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Abstract

We present a methodology based on local comparisons of potential energy surfaces (PES) in order to assess the quality of empirical
potentials. We compare five typical empirical potentials using a criterion that shows which of these potentials resembles better a
PES obtained with a high-level electronic structure method. The methodology relies on a many-body expansion in terms of normal
coordinates of both the empirical and high-level theory PES. Then we investigate in a systematical way, how the features of the
reference high-level theory PES are reproduced by each empirical potential in the vicinity of a given minimum energy structure. We
use plane-wave density functional theory (DFT) as a reference, in particular the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional and an ultrasoft Vanderbilt pseudo potential. This study is carried out on neutral gold clusters with up to five atoms.
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1. Introduction

Two-body potentials are widely used to study noble gases but
show several limitations in describing metallic systems accu-
rately. [1] To overcome such limitations, some empirical poten-
tials including many-body effects have been developed. Most
comparative studies of empirical potentials focus on analyzing
how the minimum energy structures are reproduced in compar-
ison with high-level theory methods. The most frequent com-
parisons include binding energies, bond lengths and sometimes
harmonic frequencies. Although this type of analysis provides
an approximate description of the behavior of these potentials,
it is often not sufficient for knowing their relative advantages
or estimating which of them better resembles high-level theory
results.

The first drawback of a simple and direct comparison be-
tween empirical potentials is that they have different analytical
expressions. For example, the Murrell-Mottram potential [2, 3]
contains two- and three-body terms, while others contain both
a repulsive pair term and a cohesive many-body term, such as
the Gupta [4, 5] and the Sutton-Chen [6] potentials. Some mod-
els contain a pair-interaction term and a many-body term with
a non-linear function based on the features of the atomic en-
vironment. The Voter-Chen [7–9] and the Daw-Baskes-Foiles
(DBF) [10, 11] versions of the embedded atom model(EAM),
and the Glue potential [1] are some of such models. The func-
tion of the many-body term of the Glue model associates an
energy value to the coordination of each atom. The function of
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the many-body term of the EAM expresses the energy in terms
of the background electron density and the atomic species. The
Voter-Chen and the DBF potentials have different forms for the
pair-interaction and the many-body parts; e.g. the Voter-Chen
potential uses a Morse-type term for the pair interaction, while
in the DBF potential such an interaction is entirely repulsive. An
additional drawback of a direct comparison is the fact that the
empirical parameters are often fitted to different experimental
values, and they do not always correspond to the same quantities.
Therefore, we introduce here a local comparison of potential
energy surfaces (PES) around a given minimum energy structure
as an alternative way to assess the quality of empirical potentials.
We use normal coordinates, which are defined in terms of the
mass-weighted cartesian displacement coordinates, since these
offer a practical way to explore the surface landscape around the
minimum.

We carry out our investigation on small neutral gold clusters.
This type of clusters are often used as probe systems for testing
theoretical methods, due mainly to relativistic effects, [12–15]
that give them some peculiar properties. In addition, they are of
great technological interest due to possible applications in sev-
eral fields, such as catalysis, sensors, molecular electronics, and
gene mapping. [14–16] Empirical potentials are often cataloged
as unreliable for describing structural and energetic properties
accurately compared to high-level theory, for example for repro-
ducing the planar structures of small gold clusters. In addition,
in the regime of very small sizes direct optimization at the DFT
or higher level is possible, although studies are often focused
on interesting particular sizes. This is the case of the systematic
studies carried out on the Au8 cluster by Serapian et al. [17] or
on Au8−nAun bimetallic clusters by Heiles et al., [18] in order
to understand the transition from 2D to 3D structures. In spite of
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that, our methodology is useful in order to choose comparatively
reliable empirical potentials to be used in those cases in which
the use of DFT or higher level electronic structure methods is
still limited or prohibitive. It is also applicable to clusters of
another atom species different than gold.

