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Abstract: A series of half-titanocene chloride complexes bearing 

5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-olates, CpTiLCl2, has been synthesized 

in acceptable yields by the stoichiometric reaction of CpTiCl3 with potassium 

5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-olates. All half-titanocene complexes 

were fully characterized by elemental analysis and NMR spectroscopy, and the 

molecular structures of complexes C1 and C2 (what are C1 and C2? ) were confirmed 

by single-crystal X-ray diffraction. When activated with methylaluminoxane (MAO) 

or modified methylaluminoxane (MMAO), all titanium complexes exhibited good 

activities (up to 4.8 × 105 g•mol-1(Ti)•h-1) towards ethylene polymerization. The 

obtained polyethylene exhibited ultrahigh molecular weight (up to 11.82 × 105 g•mol-1) 

with narrow polydispersity. Furthermore, effective co-polymerization of ethylene with 

1-hexene or 1-octene was achieved with several percentages of co-monomer 

incorporation in the resultant polyethylenes.  

 

1.  Introduction  

Still today, the most important thermoplastics are polyethylene-based materials,1 
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which have been mass produced using the now well-known catalytic systems of 

Zigler-Natta,2 Phillips3 and more increasingly metallocenes4 and half-metallocenes.5 

By retaining the high activities and single-site features of some of the more 

sophisticated metallocene catalysts,4a,5a,5b constrained geometry catalysts (CGC) or 

so-called half-metallocenes have been commercialized, exhibiting high efficiency and 

good co-polymerization performance,5c,5d however, the critical drawback with 

metallocence catalysts is the tedious synthetic procedure required which leads to the 

high cost, as well as other technical problems. To overcome the synthetic problem, 

non-bridged half-metallocene catalysts have been extensively explored,6 and more 

recently, titanium or zirconium complexes bearing multi-dentate ligands related to the 

FI and PI models have been developed and performed with high activities, but with 

short lifetimes due to high sensitivity.7 Other non-bridged half-metallocene complexes 

based on newly developed multi-dentate anionic ligands have been reported,8 and 

importantly the new complex pre-catalysts showed high catalytic activities and good 

control for copolymerizations.8d,8e The ligands can be classified as mono-anionic 

ancillary ligands with mono-dentate,9 bi-dentate10 and di-anionic ligands of tri-dentate 

coordination;11 these half-metallocene pre-catalysts have shown varied catalytic 

activities and controllable properties of the obtained polyethylene by varying the 

ancillary ligands used.  

Recently the influence of fine tuning ligands has been specially considered for 

titanium complex pre-catalysts. To design the series of anionic tridentate ligands, 

different substances have been used such as 2-acylquinolin-8-ol,12,13 2-acetyl- 

quinolin-8-ol,13,14 and 2-propionylquinolin-8-ol.12,15 The  corresponding  

2-iminoquinolin-8-olate trichlorotitanium15a and half-titanocene 

dichlorides13,14,15b were successfully prepared and investigated for their catalytic 

behavior in ethylene (co-)polymerizations, which revealed a significant catalytic 

influence was exerted by the substituent on the ligands, and this was also reflected in 

the properties of polyethylene obtained. These ligand variations mostly tinkered with 

the substituents close to the coordinating atoms,12-15 however, there were a few reports 

investigating the influence of substituents crossing-over cyclic group to active 
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species.16 On variation of the different alkyl-substituents of the 

2-(1-alkyl-2-benzimidazolyl)-6-(1- (arylimino)ethyl)pyridylmetal [Fe(II) or Co (II)] 

dichlorides,16 it was noted that the use of less bulky substituents resulted in higher 

catalytic activities in ethylene oligomerization – not sure this is relevant to this paper!. 

Subsequently, 5-t-butyl-2-acylquinolin-8-ol was prepared for comparison with the 

analog 2-acylquinolin-8-ol,12,13 and a series of 

5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-ol derivatives were prepared by the 

reaction of 5-t-butyl-2-acylquinolin-8-ol with different anilines. Following the 

literature procedure,13 the title half-titanocene complexes were synthesized in 

reasonable isolated yields. Upon activation with either MAO or MMAO, these 

titanium complexes showed good catalytic activities towards ethylene polymerization, 

and moreover for the co-polymerization of ethylene with 1-hexene or 1-octene. The 

synthesis and characterization of the 5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-ol 

derivatives and their titanium complexes are reported along with their catalytic 

performances for ethylene homo- (co-)polymerization. 

   

2.  Results and discussion  

2.1 Synthesis and characterization of half-titanocene complexes (C1–C6)  

The 5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-ol derivatives (L1–L5) were 

prepared in decent yields by the condensation reaction of 5-t-butyl-8- 

hydroxyquinoline-2-carbaldehyde with various anilines (scheme 1). All the organic 

compounds were characterized by the FT-IR, 1H and 13C NMR spectroscopy, and by 

elemental analysis. The organic compounds were deprotonated by reaction with a 

stoichiometric amount of KH to form the potassium 

5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-olates, which were then reacted with 

(η5-C5H5)titanium trichloride (CpTiCl3) to afford the desired half-titanocene 

dichloride complexes. These titanium complexes were fully characterized and the 

molecular structures of the complexes C1 and C2 were confirmed by single crystal 

X-ray diffraction studies.  
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             Scheme 1   Synthesis of complexes C1 – C5  

 

2.2 Molecular structures  

Single crystals of complexes C1 and C2 suitable for X-ray diffraction analyses 

were individually obtained from their toluene solutions on layering with n-hexane at 

room temperature. The molecular structures revealed a pseudo octahedral geometry 

around the titanium center comprising the tridentate ligand, two chlorine atoms and 

one η5-Cp ring. The molecular structures are illustrated in Fig. 1 and Fig. 2 and the 

selected bond lengths and angles are tabulated in Table 1.  

