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Abstract The performance of a number of rhodamine-triazine derivatives（probe R1~R4) which 

utilize rhodamine as the fluorophore with cyanuric chloride as the molecular platform have been 

evaluated. Spectroscopic analysis revealed that differing structural substitution patterns of the 

probe resulted in different sensitivity and selectivity for specific metal ions. The probes R1 and 

R2 were fluorescent/colorimetric probes for Cu2+, whilst R3 and R4 were probes for Al3+, Cr3+ 

and Fe3+. The probe R2 exhibited superior recognition for Cu2+ in neutral aqueous medium, and 

the optical switching behavior of R2 for Cu2+ and S2- could be used to construct a molecular logic 

gate. In addition, fluorescence imaging of probe R2 for Cu2+ in living cells was demonstrated.  
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1. Introduction

Fluorescent and colorimetric probes of environmental and biologically relevant ions have been 

actively investigated in recent years [1-4]. Heavy metals and transition metal ions can be toxic at 

high concentrations and can disrupt normal cell function, and thus have a big impact on the 

environment as well as on human health [5-7]. In particular, copper plays a significant role in 

living systems and has an extremely ecotoxicological impact on human health as a catalytic 

cofactor in a variety of metalloenzymes [8, 9] and can hamper the self-purification capability of 

the sea and/or rivers and can destroy biological reprocessing systems [10]. Moreover, excessive 

amounts of copper ions in cellular homeostasis were reported to be connected with serious 
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neurodegenerative diseases [11-13]. Due to the Janus-faced properties of copper in organisms, 

facile techniques for monitoring the Cu2+ ion in environmental samples and the ability to visualize 

cellular distribution in physiological processes are extremely useful. Examples of probes for Cu2+ 

have been reported for biological and environmental uses [14-17], but only a few probes with 

applications in neutral aqueous media have been reported [18, 19]. In addition, fluorescence 

bio-imaging technology by virtue of its high sensitivity, high-speed spatial analysis and minimal 

cell damage is of interest [20, 21]. It is necessary to development probes for analyzing Cu2+ in 

varying types of sample matrix and over a variety of concentration ranges. Rhodamine-based 

probes are ideal for detection and imaging [22, 23], and studying such probes with a view to 

enhancing the performance has always been the goal of researchers, and a number of different 

research strategies are ongoing [24-28]. In our previous research, a series of rhodamine fluorescent 

probes based on tripodal ligands [29], calixarenes [30] and Schiff bases [31] have been 

synthesized, and good detection performances were exhibited. There are still challenges and 

opportunities remaining for developing rhodamine-base probes including systems with structural 

novelty, molecular diversity, and practical applications in biological systems. Taking advantage of 

rhodamine as the fluorophore and the excellent reactivity properties of cyanuric chloride [32, 33], 

a series of rhodamine-triazine derivatives (R1~R4, Scheme 1) have been synthesized by 

substitution of the active chlorine of cyanuric chloride via a step-by-step reaction with rhodamine 

hydrazide or rhodamine ethylenediamine [34]. Herein, the performance of these 

rhodamine-triazine derivatives as probes has been studied. Specifically, probe R2 was found to be 

a Cu2+-selective probe in neutral aqueous media, and was successfully employed in the 

fluorescence imaging of living cells. Furthermore, the optical switching behavior of R2 for Cu2+ 

and S2- was investigated; molecular logic gates using fluorescence or color changes of R2-Cu2+ as 

outputs and S2- as inputs were designed. 

Scheme 1. The structures of the probes (R1~ R4) 

2. Experimental methods

2.1. Apparatus and reagents 

Fluorescence spectroscopy measurements were performed on a Cary Eclipse fluorescence 
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spectrophotometer (Varian) equipped with a xenon discharge lamp using a 1 cm quartz cell. UV-vis 

spectra were recorded on a UV-1800 spectrophotometer (shimadzu). IR spectra were obtained using 

a Vertex 70 FT-IR spectrometer (Bruker). 1H NMR spectra were measured with Nova-400 NMR 

spectrometers (Varian) using TMS as an internal standard. The cell imaging test was carried out with 

a Nikon eclipse Ti-U inverted fluorescence microscopy. All of the above measurements were 

operated at room temperature (298K).  

The solutions of the metal ions were prepared from their nitrate salts (Aldrich and Alfa Aesar 

Chemical Co., Ltd.). All of the chemicals are of analytical grade and were used without further 

purification. Doubly-distilled water was used in the experiments. 

