Tt RANKL = TETR o
VAL-4 stimulates the production of TL-6 Toitile = VAT
TGF — p stimulates the production of IL-6 niﬁiﬁs = TGF/3+F£MM
Shf\{/[l])\z [;re(ifdsuced by mature osteoblasts suppresses the proliferation nfeL[f]@SM BT /Kln yo—

RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; TGF-f, transforming growth factor-beta;
PTH, parathyroid hormone; IL-6, interleukin-6; SLRP, small leucine-rich proteoglycan; VLA-4, very late antigen-4; MM,
multiple myeloma.

transcription factor for osteoblast differentiation [3]. For simplicity, ”‘;S;\.Ag}?,, represents BMSC-MM

cell adhesion that blocks the differentiation of mature osteoblasts from their progenitors, whereas

T o represents BMSC-MM cell adhesion stimulating the apoptosis of osteoblasts, and 7,17, rep-

resents SLRPs produced by mature osteoblasts suppressing the proliferation of MM cells [3]. The def-
initions of these z functions are as follows:

o IL6 an

T =
1 MM
ah IL6 + Kp 116 MM act
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MODELLING THE PATHOLOGY OF MULTIPLE MYELOMA-INDUCED BONE DISEASE 1093

vomn _ VCAM1 -
at MM VCAM + K p yeam mvt.act
veam1 _ 1 (13)
rep, OB, 1+ VCAM1 /KD,chMl,OB,,,rep
a1 _ VCAM1 "
at0Bs — VCAMN + Kp ycam1 08, act
1
SLRPs __ (15)

T =
rep MM 4 (SLRP s/ KD,SLRPs,MM,rep)

where IL6, VCAM1 and SLRPs represent the concentrations of 1L6, VCAM1 and SLRPs, respectively,
and their definitions are included in Tables I and II. The definitions and values of the other parameters
in Equations (11)—(15) are included in Table III.

Note that in Equations (3), (4) and (6), the osteoblast lineage and MM cells are regulated by two
ligands simultaneously, which are incorporated here through the multiplication of their respective
Hill functions. Other, for example, additive, approaches are equally possible, and the sensitivity
of the results to these different formulations should ideally be compared in the future. It should also
be noted that secreted factors produced by MM cells may also suppress osteoblast differentiation by
inhibiting Wnt signalling [2, 3] but are not currently considered in the model because the underlying
mechanisms are not completely clear [54, 55]. Thus, here, we assume that the effects of these and
other secreted factors are minor compared with that of BMSC-MM cell adhesion. This is a limita-
tion of the model.

The model for the bone resorption and formation activities is proposed as follows:

dBV
7 = —KrgS'OCa + Kform'OBa (16)

where BV represents the normalised bone volume; K., and Kj,,,, are the relative bone formation and
resorption rates, respectively (their values are also included in Table III), and ‘%V represents the vari-
ation of bone volume with time.

3. SIMULATION RESULTS AND DISCUSSION

In the absence of MM cells, the model (defined by the aforementioned equations) is able to replicate
the behaviour of ‘healthy’ bone in that osteoblast and osteoclast interactions are governed by the re-
lationships shown in Figure Al in Appendix A, and the simulation predicts the correct steady-state
cell populations and bone volume. This is discussed and demonstrated in detail in [56]; the same
information is therefore not repeated here. The bone microenvironment is always found to remain
in a dynamic steady state, as do other biological systems under physiological conditions without
external stimuli, and is able to return to a steady state after perturbations are removed [13, 53]. The
model is used here to simulate how cell concentrations fluctuate from the steady state because of the
invasion of MM cells but then return to the steady state after their removal. The variation in bone vol-
ume with time is also calculated to demonstrate the MM-induced bone destruction, and then, the reason
for the bone destruction is examined by considering the variation in the ratio of OB, to OC,,. Also, a
sensitivity study is reported to investigate how variations in the key model parameters (Dog,, Dos, ,

Doc,, Aos,> Aoc,> Aums> Borcs Prankrs Prras Pie and INDTGFI;) affect MM concentration and bone
volume. Such studies allow the contributions of the different factors to be investigated and in the future
might consider combinations of parameters and thereby allow potential targets for new therapies to be
identified. The initial values of cell concentrations used in the model are listed in Table IV.