 
Fig. 1 ORTEP drawing of the molecular structure of C1 (ellipsoids enclose 30 % 

electronic density; H atoms were omitted for clarity).   
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Fig. 2 ORTEP drawing of the molecular structure of C2 (ellipsoids enclose 30 % 

electronic density; H atoms were omitted for clarity).  

 

Table 1 Selected bond lengths (Å) and angles (°) for C1 and C2 

                                    C1 C2 

Bond lengths (Å) 

Ti1–O1 1.967(3) 1.935(3) 

Ti1–N1 2.147(3) 2.134(3) 

Ti1–N2 2.376(3) 2.364(3) 

Ti1–Cl1 2.4285(14) 2.418(12) 

Ti1–Cl2 2.4168(13) 2.465(12) 

Ti1–Cp 2.076 2.068 

Bond angles (°) 

O1–Ti1–N1 76.06(12) 76.83(3) 

O1–Ti1–N2 145.70(11) 146.85(3) 

N1–Ti1–N2 69.70(11) 70.02(3) 

O1–Ti1–Cl1 87.96(9) 90.61 (8) 

N1–Ti1–Cl1 76.37(9) 76.95(9) 

N2–Ti1–Cl1 82.06(8) 82.58(8) 
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O1–Ti1–Cl2 90.82(9) 87.64(8) 

N1–Ti1–Cl2 76.30(9) 74.57(9) 

N2–Ti1–Cl2 83.39(9) 83.25(8) 

Cl1–Ti1–Cl2 152.10(5) 151.10(4) 

Cp–Ti1–N1 150.74 150.31 

Cp–Ti1–N2 107.21 107.88 

Cp–Ti1–O1 104.67 102.91 

Cp–Ti1–Cl1 109.4 102.91 

Cp–Ti1–Cl2 102.50 103.49 

 

In the structure of complex C1 (Fig. 1), all the carbon atoms in Cp ring group are 

coplanar and the distance between the centroid of the Cp ring and titanium atom is 

2.076 Å, however, the Ti-CCp bond lengths are slightly deviated within the range 

2.377(5) Å to 2.391(6) Å (ΔTi-C = 0.014 Å). The two Ti-N bonds (Ti1-N1 = 2.147(3) 

Å, Ti1-N2 = 2.376(3) Å) are consistent with observations for the analogous imino 

quinolin-8-olate titanium complexes,13,14 and the Ti1-O1 bond length is 1.967(3) Å. 

The bond lengths of Ti1-Cl1 (2.4285(14) Å) and Ti-Cl2 (2.4168(13) Å) are slightly 

different, whilst the angle Cl1-Ti1-Cl2 is 152.10(5)°. Two chelating planes 

θ Ti1-O1-C1-C6-N1 and θ Ti1-N1-C13-C14-N2 form a dihedral angle at 2.26 °, 

illustrating near co-planarity. 

The molecular structure of complex C2 (Fig. 2) is very similar to that of 

complex C1, however, the two chelating planes θ Ti1-O1-C1-C6-N1 and 

θ Ti1-N1-C13-C14-N2 are even closer to being coplanar with the dihedral angle of 

0.49°. The dihedral angle of the aryl-imine and the quinoline ring is 81.04° for C2, 

which is slightly larger than that in complex C1 (77.44°).  

2.3 Ethylene polymerization  

The complex C3 was used to select a suitable alkylaluminium reagent, and the 

co-catalysts MAO and MMAO were found to be most active for this catalytic system. 

Further investigations were thus conducted separately with either MMAO or MAO.  
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2.3.1 Polymerization and co-polymerization results by MMAO systems  

The catalytic system of C3/MMAO was explored to optimize the reaction parameters 

on catalytic activity, ie molar ratios of Al/Ti, reaction time and temperature (Table 2) 

were all varied.  

 

Table 2 Ethylene polymerization results by the C3/MMAO systemsa 

Run Al/Ti T/°C t(min) Polym(g) Actb Mw
c,d Mw/Mn

d Tm
e(°C) 

1 2000 40 30 0.80 3.20 4.94 2.46 135.0 

2 2500 40 30 0.82 3.28 5.94 2.61 134.3 

3 3000 40 30 0.92 3.68 7.17 2.77 134.1 

4 3500 40 30 0.84 3.36 6.03 3.45 134.6 

5 4000 40 30 0.67 2.68 6.08 3.05 134.9 

6 3000 20 30 0.43 1.72 8.34 2.66 133.4 

7 3000 30 30 0.60 2.40 8.05 2.96 133.9 

8 3000 50 30 0.74 2.96 5.68 2.91 136.2 

9 3000 60 30 0.59 2.36 4.35 2.49 135.5 

10 3000 40 5 0.22 5.28 5.43 1.43 134.4 

11 3000 40 15 0.57 4.56 5.68 1.97 133.9 
a Conditions: 5 umol C3, toluene (total volume 100 mL), 10 atm. b Activity: 105 
g•mol-1(Ti)•h-1, c 105 g•mol-1. d Determined by GPC. e Determined by DSC.  
 