Stock solutions (1.00×10-3 M) of the probes were prepared in a 10 mL volumetric flask with 6.05 mg 

probe R1 or (7.43 mg, R2, 6.34 mg R3, 7.71 mg R4) dissolved in CH3CN, respectively, then 

diluting to the mark with CH3CN-H2O (v/v, 1/1, for R1 and R3, 3/7, for R2 and R4, 20 mM 

Tris-HCl, pH 7.0) 

A Cu2+ stock solution (2.00×10-3 M) was prepared in a 100 mL volumetric flask by dissolving 

48.4 mg Cu(NO3)2·3H2O in 20 mL water, and then diluted to the mark with water. The 1H NMR 

experiment was conducted using copper perchlorate hexa-hydrate Cu(ClO4)2·6H2O dissolved in 

CD3CN. Solutions of other metal ions were likewise prepared at 2.00×10-3 M in water.  

Tris-HCl buffer stock solution of differing pH (20 mM) were prepared from 40 mM Tris and the 

appropriate amount of HCl, under adjustment by a pH meter. 

 

2.2 Analytical procedure 

Stock solutions of probes (1.00×10-3 M) were further diluted to prepare 1.00×10-4 M solutions 

respectively in CH3CN/H2O (v/v, 1/1, for R1 and R3, 3/7, for R2 and R4, 20 mM Tris-HCl, pH 7). 

To 1.0 mL aliquots of the diluted probe solutions in 10 mL volumetric flasks were respectively 

added 9.0 mL buffered CH3CN/H2O containing different concentrations of metal ions, affording 

an overall probe concentration of 10 μM for each experiment. The solutions were mixed at room 

temperature (298K) for 2 h, after which 3.0 mL of each solution was transferred to a 1 cm quartz 

cell for the required measurement using either a UV-vis or fluorescence spectrophotometer. For 

the determination of Cu2+ at low concentrations, Cu2+ stock solutions of 1.00×10-4 M and 

1.00×10-5 M were prepared by diluting the original stock solution, and the required amount of 
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these solutions was used in the analytical procedure. 

 

2.3 Application of R2 for Cu2+ analysis in water samples 

Samples of tap water and river water were respectively analyzed by the fluorescence and 

absorption methods reported in this study. To control the pH value in the detection, 9 mL of 

Tris-HCl buffered CH3CN/H2O (3/7, v/v) containing R2 was added to 1 mL of the water samples 

to keep the pH at about 7, and then the fluorescence intensity and absorption changes were 

determined. 

2.4 Cell incubation and imaging 

Hela cells were grown at the Roswell Park Memorial Institute (RPMI-1640), the medium 

supplemented with 10 % bovine serum, 100 U·mL-1 penicillin and 100 μg·mL-1 streptomycin at 

310 K and 5 % CO2. Before staining, the cells were washed twice with fresh RPMI-1640, and 

subsequently exposed to the 10 μM R2 solution (900 μL RPMI-1640 added with 100 μL of a 100 

μM R2 in DMSO) for 60 min at ambient temperature. After washing twice with fresh RPMI-1640, 

the cells were immersed for 30 min with 50 μM Cu2+ solution (900 μL RPMI-1640 added with 100 

μL of a 500 μM Cu2+ in H2O), the RPMI-1640 was removed, and the cells were washed twice 

with fresh RPMI-1640 and imaged. 

 

3. Results and discussion 
3.1 Fluorescence and UV-vis spectral behavior of R1~R4 

In the different aqueous/acetonitrile medium (CH3CN/H2O, v/v, 1/1 for R1 and R3, 3/7 for R2 

and R4) using a pH of about 7 via Tris-HCl (20 mM) buffer solution, the four probes R1~R4 (10 

μM) were colorless and exhibited no fluorescence-emission. Addition of Cu2+ led R1 (Figure 1a, 

1b) and R2 (Figure 1c, 1d) to fluorescence and absorbance with remarkable enhancements. 

Meanwhile, orange fluorescence was observed under ultraviolet light (Figure 1a, 1c inset), and the 

solution turned to pink (Figure 1b, 1d inset), whereas there was no change in the presence of other 

common metal ions. The probe R1 exhibited a similar performance except that the absorption and 

fluorescence observed were weaker upon addition of Fe3+ and Al3+. R3 and R4 exhibited varying 

degrees of response to Al3+，Cr3+ and Fe3+ ions (Figure 1e-1h), accompanied by different color 

changes under ultraviolet or visible light (Figure 1e~h, inset). From the above, it is clear that 
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R1~R4 can recognize specific metal ions, whilst the optical changes (Figure S1, Supporting 

Information) of R2 displayed a somewhat superior selectivity and sensitivity than did the other 

probes. R1 and R2 were obtained through rhodamine B hydrazide substitution of an active 

chlorine atom in the triazine rings, whilst R3 and R4 were obtained via rhodamine B 

ethylenediamine; the steric hindrance arising from connecting the two groups perhaps led to 

differences in interaction with the divalent metal ion Cu2+ and the trivalent Al3+，Cr3+ and Fe3+ ions, 

leading to these metal-specific probes. In contrast to R1 and R3, in the molecular structures of R2 

and R4, the two active chlorine atoms in the triazine rings were substituted by diethanolamine. 