In the model, any unknown parameters (i.e. those parameters where experimental data are
unavailable or those that have no direct biological meaning) may be calculated via a genetic algo-
rithm (GA) as summarised in Table III. Thus, because a parameter may be directly or indirectly
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Table IV. The initial values of cell concentrations in the model.

Variables Values Unit
OB, 3.27e-6 [[57, 58]] pM
0B, 7.67e-4 [[19]] pM
OB, 6.39¢e-4 [[59, 60]] pM
ocC, 1.28e-3 [[61]] pM
ocC, 1.07e-4 [[59, 60]] pM
MM 3.26e-1 [[51, 62]] pM

MM cell concentration is at day 201; other cell concentrations are at day 1.

related with one or more of the initial values of cells concentrations listed in Table IV (e.g. Do, and
Dop, involve the experimental data of the initial concentration of OB, in Table 1V), these initial
values are set as targets for the parameter fitting. The calculation of the model parameters is then
achieved by trying different values in a domain and then picking those that provide the best fit with
corresponding experimental data. On the basis of these values, the remaining unknown model
parameters are then calculated according to relevant experimental data through GA. Thus, the
GA approach effectively considers all possible combinations of the unknown parameters and pre-
dicts the optimal values, taking many hours on a powerful PC and potentially considering billions
of combinations in its search for the optimum set. Although the accuracy of its predictions of the
unknown parameters obviously cannot be checked, it does avoid the inevitable trial and error
and/or guesswork involved in otherwise ‘estimating’ the values. The simulation was carried using
the MATLAB computational software package (v7.7.0, Mathworks, Natick, USA).

3.1. Simulation of multiple myeloma-induced bone disease

Figure 2 confirms that the bone microenvironment remains in a steady state until the invasion of the
MM cells, with cell concentrations constant at their initial values as given in Table IV. The steady
state is disturbed due to the appearance of MM cells after the 200th day, causing a fluctuation of cell
concentrations, as illustrated in Figure 2. Thus, OB, concentration is seen to increase nearly three-
fold due to the invasion of MM cells, which arises because the MM cells inhibit the differentiation
of OB, into OB, [3, 29-31]. The increase in concentrations of OB,, OC, and MM cells after the
introduction of MM cells agrees with the experimental observations of Alexandrakis et al. [63],

6 T T T

‘ —— Concentration of OBp
5 = Concentration of OBa
=+= Concentration of OCa

Concentration of MM

Normalized Cell Concentratons [fold]
w

0 200 400 600 800 1000 1200
Time [day]

Figure 2. Model simulations of the normalised variation in the concentrations of osteoblast precursors, active
osteoblasts, active osteoclasts and active tumour cells with respect to their respective initial values (multiple
myeloma (MM) cells are injected at day 201 and removed at day 1001).
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Diamond et al. [64] and Terpos et al. [65]. The MM cell concentration increases to 578% of its orig-
inal value, which is similar to the 600% increase reported in the experimental work of Diamond
et al. [64]. Figure 3 confirms that the invasion of MM cells leads to bone destruction, which also agrees
with the observation of a decline in bone volume in MM patients by Diamond et al. [64] and can be
explained by the variation in the ratio of OB, to OC, as shown in Figure 4. In addition, after the inva-
sion of MM cells, OPG concentration decreases to 75% of that in the healthy condition (Figure 5),
which again compares well with experimental data ranging from 59% to 82% [65-68]. Similarly,
the increase in the IL-6 concentration to 1077% (shown in Figure 6) is consistent with the 979%
increase reported by Alexandrakis et al. [46]. Also, RANKL concentration increased to 924%
(also shown in Figure 6), which again is within the observed range of experimental data: 226% [69]
to 1567% [70].

It can be seen that some cell concentrations and the ratio of OB, to OC, undergo a short period of
oscillation and then return to their initial steady-state values after the removal of tumour cells

Normalized bone volume [fold]
o
©
o

0.94 1
0.93 ; \ 1
0.92 \

0 200 400 600 800 1000 1200
Time [day]

0.91

Figure 3. Model simulations of the variation in the normalised bone volume with respect to its initial value
(multiple myeloma cells are injected at day 201 and removed at day 1001).