Several studies have been carried out on gold clusters us-
ing empirical potentials, [19–29] but only a few of them have
performed a comparison of different potentials. Wilson and John-
ston [19] compare global minimum energy structures obtained
with the Murrell-Mottram potential with those obtained from
the Gupta and the Sutton-Chen potentials. They found that the
minimum energy structures obtained for all of these potentials
are similar up to Au7 only. Rogan et al. [30] compare the results
of the Murrell-Mottram and the DBF potentials with DFT calcu-
lations for gold clusters up to n = 12. They found that the DBF
potential largely overestimates the binding energies compared
to the Perdew-Burke-Ernzerhof (PBE) functional [31] using a
norm-conserving pseudo potential. Grigoryan et al. [28] use a
relation of similarity to evaluate the differences at all interatomic
distances between two structures with equivalent geometries.
They found that the Voter-Chen and DBF potentials work sim-
ilarly for Cu and Ni, but they show large differences for Au
clusters with n < 20. Hermann et al. [32] compare empirical
potentials to second-order Møller-Plesset perturbation theory
(MP2) calculations, using a many-body decomposition of the
interaction potential. Their study focuses on the Au7 cluster,
which was found to be non-planar at the MP2 level of theory,
and shows that the many-body terms converge very slowly for
MP2 and very rapidly for the empirical potentials.

The remainder of this paper is organized as follows: In Sec-
tion 2, we describe the methodology and relevant computational
details of our investigation. In Section 3, we describe the crite-
ria used to choose a suitable DFT approach as a reference. In
Section 4 we present the assessment of the empirical potentials,
and in Section 5 we give our conclusions.

2. Methodology and computational details

Our analysis is carried out in two steps: First, we compare
structural parameters and binding energies obtained using the
empirical potentials with those obtained using a chosen DFT
approach, for cluster sizes up to N = 10. This is a usual standard
comparison but contrary to previous studies, we also consider
structures with geometries equivalent to the global DFT mini-
mum structures. We must impose some constraints to the empiri-
cal potentials in order to obtain planar gold clusters as DFT does.
Second, we carry out a local comparison of the PES around the
minimum energy structure obtained using both an empirical po-
tential and DFT, for each cluster size up to N = 5. In this case,
we explore the PES using a hierarchical many-body expansion
in terms of a set of n mass-weighted normal coordinates, limited
to the second order in V (pairwise approximation): [33, 34]

V(Q) = E0 +
n∑
i

V(1)
i (Qi) +

n∑
i

n∑
i< j

V(2)
i, j (Qi, Q j). (1)

The number of mass-weighted normal coordinates in Q =
{Q1, . . . , Qn} corresponds to the number of vibrational modes
and is determined by the number of atoms N, i.e. n = 3N − 6 for
non-linear structures or n = 3N − 5 for linear structures such as
Au2. The potential V(Q) is explored only locally with V(1)

i (Qi)
corresponding to the single-mode contributions (diagonal or 1D)
and V(2)

i, j (Qi, Q j) corresponding to the pairwise contributions
(coupled or 2D). 1D contributions to the PES describe how the
potential changes when the normal coordinates change in one
direction. 2D contributions describe how the potential changes
due to the coupling of displacements in two different directions.
These contributions are expressed as:

V(1)
i (Qi) = V(Qi) − E0, (2)

V(2)
i, j (Qi, Q j) =V(Qi, Q j) − V(1)

i (Qi)

− V(1)
j (Q j) − E0,

(3)

For the comparison of the 1D contributions to the PES, we
compute first the deviation from the harmonic potential as:

Ṽ(1)
i (Qi) = V(1)

i (Qi) − V(harm)
i (Qi), (4)

where the harmonic potential is computed directly from the 1D
curves as:

V(harm)
i (Qi) =

1
2

∂2E
∂Q2

i


0

Q2
i . (5)

We define a 1D index, in terms of the potential evaluated on
a number (nmax) of grid points. This is done in order to assign
a magnitude to the global variations of the 1D contributions in
each direction,

ζ1D
i =

1
nmax

nmax∑
ni

|Ṽ(1)
i (ni)|. (6)

Correspondingly, in order to assign a magnitude to the global
variations of the 2D PES, we define a 2D index,

ζ2D
i j =

1
(nmax)2

nmax∑
ni

nmax∑
n j

|V(2)
i j (ni, n j)|. (7)

Both indices, ζ1D
i and ζ2D

i j , of each normal coordinate or pair-
coupled normal coordinates, are useful quantities for comparing
the PES predicted by each empirical potential and by the chosen
high-level theory.