The enhanced solubility in water was due to the introduction of hydroxyl groups. The probes of 

different molecular structure displayed different responsive behavior in the presence of different 

metal ions. In the above described probes, R2 exhibited high sensitivity and selectivity for Cu2+, 

as well as good solubility in water.  

 
Figure 1. Fluorescence and absorption spectra of the probes (10 μM) R1 (a, c), R2 (b, d), R3 (e, f) 
and R4 (g, h) in the presence of various metal ions (200 μM). 20 mM Tris-HCl buffer solution, pH 
7, R1: CH3CN/H2O, 1/1 , v/v, λex/λem = 557/583 nm, λmax = 557 nm; R2: CH3CN/H2O, 3/7, v/v, 
λex/λem = 553/580 nm, λmax = 553 nm; R3: CH3CN/H2O, 1/1, v/v, λex/λem = 557/578 nm, λmax = 
557nm; R4: CH3CN/H2O, 3/7, v/v, λex/λem = 563/585 nm, λmax = 563nm. 
 

3.2. Spectral characteristics of probe R2 

The stability of a probe under physiological conditions is a prerequisite for application, especially 

for live cell imaging. The effect of the water fraction and the pH on the spectral responses of R2 

was therefore evaluated. The fluorescence and absorbance of the R2-Cu2+ solution exhibited stable 

and considerably higher intensity over the range 20-80 % H2O in CH3CN/H2O mixed solvent 

(Figure S2, Supporting Information). The acid titration experiments revealed that the fluorescence 

and absorbance of R2-Cu2+ remained unaffected over the range 3-7.5 pH (Figure S3, Supporting 

Information) and was stable under near physiological conditions. 

The spectral characteristics of R2 in acetonitrile/aqueous solution (CH3CN/H2O, 3/7, v/v, 20 mM 

Tris-HCl, and pH 7) are illustrated herein (Figure 1c and 1d). The solution of R2 emitted no 

fluorescent or absorbance due to the five-membered spirolactam structure [35], however upon 

addition of Cu2+, a drastic fluorescence enhancement (about 360-fold, at 580 nm) and significant 

absorbance enhancement (about 445-fold, at 553 nm) were observed. The fluorescence response 
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of R2 was in agreement with the ring opening mechanism, which was attributed to the 

Cu2+ induced opening of the rhodamine ring. By contrast, the other tested metal ions caused 

neither a color nor a spectral change under identical conditions. This unique property enables Cu2+ 

to be distinguished easily from the other tested ions either directly by the naked eye or by spectral 

measurements. 

The fluorescence titration of probe R2 was investigated, and it was found that the addition of 

amounts of Cu2+ caused an increase in the band at 580 nm, which reached a steady state after 

adding 10 equivalents of Cu2+ (Figure S4a, Supporting Information). Similarly, upon the gradual 

addition of up to 20 equivalents of Cu2+, a new absorption band, centered at 553 nm, appeared 

with increasing absorbance (Figure S4b Supporting Information), and this is attributed to the 

spirolactam ring-opening process of rhodamine B unit in probe R2. 

The effect of co-existing ions was studied including the abundant cellular cations (Na+, K+, Mg2+ 

and Ca2+), the essential transition metal ions (Fe3+, Al3+, Zn2+, Mn2+, Co2+, and Ni2+), and the 

environmentally relevant metal ions (Ag+, Sr2+, Ba2+, Hg2+, Pb2+, Cr3+, and Cd2+). The spectral 

responses of probe R2 (10 μM) to the above metal ions are shown in (Figure S5, Supporting 

Information); only Cu2+ (100 μM) induced a significant enhancement in the fluorescence and 

absorption, whilst the other mentioned metal ions (200 μM) did not cause any discernible changes 

to R2. There were minor variations in the fluorescence intensity or absorbance of the R2-Cu2+ 

mixture when adding the above metal ions; the relative standard deviations were less than 5 %. 