18-

16

14

12

0.8

Normalized ratio of OBa to OCa [fold]

0.6

0'40 200 400 600 800 1000 1200

Time [day]

Figure 4. Model simulations of the variation in the normalised ratio of active osteoblasts to active osteoclasts
with respect to the initial ratio (multiple myeloma cells are injected at day 201 and removed at day 1001).
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1.8
1.6
14

1.2
1 V—
0.8 b \

0 200 400 600 800 1000 1200
Time [day]

Normalized concentration of OPG [fold]

Figure 5. Model simulations of the variation in normalised osteoprotegerin (OPG) concentration with respect
to its initial value (multiple myeloma cells are injected at day 201 and removed at day 1001).
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Figure 6. Model simulations of the variation in normalised receptor activator of nuclear factor kappa-B
ligand (RANKL) and interleukin-6 (IL-6) concentrations with respect to their initial values (multiple
myeloma cells are injected at day 201 and removed at day 1001).

(Figures 2, 4 and 5), which agrees with the observation that the steady state of biological systems is
dynamic, and after the removal of external perturbations, they are capable of restoring themselves to
the steady state again [13, 71]. The MM-induced bone destruction also stops after removal of the
tumour cells; however, the bone volume remains at a lower level compared with its initial volume
as shown in Figure 3. This is because the ratio of OB, to OC,, returns to its initial steady-state value
after removal of the MM cells (Figure 4), so that a near zero bone balance is achieved at the end of
each subsequent remodelling cycle. This is consistent with the observation that MM-induced bone
lesions rarely heal even after the removal of MM cells [3, 7].

3.2. Sensitivity to the model parameters

Further information on the underlying biochemical mechanisms are elucidated by the sensitivity study
of 11 of the key parameters of the model (namely, Dog,, Dos,, Doc,» Aos,» Aoc,» Amm» PorGs PRANKL

PrrH, P and 5TGFﬁ), thereby suggesting possible strategies for management of MM. The parameters
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are varied individually between 50% and 150% of their initial base values (as defined in Table III), and
the effects on MM concentrations and bone volume are examined, normalised with respect to their
(maximal) values at day 1000 (in Figures 2 and 3). Thus, Figures 7 and 8 demonstrate how the varia-
tion in each parameter influences the maximum MM concentration at day 1000, and Figures 9 and 10
show how bone volume is affected.

Figures 7 and 8 show that many of these 11 parameters have a significant influence on MM
concentration. As some parameter values increase (between 50% and 150% of their base values),
MM concentration increases, whereas the opposite effect is observed with the other parameters.
For example, as Do, increases from 50% to 150% of its base value, MM concentration varies by
81-121%. Conversely, for the same variation in Apc,, a significant decrease in MM concentration
(from 141% to 87% of its base value) is observed. Figures 9 and 10 show that this variation in param-

eter values affects bone volume. For example, a change in Ap, and l~)mpﬁ (from 50% to 150% of base

15
—O0— D-OBu
—o— D-OBp
1‘4A\\ —o— D-OCp
--v--- A-OBa
13b. ~~#-- A-OCa
AL - A-MM

Normalized MM concentration [fold]

05 06 07 08 09 1 11 12 13 14 15
Normalized Parameter Variation Ratio

Figure 7. The effects of independently varying each model parameter (Dog,, Dos,, Doc, Aos,, Aoc, and
Apny) on multiple myeloma (MM) concentration at day 1000. Parameter variance and MM concentration are

normalised to the values of the base case.