On varying the Al/Ti molar ratio from 2000 to 4000 (runs 1-5, Table 2) at 40 °C, 

the best catalytic activity was observed at 3.68 × 105 g•mol-1(Ti)•h-1 for the Al/Ti ratio 

3000; the higher the activity of the system, the higher was the molecular weight of the 

obtained polyethylene. In general, the polydispersity of the obtained polyethylene was 

remained relatively narrow; the tendency for wider distributions (from 2.46 to 3.45, 

Figure 3) was observed on increasing the molar ratio of Al/Ti.  
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Fig. 3 GPC profiles of PEs obtained from Run 1-5 in Table 2. 

 
The reaction temperature significantly affects the ethylene polymerization 

performance using Al/Ti 3000 from 20 °C to 60 °C (runs 3, and 6-9 in Table 2, Figure 

4), revealing the optimum temperature as 40 °C; the higher reaction temperature, the 

lower the molecular weight of the polyethylene (8.34 × 105 g•mol-1 to 4.35 × 105 

g•mol-1). These are considered to result from faster chain termination occurring at 

higher temperature.  

 
Fig. 4 GPC profiles of PEs obtained from Run 3 and 6-8 in Table 2. 

 
Concerning the lifetime of the active species, the catalytic polymerization was 

conducted over different reaction times, namely 5 min, 10 min and 30 min (Run 3, 10 

and 11, Table 2). Obviously, more polyethylene of higher molecular weight was 

observed on prolonging the reaction time, however, the activities gradually decreased. 
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These observations were consistent to previously reported results.17 

Employing the optimum conditions of Al/Ti ratio 3000 at 40°, all complexes 

C1-C5 were investigated for ethylene polymerization (Table 3), which indicated the 

best performance was for complex C2 with an activity of 4.8 × 105 g•mol-1(Ti)•h-1. In 

comparison with the catalytic results obtained for the titanium 

2-iminoquinolin-8-olates,13,14,15 especially the half-titanocene 2-iminoquinolin-8- 

olates,13,14,15b for the current complex pre-catalysts, the presence of the additional 

t-butyl group did not have a positive influence. On the base of a MANCC simulation 

study,18 in principle, the better catalytic activities were observed for the 

early-transition metal complex pre-catalysts with electron-donation substituents18a and 

for the late-transition metal complex pre-catalysts with the electron-withdrawing 

substituents;18b-d however, the turnover point of net charge was observed to affect 

their catalytic activities. As the η5-C5H5 is a strong electron-donating substituent, 

there is no requirement for a substituent with electron-donation features. Better 

solubility of complexes was possibly achieved through the additional t-butyl 

substituent, though the combined effect did not enhance the catalytic activities of their 

complexes because the net charge effect is considered to be dominant.  

 

Table 3 Ethylene polymerization by C1-C5/MMAO systemsa 

Run Cat. Polym(g) Actb Mwc,d Mw/Mnd Tme(°C) 

1 C1 0.79 3.16 6.61 2.70 134.5 

2 C2 1.20 4.80 6.70 2.75 135.1 

3 C3 0.92 3.68 7.17 2.77 134.1 

4 C4 0.70 2.80 6.47 3.02 134.5 

5 C5 0.90 3.60 8.13 2.42 134.6 
a Condition: 5 umol Ti, Al/Ti =3000:1, toluene (total volume 100 mL), 30 min, 40 °C, 
10 atm. b Activity: 105 g•mol-1(Ti)•h-1. c 105 g•mol-1. d Determined by 
GPC. e Determined by DSC.  
 

Concerning the correlations between the nature of the various ligands and the 

catalytic activities of their half-titanocence complexes, the catalytic activities were 
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observed in the order C2 > C3 > C5 > C1 > C4, indicating the combined effects of 

the electronic and steric influences of the alkyl-substituents with better results for the 

ethyl-substituted derivatives (C2 and C5). In cases having a para-methyl substituent, 

the catalytic activities of their complex pre-catalysts were negatively affected as the 

results showed in the order C1 > C4, and C2 > C5; these was consistent to the 

observations for their half-titanocence complex analogs.14,15b In general, these 

complex pre-catalysts produced polyethylene of similar molecular weight, molecular 

weight distribution (PDI) and also melting points Tm; the high Tm values indicated the 

linearity of obtained polyethylene.  

The co-polymerization of ethylene with either 1-hexene or 1-octene. The 

half-titanocene pre-catalysts are capable of co-polymerization,4,5 and here, the scope 

of the co-polymerization of ethylene with 1-hexene or 1-octene was conducted with 

the complexes C1 to C5 (Table 4). Similar to observations in the literature10d,11b and 

their analogue pre-catalysts,13,14 the co-monomer had a negative effect on the catalytic 

activity on increasing the concentration of 1-hexene (Runs 1 – 3 in Table 4). Effective 

co-polymerization was reflected in the lower melting points of the resultant 

polyethylene. The activity trend was similar to the ethylene polymerization, ie C2 > 

C3 > C1 > C5 > C4.  

Table 4 Co-polymerization by C1–C5/ MMAO a 

Run Complexes Monomer Polymer(g) Actb Mwc,d Mw/Mnd Tme(°C) 

1 C3f 2 ml 0.33 1.30 7.17 2.74 123.6 

2 C3f 4 ml 0.22 0.88 6.03 2.57 120.1 

3 C3f 6 ml 0.18 0.72 8.10 2.36 121.4 

4 C1f 2 ml 0.27 1.08 6.57 2.68 128.0 

5 C2f 2 ml 0.40 1.60 6.74 2.74 124.5 

6 C4f 2 ml 0.14 0.55 5.89 2.55 125.5 

7 C5f 2 ml 0.24 0.96 6.42 2.69 125.0 

8 C1g 2 ml 0.24 0.95 5.56 2.45 126.7 

9 C2 g 2 ml 0.41 1.64 6.89 2.50 126.4 
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10 C3 g 2 ml 0.32 1.29 7.96 2.40 126.5 

11 C4 g 2 ml 0.18 0.73 8.31 1.45 127.5 

12 C5 g 2 ml 0.22 0.87 8.66 1.86 126.9 
a Condition: 5 umol Ti, Al/Ti =1500:1, toluene (total volume 100 mL), 30 min, 20 °C, 
10 atm. b Activity: 105 g•mol-1(Ti)•h-1, c 105 g•mol-1. d Determined by 
GPC. e Determined by DSC.  f 1-hexene. g 1-octene. 
 