These results illustrate that the binding of the Cu2+ ion by the probe was not significantly 

influenced by the presence of the co-existing ions. Given this, the selectivity of R2 for the Cu2+ 

ion can be said to be remarkably high and meets the requirements for biomedical and 

environmental applications. 

     

3.3 The recognition behavior of probe R2 for Cu2+ 

To investigate the complexation of probe R2 with Cu2+, the method of continuous variations 

(Job’s plot) was used for R2-Cu2+ in CH3CN/H2O solution. The formation of a 1:1 stoichiometry 

between R2 and Cu2+ was clearly suggested by both fluorescence and absorption spectrometric 

methods (Figure S6, Supporting Information). The binding constant for the R2-Cu2+ complex was 

estimated to be 3.83 × 104 M-1 and 3.71 × 104 M-1 by the Benesi-Hildebrand method [36], 
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respectively (Figure S7, Supporting Information). The IR spectra of R2 and R2-Cu2+ mixtures 

were measured in acetonitrile medium, and revealed that the amide carbonyl peak (1700 cm-1) and 

the C=N peak (1615 cm-1) of R2 had disappeared on combination with Cu2+, indicating the 

participation of the carbonyl and C=N moieties in the complexation (Figure S9, Supporting 

Information). The 1H NMR spectra of R2 upon complexation with Cu2+ were measured (Figure 2). 

Upon addition of Cu2+, the proton peak shapes of R2 significantly broadened, and the protons on 

the rhodamine moiety shifted downfield (δ 0.04-0.13 ppm), Ha, Hb, Hc, Hd, He, Hf Hg and Hh (δ 

0.11, 0.1, 0.13, 0.051, 0.072, 0.038, 0.04, and 0.08 ppm, respectively). This was due to the 

decrease in the electron density of the rhodamine moiety upon coordination of the Cu2+ ions to the 

amide carbonyl group of R2, similar to reports on the ion-induction rhodamine based fluorescent 

probes [31, 37]. The ESI mass spectra of R2 and R2-Cu2+ were obtained (Supporting Information, 

Figure S10). The peak at m/z=807.2 (calcd=807.05) corresponded to [R2+Cu]+, and 743.2 

(calcd=743.5) corresponded to [R2]+ and were clearly observed when Cu2+ was added to R2. The 

results clearly indicate the 1:1 complexation between R2 and Cu2+ complex. The proposed bound 

structure is illustrated (Scheme 2).  
 

Figure 2. Partial 1H NMR spectra of R2 and R2-Cu2+ measured in CDCl3/CD3CN (1/4, v/v). 
(a) R2, (b) R2 with Cu2+. 

 
  

Scheme 2. The proposed bound structure of R2-Cu2+ 
 
3.4 Logic gate 

Since the pioneering work reported by de Silva et al [38], remarkable progress has been made in 

the development of molecular logic gates. Various molecular logic gates have been explored by 

utilizing fluorescent signals as outputs and chemically encoded information (such as pH, 

temperature, light, and ion) as inputs [39-41]. The reversibility of probe R2 was investigated by 

the introduction of S2- as a reagent. Upon addition of excess amounts of S2- to the R2-Cu2+ 

complex solution, the fluorescent emission intensity was quenched (Figure 3) and the color of the 

latter changed from pink to colorless (Figure 3, inset), indicating that S2- replaced R2 to coordinate 

with Cu2+ to form the more stable CuS. This behavior could be analyzed with a combinational 

logic circuit using Cu2+ and S2- in response to a particular input, designated as input In1 (Cu2+) and 

 7 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



In2 (S2-), respectively, and considered as “1” when they are present and “0” if they are absent. 

Binary digits (1 or 0) can be used to represent the two states “on or off” for each signal. The 

output signals were emission of strong fluorescent signal or color changes. Input 1 led to 

fluorescence or absorbance of the probe R2 (enhancement in its occupied state), equivalent to a 

YES operation. The interaction of input 2 with R2 led to fluorescence quenching or an absorbance 

decrease, thereby implementing the NOT gate. R2 acts in parallel on the spectrum output signals, 

which implements the required AND function. In the presence of both inputs, the quenching (by 

input 2) overrides the fluorescence or absorbance enhancement by input 1, in accordance with the 

truth table (Figure 4 Table), and this constitutes an example of a flexible functional integrated 

INHIBIT logic at the molecular level. 