15
S —0— Beta-OPG 5
—0o— Beta-RANKL
—o— Beta-PTH o
13 "X ---- Beta-IL6
~ ------ D-TGFBeta ‘ e

Normalized MM concentration [fold]

05 06 07 08 09 1 11 12 13 14 15
Normalized Parameter Variation Ratio

Figure 8. The effects of independently varying each model parameter (fopg, fraNKL> SpTH, P11-6 aNd lN)TGF/;)
on multiple myeloma (MM) concentration at day 1000. Parameter variance and MM concentration are
normalised to the values of the base case.
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11
—O— D-OBu

—o— D-OBp
1.08 —O— D-OCp
---»-- A-OBa
---4-- A-OCa
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Normalized Bone Volume [fold]

e ~

&
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Normalized Parameter Variation Ratio

Figure 9. The effects of independently varying each model parameter (Dog,, Dos,, Doc,» Aos,» Aoc, and
Apnr) on bone volume at day 1000. Parameter variance and bone volume are normalised to the values of the
base case.
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_Figure 10. The effects of independently varying each model parameter (Sopg, frankL, SpTH, P and
Drrp) on bone volume at day 1000. Parameter variance and bone volume are normalised to the values of
the base case.

value) produces a variation in bone volume (between 106% to 97% and 104% to 98%, respectively),
whereas the same variation in Ay, has a negligible effect. The variations in Doc, and Apc,
(from 50% to 150% of its base value) cause a decrease (between 101% and 99%) and an increase
(between 96.5% and 100.5%) in bone volume, respectively.

4. CONCLUSION

In this paper, a model is proposed that simulates the interaction between MM cells and the bone
microenvironment, and the contribution of that interaction to the progression of the MM cells
and the resultant bone destruction. The development of MM-induced bone disease involves many
biochemical factors and mechanisms, and most papers published to date have only considered part
of those biochemical factors and mechanisms. The model in this paper integrates these partial
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findings and tries to analyse the progression of MM-induced bone disease comprehensively. It goes
further than the recently published model of Wang et al. [22] by considering the key role of
osteoblast inhibition and the antimyeloma effect of SLRPs in the development of the MM disease.
Osteoblasts play an essential role in the development of MM bone disease, because their inhibition not
only enhances osteoclastogenesis and bone resorption but also stimulates antiapoptotic factors and
growth factors for MM cells. Thus, our model provides a more complete picture on how the equilib-
rium of the bone microenvironment is disturbed by the invasion of MM cells and then restored after
their removal.

It should be noted that the effects of soluble factors responsible for inhibiting osteoblast
activity are not considered in the current model. The model also only describes the temporal
characteristics of the bone microenvironment, with no reference to spatial variations; it is also
a population-based model rather than patient specific. As our knowledge of the pathogenesis
of MM increases and we gain a better understanding of the key model parameters, it should
be possible to further refine the model and integrate new findings and possibly move towards
a patient-specific analysis.

In the meantime, the model demonstrates how bone cell concentrations fluctuate after the
invasion of MM cells and how these variations result in bone destruction. The simulation results
agree with published experimental data and explain why the lesions resulting from MM-induced
bone destruction rarely heal even after the disappearance of MM cells. A sensitivity study is
conducted to show how the variations in model parameters influence MM concentration and bone
volume and thereby suggests potential treatment options for MM-induced bone disease. For exam-
ple, the sensitivity study indicates that D¢, and A, are tightly related to MM concentration and
bone volume. Thus, an intervention targeting these two factors could be a potential treatment for
reducing the tumour burden. Indeed, bisphosphonate treatment for management of MM-induced
bone disease does just that, by inhibiting the differentiation of osteoclast precursors into mature
osteoclasts and promoting osteoclast apoptosis [72, 73].

It is hoped that this paper will serve a first step to a more detailed analysis and understanding of
the development of MM-induced bone disease. In the future, the model will be used to test and
evaluate the efficacy of current therapeutic interventions for MM-induced bone disease, such as
bisphosphonate and bortezomib, and inhibition of TGF-f and even propose new, more effective
therapies for MM-induced bone diseases.

APPENDIX A
Uncommitted Apoptotic
0By Progenitors @ ' OCap Osteoclasts
Dou[~; 7 I TIAQCa

Active
OCa Osteoclasts

TN o S
UgilleVY

OPG RANKL RANK PTH PTHIR
Receplor

Responding
OBP Osteoblasts

Active
2 QOsteoblasts

Apoptotic
aP Osteoblasts

Figure Al. Schematic representation of the basic structure of interaction between osteoclastic and osteoblastic
lineages. Reproduced from Pivonka et al. [14].
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