To confirm the incorporation of 1-hexene or 1-octene in the resultant 

polymers, 13C NMR measurements of representative samples were carried out; the 

selected samples are the polymers obtained from the co-polymerization of ethylene 

with 1-hexene (Run 2, Table 4) and 1-octene (Run 10, Table 4) by the C3/MMAO 

system. Interpreted using the calculation method reported in the literature,19 1-hexene 

was incorporated in 3.2 mol% (Figure 5), meanwhile the 1-octene was incorporated in 

about 1.8 mol% (Fig. 6). Similar results were observed for the half-titanocene 

2-iminoquinolin-8-olates.13  
 

 
Fig. 5 13C NMR spectrum of ethylene/1-hexene co-polymer by the C3/MMAO 
system (Run 2, Table 4). 
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Fig. 6 13C NMR spectrum of ethylene/1-octene co-polymer by the C3/MMAO system 
(Run 10, Table 4). 
 
2.3.2  Polymerization and co-polymerization results by MAO systems 

As well as the catalytic systems with MMAO, the catalytic system with C3/MAO 

was also explored for the optimizing conditions for ethylene polymerization, and 

results are summarized in Table 5. Varying the Al/Ti ratio from 500 to 2500 (Runs 

1-5 in Table 5) at 20 °C, the best activity was observed at 3.76 × 105 

g•mol-1(Ti)•h-1 with Al/Ti 1500. On increasing the reaction temperature (Runs 3, and 

6-8 in Table 5), the catalytic activities decreased, and the polyethylene possessed 

lower molecular weights. In general, the same tendency of catalytic performances was 

illustrated as the above catalytic system when activated by MMAO, but the catalytic 

system using MAO produced polyethylene of higher molecular weight.  

  

Table 5 Ethylene polymerization results by C3/MAO systemsa 

Run Al/Ti T/°C t(min) Polym(g) Actb Mwc,d Mw/Mnd Tme(°C) 

1 500 20 30 Trace - - - - 

2 1000 20 30 0.59 2.36 8.65 2.29 132.4 

3 1500 20 30 0.94 3.76 10.83 2.27 132.1 

4 2000 20 30 0.84 3.36 11.82 2.01 131.8 

5 2500 20 30 0.65 2.60 10.63 2.18 129.9 
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6 1500 30 30 0.76 3.06 8.43 2.49 131.2 

7 1500 40 30 0.50 2.00 8.36 2.42 132. 4 

8 1500 50 30 0.38 1.52 6.94 2.97 132.3 
a Conditions: 5 umol complex C3, toluene (total volume 100 mL), 10 atm. b Activity: 
105 g•mol-1(Ti)•h-1, c 105 g•mol-1. d Determined by GPC. e Determined by DSC. 
 

Employing the optimized polymerization conditions, results for all complexes 

C1-C5 are tabulated in Table 6. On comparison with the systems activated by the 

co-catalyst MMAO, the same order of catalytic activities was observed here with 

MAO, ie C2 > C3 > C1 > C5 > C4. The narrow values of PDI from 2.05 to 2.53 

illustrated a controlled active species had formed.  

 

Table 6 Ethylene polymerization results by C1-C5/MAO systemsa 

Run Cat. Polym(g) Actb Mwc,d Mw/Mnd Tme(°C) 

1 C1 0.59 2.36 8.49 2.53 133.4 

2 C2 1.05 4.20 10.78 2.05 133.2 

3 C3 0.94 3.76 10.83 2.27 132.1 

4 C4 0.38 1.52 8.20 2.48 133.6 

5 C5 0.58 2.32 10.07 2.14 133.2 
a Conditions: 5 umol complex, Al/Ti =1500:1, toluene (total volume 100 mL), 30 
min,20 °C, 10 atm. b Activity: 105 g•mol-1(Ti)•h-1, c 105 g•mol-1. d Determined by 
GPC. e Determined by DSC. 
 
Co-polymerization of ethylene with 1-hexene or 1-octene. Subsequently, 

co-polymerization using MAO was conducted with all half-titanocene complexes 

(Table 7). In comparison with data in Table 5, the data (numbers) were slightly lower 

in Table 7, but the same trends for catalytic activities and molecular weights were 

observed.  