To obtain the DFT total energies we perform plane-wave DFT
calculations using version 3.11.1 of the CPMD code. [35] The
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choice of a DFT exchange-correlation functional to be used as
a reference for the comparison was based on the study of four
different functionals applied to the gold clusters. We tested the
PBE, [31] BP86, [36, 37] BLYP [36, 38] and LDA [39] func-
tionals with Vanderbilt (VDB) pseudo potentials. [40] The Van-
derbilt approach is an alternative model to the norm-conserving
pseudo potentials (NCPP). Studies have shown that the NCPP
work well within LDA using plane-wave basis functions, but
are problematic for systems containing highly localized valence
orbitals such as transition metals. [40] Vanderbilt pseudo po-
tentials, also known as ultrasoft pseudo potentials (USPP), are
norm-conserving in a general sense with an accuracy exceeding
that of NCPP. Low cutoffs between 20-30 Ry are required, while
other pseudo potentials require larger cutoffs (above 100 Ry).
The pseudo potentials used in this study have been generated
using a relativistic wave equation for the all-electron case. How-
ever, spin-orbit effects are not included. To our knowledge, ultra-
soft pseudo potentials have only been used in the study of small
gold clusters by Majunder et al. [41] and by Olson et al. [42]

We use a Vanderbilt pseudo potential basis set, [40] which
includes the 5d106s1 gold valence electrons with a plane-wave
energy cutoff of 30 Ry (408 eV). We use periodic boundary
conditions and a cubic supercell of (15 Å)3 to avoid interactions
between neighboring clusters. The convergence criteria for wave
function and geometry optimizations are set to 10−7 a.u. (largest
element of the gradient for the wave function) and 5 × 10−5 a.u.
(largest element of the gradient for the ions), respectively. We set
parameter DUAL to 6.0 (ratio between the wave function energy
cutoff and the density cutoff) and GC-CUTOFF to 10−5 (density
cutoff for calculation of the gradient correction), in order to guar-
antee a smooth convergence of the wave function optimization.
Geometry optimization is carried out by means of the limited-
memory BFGS (L-BFGS) [43] method, starting from structures
obtained with the Gupta potential. Hessian matrix is calculated
using the finite differences of analytical first derivatives with a
step length of 10−2 bohr. The local spin density approximation
(LSD) version of the functional is used for clusters with an odd
number of atoms. The few MP2 calculations in this study are
performed using the GAMESS-US code [44] and the SBKJC(1f )
basis set, which corresponds to the standard SBKJC basis set[45]
and effective scalar relativistic core potential (ECP) with an extra
set of functions f (exponent=0.89).[46]

To obtain the total energies for each empirical potential, we
use the Nelder and Mead version of the Simplex method [47–49]
in order to minimize a set of random initial geometries for each
cluster size. We use version 1.0 of the EPOCUS code, [50] an own
program written for this purpose. In each case, a total of 1000
initial geometries are sampled and converged to local minimum
energy structures. The Nelder and Mead method converges
quickly since it does not require the calculation of derivatives. It
also only needs one or two evaluations of the potential function
at each step (only in a few cases it requires m + 1 or m + 2
evaluations, where m is the number of vertices of the simplex).
By exploring an extensive set of initial structures, we found
that the lowest local minima obtained coincide with the global
minimum energy structures reported using other types of global
minimization methods. To reproduce planar structures similar

to those predicted by DFT and ab initio methods, constraints are
employed in the minimization.

The PES construction is performed using the PVSCF code [51]
which drives either the CPMD [35] code or the EPOCUS [50]
code, in order to calculate the total energy of different geometries
that are defined by the variation of the normal coordinates around
the global minimum structures. Starting from an optimised struc-
ture and its corresponding Hessian matrix, we evaluate the DFT
total energy or total empirical energy for a fixed number of points
on a grid (here 16) to obtain the 1D potential energies, and for a
regular grid with 256 points (16× 16) to obtain the 2D PES. The
16 regularly spaced grid points along each normal coordinate are
interpolated to a finer-meshed representation of the PES using a
cubic-spline algorithm. The 256 regularly spaced grid points for
each mode–mode coupling term are interpolated on a finer mesh
using a bicubic interpolation.[52]

Cluster binding energies are calculated as the difference be-
tween the total energy of the cluster and the sum of the energies
of the isolated gold atoms. They are reported positive as a
convention. Clusters are visualized using the Visual Molecular
Dynamics (VMD) program. [53]