 
Figure 3. Fluorescence spectrum of probe R2 (10 μM) in the presence of Cu2+ (50 μM) and 
S2- (200 μM) in CH3CN/H2O (3/7, v/v, 20 mM Tris-HCl buffer solution, pH 7), truth table, and 
logic scheme (Inset, A: R2-Cu2+. B: R2-Cu2+-S2-), λex /λem = 553/580 nm 
 

3.5 Detection and imaging in living cells 

According to the fluorescence and UV-vis titration experiments on Cu2+ with probe R2, the 

intensity enhancements were found to be proportional to the concentration of Cu2+ ion over the 

ranges 4.0×10-6 ~ 5.0×10-5 M and 6.0×10-6 ~ 7.0×10-5 M, respectively (Figure S8, Supporting 

information). The detection limits for Cu2+ were determined to be 8.4×10-7 M and 2.45×10-6 M  

respectively in the fluorescence and UV-vis spectra [42]. The fluorescence quantum yield (Φ, 0.56) 

was calculated using rhodamine-B (Φ, 0.89) as a reference [43]. 

The practical applications of R2 were firstly evaluated by detection of Cu2+ in water samples (tap 

and river water) under the optimized conditions (10 μM R2 in CH3CN/H2O, 3/7, v/v, buffered by 

20 mM Tris-HCl at pH 7). All the measurements were performed three times. The results are 

summarized (Table 1, Supporting information), which showed satisfactory recovery and R.S.D. 

values for all of the samples. These results demonstrated that the proposed probe R2 meets the 

monitoring sensitivity as well as selectivity requirements necessary for environmental water 

samples. 

To demonstrate the membrane permeability of the probe and its feasibility to specifically detect 

Cu2+ ions in living cells, the behavior of probe R2 toward Cu2+ in living HeLa cells was 
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investigated by fluorescence microscopy. HeLa cells were incubated with R2 (10 μM) for 60 min 

at 310 K followed by the addition of Cu2+ (50 μM) and incubated for 30 min. The cells were 

washed with phosphate-buffered saline (PBS) solution, and their fluorescence images were 

recorded before and after the addition of Cu2+. The brightfield image of HeLa cells labelled with 

probe R2 (10 μM) after 60 min of incubation at 310 K (Figure 4a), as determined by fluorescence 

microscopy, revealed that these cells exhibited no detectable fluorescence signal (Figure 4b). In 

contrast, when the cells were incubated with probe R2 and further treated with Cu2+ (50 μM) in 

the growth medium for 30 min under the same conditions, bright fluorescence from the 

intracellular region was detected (Figure 4c). Fluorescence imaging of the R2-labelled cell 

displayed good biological characteristics, demonstrating that R2 was cell membrane permeable. 

The results clearly established that probe R2 might be an effective tool for visualizing Cu2+ in 

living cells. 

 
Figure 4. (a) Bright-field image of HeLa cells labelled with probe R2 (10 μM) after 60 min of 
incubation, (b) Fluorescence image of cells after 60 min treatment with probe R2, (c) 
Fluorescence image of cells that are further incubated with 50 μM Cu2+ for 30 min. 
 

4. Conclusions 

The performance of the rhodamine-triazine based systems R1~R4, which possess subtle variations 

in their molecular structure, as probes was evaluated. The length of the carbon chain which 

connects the rhodamine and the triazine groups leads to different responses to specific ions. The 

sensitivity and selectivity depends mostly on the chain length of the linking groups and the 

amine-modified aromatic ring of the probe molecules. Complexation of the probe with metal ions 

could be monitored through fluorescence enhancement, as well as color changes, which facilitates 

“naked-eye” detection. Unlike probes R3 and R4 that are affected by interference from competing 

metal ions, the probe R1 and R2 showed remarkably specific discrimination for Cu2+ over the 

other metal ions in neutral aqueous medium; the water-solubility of R2 is slightly better than that 

of R1. This allows for the accurate quantification of trace Cu2+ in environmental water samples. 

The properties of R2 and others literature probes derived from rhodamine are listed in table S2 

(see Supporting Information). When compared to the previously studied probes, R2 has better 

water-solubility, higher sensitivity and fluorescence quantum yields, lower detection limits and a 

 9 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



wider linear range. Also, R2 can be used as a molecular switch via fluorescence emission/ color 

change controlled by cationic (Cu2+) and anionic (S2-) sequential input. Living cell imaging 

suggested that R2 was membrane-permeable and primarily non-toxic to cell culture, which 

demonstrated its applicability for the determination of Cu2+ in living cells. These observations on 

the rhodamine-triazine probe using cyanuric chloride suggest that such systems can be 

developed further for the construction of novel probes for transition metal ions.  
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