 

Table 7 Co-polymerization by C1–C5/MAO a 

Run Complexes Monomer Polymer(g) Actb Mwc,d Mw/Mnd Tme(°C) 
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1 C3f 2 ml 0.175 0.700 8.00 3.26 123.1 

2 C3f 4 ml 0.103 0.412 6.06 6.86 121.5 

3 C3f 6 ml 0.075 0.300 4.48 6.49 120.6 

4 C1f 2 ml 0.145 0.580 7.34 6.10 122.6 

5 C2f 2 ml 0.217 0.868 7.28 2.92 122.2 

6 C4f 2 ml 0.114 0.456 5.34 2.73 123.6 

7 C5f 2 ml 0.168 0.672 6.03 1.85 122.5 

8 C1g 2 ml 0.150 0.600 6.38 2.57 124.2 

9 C2 g 2 ml 0.214 0.856 3.77 2.20 122.9 

10 C3 g 2 ml 0.195 0.780 7.43 2.75 123.5 

11 C4 g 2 ml 0.124 0.496 8.73 2.59 123.1 

12 C5 g 2 ml 0.174 0.696 8.08 2.63 123.2 
a Conditions: 5 umol complex, Al/Ti =1500:1, toluene (total volume 100 mL), 30 min, 
20 °C, 10 atm. b Activity: 105 g•mol-1(Ti)•h-1, c 105 g•mol-1. d Determined by 
GPC. e Determined by DSC.  f 1-hexene was added. g 1-octene was added.  
 

3. Conclusion  

A series of half-titanocene 5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-olate 

chlorides C1-C5 was synthesized and fully characterized. Upon activation with either 

MMAO or MAO, all half-titanocene complexes exhibited good catalytic activities 

toward ethylene polymerization as well as co-polymerization with 1-hexene or 

1-octene. In comparison with the analogs half-titanocene 

2-(1-(arylimino)methyl)quinolin-8-olate chlorides,13 in the current system of 

complexes, the result of bearing an additional t-butyl substituent was detrimental to 

their catalytic activities. Within the current system, the complexes bearing an 

additional methyl-substituent caused lower activity such that C1 > C4 and C2 > C5. 

All catalytic systems produced polyethylene with relatively narrow polydispersity, 

indicating a controlled active species had formed. Moreover, the high Tm values for all 

the resultant polyethylene confirmed their highly linear nature; the slightly lower Tm 

values for all the co-polymers indicated effective co-polymerization had been 
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achieved.  

 

4.  Experimental 

General procedures 

All manipulations of air and/or moisture-sensitive compounds were performed 

under nitrogen atmosphere in a glove-box or using standard Schlenk techniques. 

Methylaluminoxane (MAO, 1.46 M in toluene) was purchased from Albemarle. 

Modified methylaluminoxane (MMAO, 1.93 M in heptane) was purchased from Akzo 

Nobel Corp. Potassium hydride (KH), purchased from Beijing Regent Chemicals, was 

washed with hexane before use to remove contained mineral oil. Toluene, n-hexane 

were refluxed over sodium and benzophenone, distilled, and then stored over 

activated molecular sieves (4 Å) for 24 h under nitrogen atmosphere. 1-Hexene and 

1-octene were refluxed over calcium hydride, distilled, and then stored over activated 

molecular sieves (4 Å) for 24 h in a glove-box prior to use. CDCl3 was dried over 

activated 4 Å molecular sieves. IR spectra were recorded on a Perkin Elmer FT-IR 

2000 spectrometer in the range of 4000–400 cm-1. Elemental analysis was performed 

on a Flash EA 1112 microanalyzer. 1H NMR and 13C NMR spectra were recorded on 

a Bruker DMX 400 MHz instrument at ambient temperature using TMS as an internal 

standard. Assignments are based on COSY, HSQC and HMBC experiments. DSC 

trace and melting points of polyethylene were obtained from the second scanning run 

on a Perkin-Elmer DSC-7 at a heating rate of 10 °C•min-1. 13C NMR spectra of the 

polymers were recorded on a Bruker DMX-300 MHz instrument at 130 °C in 

deuterated 1,2-dichlorobenzene with TMS as an internal standard. Molecular weights 

(Mw) and molecular weight distribution of polyethylenes were determined by a 

PL-GPC220 at 150 °C, with 1,2,4-trichlorobenzene as the solvent. 

 

Synthesis of 5-t-butyl-2-(1-(2,6-dimethylphenylimino)methyl)quinolin-8-ol (L1) 

A solution of 2,6-dimethylbenzenamine (0.96 g, 7.9 mmol) and 

5-t-butyl-8-hydroxyquinoline-2-carbaldehyde (1.5 g, 6.6 mmol) and a catalytic 
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amount of p-toluenesulfonic acid in toluene (100 mL) was refluxed for 12 h, then the 

solvent was evaporated at reduced pressure. The product, 

5-t-butyl-2-((2,6-dimethylphenylimino)methyl)quinolin-8-ol (L1), was purified by 

alumina column chromatography (Vpetroleum ether : Vethyl acetate = 20 : 1), and was a 

yellow powder, which was collected in 28.6 % (0.62 g) yield. 1H NMR (CDCl3, 400 

MHz, ppm): δ 8.91 (d , J = 8.8 Hz, 1H), 8.47 (s, 1H), 8.42 (d, J = 8.8 Hz, 1H), 8.36 (s, 

1H), 7.53 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 7.12 (d, J = 7.6 Hz, 2H), 7.01 

(t, J = 7.6Hz, 1H), 2.20 (s, 6H), 1.60 (s, 9H). 13C NMR (CDCl3, 100 MHz, ppm): δ 

163.2, 151.0, 150.7, 150.4, 139.0, 137.0, 136.1, 128.2, 127.6, 126.8, 126.0, 124.3, 

117.1, 109.3, 35.6, 32.0, 18.4. IR (cm-1): 3393 (m), 2956 (m), 2872 (w), 1635 (s), 

1568 (w), 1508 (m), 1470 (s), 1396 (w), 1359 (m), 1321 (m), 1242 (s), 1189 (m), 

1072 (m), 975 (m), 924 (m), 836 (m), 771 (s), 724 (m). Mp: 109 °C. Anal. Calcd. For 

C22H24N2O (332.44): C, 79.48; H, 7.28; N, 8.43. Found: C, 79.06; H, 7.29; N, 8.39 

%. 