3. Choice of a reference DFT approach

Before assessing the empirical potentials we apply the method-
ology introduced in Section 2 in order to compare various DFT
approaches and find one of them to be used as the reference.
Although DFT has limitations to properly account for dispersion
contributions to the energy, this is supposed to be not critical
in this study, since for these cluster sizes intracluster van der
Waals (vdW) contribution are small, as it has been reported
by Ghiringhelli et al. [54] who use PBE+vdW and numeric
atom-centered basis functions in order to include dispersion con-
tributions. They reported zero intracluster van der Waals (vdW)
contribution for Au2 and Au3, and −5 meV/atom for Au4. We
compute the 1D potential energy curve for Au2 as well as the 1D
and 2D potential energies for Au3, around the minimum energy
structure obtained from different DFT functionals. The number
of 1D indices correspond to the number of normal coordinates,
n. For Au2, there is only one 1D index (ζ1D

1 ), which corresponds
to the unique normal coordinate. For Au3, there are three 1D
indices (ζ1D

1 , ζ1D
2 and ζ1D

3 ). The number of 2D indices is de-
termined by the n normal coordinates, as n(n − 1)/2. For Au3,
there are three 2D indices (ζ2D

1,2 , ζ2D
1,3 and ζ2D

2,3 ).
Figure 1 shows the 1D potential energy curves of Au2 for

the various DFT approaches studied. Only the one for LDA
differs significantly from the others. Table 1 shows all calculated
indices. For Au2 and Au3, LDA leads to the largest values of the
1D index. For Au3 with all functionals, the larger differences
correspond to ζ1D

2 , which describes the breathing mode of the
molecule. The values of the 2D indices for Au3 are very similar
using PBE and BP86. For LDA and BLYP the differences in
2D energies, given by the value of the index, are significantly
larger when compared to PBE or BP86. In the case of LDA,
such differences are positive, showing the usual overbinding due
to this functional. The larger 2D index for Au3 corresponds to
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ζ2D
1,2 which accounts for the coupling between the stretching and

the breathing mode of the molecule.

Figure 1: 1D potential energy curves for Au2, using various DFT approaches.

Table 1: Comparison of various DFT approaches using a Vanderbilt pseudo
potential. 1D indices for Au2 and Au3, and 2D indices for Au3, scaled by 103.

Method Au2 Au3

ζ1D
1 ζ1D

1 /ζ1D
2 /ζ1D

3 ζ2D
1,2 /ζ2D

1,3 /ζ2D
2,3

(×10−3) (×10−3) (×10−3)

PBE/VDB 8.9 1.0/3.8/0.5 220/37/85

BP86/VDB 8.8 1.0/4.0/0.5 220/37/87

BLYP/VDB 8.6 1.0/3.9/0.4 216/31/71

LDA/VDB 9.3 1.0/4.2/0.6 231/37/95

Due to the similar level of theory for these DFT approaches, it
is difficult to distinguish which of them is the most suitable to be
used as a reference. Thus a comparison to experimental values
would be necessary to assess the various DFT approaches. For
the case when different levels of theory are involved, as in the
comparison of empirical potentials to DFT, the compared values
may show larger deviations with respect to the reference, so mak-
ing easier to realize relative differences between the empirical
results.

We have reported a brief version of this comparison else-
where. [55] Here we recall the main results and extend on their
explanation. Figure 2 shows calculated binding energies for
the various DFT approaches used, compared to own MP2 re-
sults and values reported in other studies. Among the DFT
approaches studied, we found PBE/VDB as the most suitable
DFT model to reproduce the experimental binding energies of
Au2 (1.15 eV/atom) and Au3 (1.27 eV/atom), and the exper-
imental bond length of Au2 dimer (2.47 Å). [56] Experimen-
tal binding energies and bond lengths for larger gold clusters
have not been reported. For Au2, bond length is 2.50 Å using
PBE/VDB, while Ghiringhelli et al. [54] report 2.51 Å using
PBE+vdW. Binding energy using PBE/VDB is −1.16 eV/atom,
which is similar to the one reported by Ghiringhelli et al. using
PBE+vdW (−1.18 eV/atom). In a previous study of the Au7
cluster, [57] we showed that PBE with a pseudo potential basis
set such as Goedecker (GTH) or Vanderbilt (VDB) provides a
reliable method to describe trends in small gold clusters. For ex-

ample, PBE/VDB predicts the vibrational frequencies of the Au7
cluster better than other DFT approaches and predicts its global
minimum energy structure in agreement with experimental re-
sults. [58] Concerning the other DFT approaches investigated,
the BP86 functional provides results very close to PBE. On
average, the BLYP functional leads to differences in binding
energies of about 0.2 eV compared to PBE. For the local density
approximation (LDA) functional, a good agreement with the
bond length of Au2 is achieved, but the binding energies of Au2
and Au3 are overestimated by ∼ 30 % when compared to the
experimental values (not shown in Fig. 2).