 

5-t-butyl-2-(1-(2,6-diethylphenylimino)methyl)quinolin-8-ol (L2)  

Using the same procedure as for L1, but 2,6-dimethylbenzenamine was used instead 

of 2,6-diethylbenzenamine. The 

5-t-butyl-2-(1-(2,6-diethyl-phenylimino)methyl)quinolin-8-ol was obtained as a 

yellow solid in 42.0 % (0.99 g) yield. 1H NMR (CDCl3, 400 MHz, ppm): δ 8.91 (d , J 

= 9.2 Hz, 1H), 8.46 (s, 1H), 8.40 (d, J = 9.2 Hz, 1H), 8.34 (s, 1H), 7.52 (d, J = 8.4 Hz, 

1H), 7.15-7.06 (m , 4H), 2.57-2.52 (m, 4H), 1.60 (s, 9H), 1.16 (t, J = 7.6 Hz, 6H). 13C 

NMR (CDCl3, 100 MHz, ppm): δ 162.8, 151.0, 150.6, 149.7, 139.1, 137.0, 136.1, 

132.8, 127.6, 126.5, 126.1, 124.5, 117.2, 109.3, 35.6, 32.0, 24.8, 14.7. IR (cm-1): 3380 

(m), 2965 (m), 2872 (w), 1633 (s), 1568 (w), 1510 (m), 1453 (s), 1397 (w), 1361 (m), 

1324 (m), 1244 (s), 1184 (s), 1098 (w), 974 (m), 926 (w), 854 (m), 827 (s), 778 (m), 

744 (w). Mp: 139 °C. Anal. Calcd. For C24H28N2O (360.49): C, 79.96; H, 7.83; N, 

7.77. Found: C, 79.90; H, 7.92; N, 7.89 %. 

 

5-t-butyl-2-(1-(2,6-diisopropylphenylimino)methyl)quinolin-8-ol (L3) 
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Similarly, the 5-t-butyl-2-(1-(2,6-diisopropyl-phenylimino)-methyl)quinolin-8-ol was 

obtained as a yellow solid in 34.3 % (0.87 g) yield. 1H NMR (CDCl3, 400 MHz, ppm): 

δ 8.92 (d , J = 9.2 Hz, 1H), 8.44 (s, 1H), 8.40 (d, J = 8.8 Hz, 1H), 8.39 (s, 1H), 7.52 (d, 

J = 8.0 Hz, 1H), 7.22-7.12 (m, 4H), 3.03-2.97 (m, 2H), 1.60 (s, 9H), 1.20 (d ,J = 6.8 

Hz, 12H). 13C NMR (CDCl3, 100 MHz, ppm): δ 162.8, 151.0, 150.6, 148.5, 139.1, 

137.2, 137.0, 136.2, 127.6, 126.1, 124.7, 123.3, 117.3, 117.1, 109.3, 35.6, 32.1, 28.1, 

23.5. IR (cm-1): 3378 (m), 2961 (m), 2871 (w), 1633 (s), 1569 (w), 1508 (m), 1469 (s), 

1434 (w), 1360 (m), 1320 (m), 1244 (s), 1181 (m), 1112 (m), 1070 (w), 975 (m), 850 

(s), 825 (s), 772 (s), 743 (m), 721 (m). Mp: 178 °C. Anal. Calcd. For C26H32N2O 

(388.55): C, 80.37; H, 8.30; N, 7.21. Found: C, 80.43; H, 8.17; N, 7.48 %. 

 

Synthesis of 5-t-butyl-2-(1-(2,4,6-trimethylphenylimino)methyl)-quinolin-8-ol 

(L4) 

Similarly, 5-t-butyl-2-(1-(2,4,6-trimethylphenylimino)methyl)quinolin-8-ol was 

obtained as a yellow solid in 16.3 % (0.37 g) yield. 1H NMR (CDCl3, 400 MHz, ppm): 

δ 8.90 (d , J = 8.8 Hz, 1H), 8.47 (s, 1H), 8.42 (d, J = 8.8 Hz, 1H), 8.38 (s, 1H), 7.52 (d, 

J = 8.4 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 6.94 (s, 2H), 2.32 (s, 3H), 2.19 (s, 6H), 1.61 

(s, 9H). 13C NMR (CDCl3, 100 MHz, ppm): δ 163.3, 151.0, 150.8, 147.9, 139.1, 

137.0, 136.1, 133.7, 128.9, 127.6, 126.9, 126.0, 117.2, 109.2, 35.6, 32.0, 20.9, 18.4. 

IR (cm-1): 3403 (m), 2952 (m), 1633 (m), 1569 (m), 1508 (m), 1471 (s), 1400 (w), 

1359 (m), 1323 (m), 1271(m), 1241 (s), 1182 (w), 1142 (w), 1077 (m), 1033 (m), 972 

(m), 837 (s), 745 (w), 720 (s), 655 (m). Mp: 158 °C. Anal. Calcd. For C23H26N2O 

(346.47): C, 79.73; H, 7.56; N, 8.09. Found: C, 79.49; H, 7.57; N, 7.97 %. 

 

5-t-butyl-2-(1-(2,6-diethyl-4-methylphenylimino)methyl)quinolin-8-ol (L5) 

Similarly, 5-t-butyl-2-(1-(2,6-diethyl-4-methylphenylimino)methyl)quinolin-8-ol was 

obtained as a yellow solid in 19.1 % (0.48 g) yield. 1H NMR (CDCl3, 400 MHz, ppm): 

δ 8.90 (d , J = 9.2 Hz, 1H), 8.46 (s, 1H), 8.39 (d, J = 9.2 Hz, 1H), 8.36 (s, 1H), 7.52 (d, 

J = 8.0 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 6.95 (s, 2H), 2.52 (m, 4H), 2.35 (s, 3H), 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 

1.60 (s, 9H), 1.16 (t, J = 7.6 Hz, 6H). 13C NMR (CDCl3, 100 MHz, ppm): δ 162.7, 

150.9, 150.7, 147.2, 139.0, 136.9, 136.0, 133.8, 132.8, 127.5, 127.1, 125.9, 117.1, 

109.2, 35.5, 32.0, 24.7, 21.0, 14.8. IR (cm-1): 3387 (m), 2965 (m), 2874 (w), 1632 (s), 

1566 (m), 1510 (m), 1459 (s), 1399 (w), 1361 (m), 1322 (m), 1275(w), 1245 (s), 1201 

(w), 1140 (w), 1073 (m), 974 (m), 884 (m), 850 (s), 825 (s), 756 (w), 720 (m). Mp: 

161 °C. Anal. Calcd. For C25H30N2O (374.52): C, 80.17; H, 8.07; N, 7.48. Found: C, 

79.71; H, 8.12; N, 7.29 %. 

 

Synthesis of Titanium(IV) Complexes (C1–C5) 

(η5-Cyclopentadienyl)dichlorotitanium 

5-t-butyl-2-(1-(2,6-dimethyl-phenylimino)methyl)quinolin-8-olate (C1) 

To a 30 ml toluene solution of 0.332 g (1.00 mmol) 

5-t-butyl-2-((2,6-dimethylphenylimino)methyl)quinolin-8-ol, 0.040g (1.00 mmol) KH 

was added at -78 °C. The mixture was stirred for additional 4 h, and then 0.220 g 

(1.00 mmol) CpTiCl3 was added at -78 °C. The resulting suspension was warmed to 

room temperature and kept stirring for additional 12 h. and the solvent was removed 

under vacuum. The residue was extracted in 20 mL of toluene to remove KCl salt. 

Removal of volatiles under vacuum left a brown powder. Recrystallization of the 

product from toluene/hexane afforded C1 in 89.4 % (0.46 g) yield. 1H NMR (400 

MHz, CDCl3, ppm:  δ 9.03 (d, J = 8.8 Hz, 1H), 8.44 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H), 

7.78 (d, J = 8.4 Hz, 1H), 7.21 (s, 3H), 6.90 (d, J = 8.4 Hz, 1H), 6.79 (s, 5H), 2.46 (s, 

6H), 1.59 (s, 9H). 13C NMR (100 MHz, CDCl3, ppm):  δ  167.1, 166.0, 151.8, 140.6, 

139.9, 137.3, 137.1, 130.2, 130.0, 128.8, 127.3, 124.6, 120.4, 110.7, 35.7, 31.8, 20.3.  

 

(η5-Cyclopentadienyl)dichlorotitanium 

5-t-butyl-2-(1-(2,6-diethyl-phenylimino)methyl)quinolin-8-olate (C2) 

The synthesis of C2 was carried out by the same procedure as that of C1. C2 was 

prepared by using L2 instead of L1 and brown crystals were obtained in 74.6 % 

(0.41g) yield. 1H NMR 400 MHz, CDCl3, ppm):  δ  9.03 (d, J = 8.8 Hz, 1H), 8.43 (s, 
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1H), 7.84 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.33-7.28 (m, 3H), 6.90 (d, J = 

8.4 Hz, 1H), 6.78 (s, 5H), 3.08-3.03 (m, 2H), 2.84-2.80 (m, 2H), 1.59 (s, 9H), 1.15 (t, 

J = 7.2 Hz, 6H). 13C NMR (100 MHz, CDCl3, ppm):  δ  166.8, 166.0, 150.7, 140.7, 

139.8, 137.3, 137.1, 136.0, 130.1, 128.8, 127.8, 127.3, 124.6, 120.4, 110.7, 35.7, 31.8, 

25.0, 15.8.  

 

(η5-Cyclopentadienyl)dichlorotitanium 

5-t-butyl-2-(1-(2,6-diisopropyl-phenylimino)methyl)quinolin-8-olate (C3) 

The synthesis of C3 was carried out by the same procedure as that of C1. C3 was 

prepared by using L3 instead of L1 and brown crystals were obtained in 86.1 % 

(0.49g) yield. 1H NMR (400 MHz, CDCl3, ppm):  δ 9.02 (d, J = 8.8 Hz, 1H), 8.37 (s, 

1H), 7.83 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.38-7.32 (m, 3H), 7.01 (d, J = 

8.4 Hz, 1H), 6.80 (s, 5H), 3.72-3.66 (m, 2H), 1.59 (s, 9H), 1.41 (d, J = 6.4 Hz, 6H), 

1.01 (d, J = 6.8 Hz, 6H). 13C NMR (100 MHz, CDCl3, ppm):  δ 166.3, 166.0, 149.5, 

140.8, 139.9, 137.3, 137.0, 130.1, 128.8, 128.1, 124.6, 123.3, 120.5, 119.1, 110.7, 

35.7, 31.9, 27.6, 26.0, 23.2.  