Figure 2: DFT and MP2 calculations, compared to values reported for DFT
by Li, [59] and for MP2 by Bravo-Perez, [60] and with experimental values
reported by Bishea. [61, 62] All structures are planar. MP2 global minimum
energy structure for Au7 is non-planar but here we show the value corresponding
to the planar structure. For Au3, the structure reported by Bravo-Perez is the
equilateral triangle instead of the obtuse triangle.

By comparing our PBE/VDB results with values obtained in
other DFT studies, we find that the binding energies are in close
agreement with the values reported by Li et al. [59] when using
the PW91 functional [63] and a LANL2DZ basis set (∼ 0.1 eV
more on average). Idrobo et al., [64] using the PBE functional
with relativistic semicore potentials, report higher binding en-
ergies than the ones we obtained (∼ 0.15 eV/atom more on
average). In comparison with results from Majumder et al., [41]
who also used ultrasoft pseudo potentials with a GGA func-
tional, we obtained bond lengths that are shorter by ∼ 0.02 Å,
and energy values that are slightly larger for Au2 and Au3. Bind-
ing energies reported by Xiao et al., [65] who use the PW91
functional with the projector augmented wave (PAW) method,
are very close to our results (differences by ∼ 0.01 eV/atom).
On the other hand, studies using PBE with Troullier-Martins
norm-conserving pseudo potentials show values different from
typical DFT results, i.e. Fernandez et al. [66] report largely
overestimated binding energies, while Rogan et al. [30] obtain
largely underestimated binding energies.

Concerning other possible high-level theory methods that
could be used as a reference for the comparison of empirical
potentials, we discuss here briefly results of other studies re-
ported in the literature that use different electronic structure
methods, in particular MP2 and CCSD(T). While several studies
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of gold clusters have been performed using DFT, [41, 59, 65–
73] only a few studies have been performed using the MP2
or CCSD(T) methods, focusing mainly on the Au2-Au8 clus-
ters. [12, 32, 42, 46, 60, 74–76] Some studies combine DFT
and ab initio results, but focus only on a few structures such
as Au2 and Au3. [77, 78] A few ab initio calculations, using
single-reference and multireference methods have also been re-
ported. [79–84] It is known that MP2 leads to bond distances
that are too short and dissociation energies that are too low for
the gold dimer. This is attributed to an overestimation of electron
correlation effects. [75, 85] A study of Au3 to Au7 clusters by
Hermann et al. [32] shows that the correlation energy calculated
by means of an n-body expansion using MP2 does not converge
smoothly, thus failing to predict properly the energy and geom-
etry of small metallic clusters. In our previous study, [57] we
showed that although MP2 predicts the harmonic frequencies
of Au7 in good agreement with the experimental values, it does
not predict well the global minimum energy geometry for this
cluster. Moreover, these results of MP2 are presumably a fortu-
itous effect of the basis set superposition error. [86, 87] Other
studies have shown that the CCSD(T) method reproduces the
experimental values (bond length and binding energy) of Au2
better than MP2. [12, 54, 75] Nevertheless, due to the compu-
tational cost of applying high-level ab initio methods such as
MP2 or CCSD(T) that scale faster with cluster size than DFT,
and considering that PBE/VDB is suitable for a relatively good
prediction of some experimental values of small gold clusters,
we chose this DFT approach as the reference method for compar-
ison of empirical potentials. Note that DFT scales with cluster
size N as ∼ N3 − N4, while MP2 and CCSD(T) scale as ∼ N5

and ∼ N6, respectively.