 

(η5-Cyclopentadienyl)dichlorotitanium 

5-t-butyl-2-(1-(2,4,6-trimethyl-phenylimino)methyl)quinolin-8-olate (C4) 

The synthesis of C4 was carried out by the same procedure as that of C1. C4 was 

prepared by using L4 instead of L1 and brown crystals were obtained in 90.9 % 

(0.48g) yield. 1H NMR (400 MHz, CDCl3, ppm):  δ  9.02 (d, J = 8.8 Hz, 1H), 8.42 (s, 

1H), 7.83 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.01 (s, 2H), 6.89 (d, J = 8.4 

Hz, 1H), 6.80 (s, 5H), 2.42 (s, 6H), 2.36 (s, 3H), 1.58 (s, 9H). 13C NMR (100 MHz, 

CDCl3, ppm):  δ  167.2, 166.0, 149.7, 140.6, 140.0, 137.2, 137.1, 136.8, 130.1,1 29.7, 

129.6, 128.8, 124.6, 120.3, 110.7, 35.7, 31.8, 20.7, 20.2.  

 

(η5-Cyclopentadienyl)dichlorotitanium 

5-t-butyl-2-(1-(2,6-diethyl-4-methyl-pheny-limino)-methyl)quinolin-8-olate (C5) 

The synthesis of C5 was carried out by the same procedure as that of C1. C5 was 
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prepared by using L5 instead of L1 and brown crystals were obtained in 66.7 % 

(0.37g) yield. 1H NMR (400 MHz, CDCl3, ppm):  δ  9.02 (d, J = 8.8 Hz, 1H), 8.40 (s, 

1H), 7.83 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.06 (s, 3H), 6.90 (d, J = 8.4 

Hz, 1H), 6.79 (s, 5H) , 3.06-3.00 (m, 2H), 2.77-2.72 (m, 2H), 2.40 (s, 3H), 1.60 (s, 

9H), 1.13 (t, J = 7.6 Hz, 6H). 13C NMR (100 MHz, CDCl3, ppm):  δ  167.0, 166.0, 

148.6, 140.7, 139.8, 137.3, 137.0, 135.8, 130.1, 128.8, 127.9, 127.6, 124.7, 120.3, 

110.7, 35.7, 31.8, 24.9, 21.0, 15.9.  

 

Table 8 Crystallographic data and refinement details for complexes C1 and C2 

C1                      C2 

Empirical formula C27H36Cl2N2OTi C29H32Cl2N2OTi 

Formula weight 523.38 543.37 

Crystal color black black 

Temperature (K) 173(2) 173(2) 

Wavelength (Å) 0.71073 0.71073 

Crystal system Monoclinic Monoclinic 

Space group P 21/C P2(1)/n 

a (Å) 14.671(3) 14.544(3) 

b (Å) 13.072(3) 12.517(3) 

C (Å) 14.980(7) 14.676(3) 

α (°) 90 90 

β (°) 119.7 96.54(3) 

γ (°) 90 90 

Volume (Å3) 2495.5(14) 2654.4(9) 

Z 4 4 

D calcd (mg m-3) 1.393 1.360 

µ (mm-1) 0.580 0.549 

F (000) 1104 1136 

Crystal size (mm) 0.30 × 0.28 × 0.18 0.25 × 0.24 × 0.19 
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θ range (°) 2.21 - 27.48 1.87 - 25.00 

Limiting indices -19 ≤ h ≤ 18, 

-16 ≤ k ≤ 16, 

-19 ≤ l ≤ 19 

-17 ≤ h ≤ 17, 

-14 ≤ k ≤ 14, 

-17 ≤ l ≤ 17 

No. of rflns collected 16180 15674 

No. of unique rflns 5684 4644 

Rint 0.0875 0.0460 

Completeness to θ (%) 99.3 (θ = 27.48) 99.5 (θ = 25.00) 

Goodness-of-fit on F2 1.020 1.262 

Final R indices [I > 2σ(I)] R1 = 0.0827, 

wR2 = 0.1621 

R1 = 0.0563, 

wR2 = 0.1794 

R indices (all data) R1 = 0.0944, 

wR2 = 0.1685 

R1 = 0.0734, 

wR2 = 0.2271 

 

X-Ray structure determinations 

Crystals of C1 and C2 suitable for single-crystal X-ray analysis were obtained by 

laying n-hexane on the toluene solutions. Single-crystal X-ray diffraction for C1 and 

C2 were performed on a Rigaku RAXIS Rapid IP diffractometer with 

graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 173(2) K. Cell 

parameters were obtained by global refinement of the positions of all collected 

reflections. Intensities were corrected for Lorentz and polarization effects and 

empirical absorption. The structures were solved by direct methods and refined by 

full-matrix least-squares on F2. All non-hydrogen atoms were refined anisotropically. 

Structure solution and refinement were performed by using the SHELXL-97 

package.20 Crystal data collection and refinement details are given in Table 8. 

 

Procedures for ethylene polymerization and co-polymerization 

A 500-mL autoclave stainless steel reactor equipped with a mechanical stirrer and a 
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temperature controller was heated under vacuum at 80 °C. It was allowed to cool to 

the desired reaction temperature under an ethylene atmosphere and then charged with 

toluene (with co-monomer), the desired amount of co-catalyst (MAO or MMAO) and 

a toluene solution of the pre-catalyst (the total volume was 100 mL). Next, the 

autoclave was immediately pressurized to 10 atm of ethylene pressure and it should 

be kept constant during the reaction time by feeding the reactor with ethylene. After a 

period of desired reaction time, the polymerization reaction was quenched by addition 

of a solution of ethanol containing HCl. The precipitated polymer was washed with 

ethanol several times and dried in vacuum.  
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