4. Assessment of the quality of the empirical potentials

We study five different typical empirical models: The Murrell-
Mottram potential [2] with both the parameters used by Wil-
son and Johnston [19] and the parameters used by Cox, [3]
the Sutton-Chen potential, [6] the Gupta potential [4] with the
parametrization defined by Cleri and Rosato, [5] the Voter-Chen
version of the EAM model, [7–9] and the Glue model as devel-
oped by Ercolessi et al. [1] The Glue model has been designed
to be used in molecular-dynamics simulations of systems in
which the coordination number is similar to the one in the bulk
regime. It has been applied to study gold surface reconstruc-
tions [1] and melting in gold particles with several hundreds of
atoms. [29] For very small lead clusters, this potential yields
structures different from the ones obtained using the Gupta po-
tential, as reported by Doye. [88, 89] The DBF [10, 11] version
of the EAM model is not studied here since it has been shown
that this potential largely overestimates the binding energy in
small gold clusters. [26, 27] For additional details, such as func-
tional form or specific parameters, we refer the reader to the
original studies. Results reported here for the Murrell-Mottram
potential correspond to the parameters suggested by Wilson and
Johnston. [19] We obtained very similar binding energies with
the parameters suggested by Cox, [3] but in that particular case,

planar structures for Au4, Au5 and Au6 were obtained as local
minima without using constraints.

In order to make a global comparison of these various po-
tentials, the following should be taken into account: i) The
structures predicted by the empirical potentials for gold clusters
are planar only for the trivial cases Au2 and Au3. However,
when using high-level methods, e.g. DFT and ab initio methods,
they are planar up to larger sizes. ii) Comparing only binding
energies and bond lengths can lead to misleading results, since
each empirical potential has a different functional form and has
been fitted in a different way. iii) The choice of a high-level
theory as reference model should guarantee a good agreement
with experimental values.

For the assessment, we consider three different sets of struc-
tures: i) The global minimum energy structures obtained with the
empirical potentials, which are non-planar except for the trivial
cases Au2 and Au3 (see Fig. 3). ii) The global minimum energy
structures obtained using PBE/VDB, which are all planar (see
Fig. 4). iii) Planar local minimum energy structures predicted by
the empirical potentials by using geometrical constraints during
the minimization. They have similar but not identical geome-
tries (same or similar symmetry but different bond lengths) when
compared to the DFT global minimum energy structures shown
in Fig. 4.

Figure 3: Global minimum energy structures for Au3-Au10 clusters, along
their symmetry point group obtained for the empirical potentials. The Glue
potential leads to different minimum energy structures for all clusters. The
Murrell-Mottram potential leads to a different minimum energy structure for
Au9 and Au10. Since we compare only the most common minima, those different
structures obtained for the Glue and the Murrell-Mottram potential are not shown
here.

4.1. Comparison of binding energies and bond lengths

Figure 5 shows the binding energy of the global minimum
energy structures obtained without constraints for each potential.
The Voter-Chen potential shows intermediate values compared
to the other potentials. The Gupta and the Sutton-Chen potentials
have similar binding energies to each other but they are both
higher than the Voter-Chen potential. The Murrell-Mottram
and Glue potentials yield lower binding energies than the Voter-
Chen potential. Note that the we compare absolute values of
the binding energies since we consider these as positive by
convention.
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Figure 4: Global minimum energy structures for Au3-Au10 clusters obtained for
PBE/VDB, along their symmetry point group. Structures with equivalent but not
identical geometry can be obtained from the empirical potentials by including
constraints.

Figure 5: Binding energies calculated for Au2-Au10 clusters, using different
empirical potentials. The values correspond to the global minimum energy
structures, which are always non-planar (except for the trivial cases Au2 and
Au3).

Figure 6(a) shows the binding energies for the planar struc-
tures obtained with each empirical potential (using constraints)
and with PBE/VDB. Binding energies are best predicted by the
Voter-Chen potential. The Voter-Chen parametrization is based
on bulk properties but also on the bond length and bond strength
of the diatomic molecule, then it is expected to reproduce better
the interactions for small molecules but also to have a good
behavior towards the bulk regime. Indeed, Alamanova et al. [25]
and Sebetci et al. [24] have shown that the Voter-Chen potential
converges to the reported bulk energy (3.82 ± 0.02 eV). [90]
The Murrell-Mottram potential shows a relatively good agree-
ment with PBE/VDB, and the Gupta and Sutton-Chen potentials
overbind these DFT values by ∼ 1 eV/atom. Figure 6(b) shows
the binding energy for each potential at the PBE/VDB global
minimum energy structures. In all cases, the empirical binding
energies are slightly lower than the binding energies obtained
at their own empirical planar minima. As a consequence, the
Voter-Chen potential becomes the one closest to the PBE/VDB
binding energies.

Figure 7(a) shows the average nearest-neighbors bond length

Figure 6: Binding energy for different empirical potentials compared with
PBE/VDB results. (a) At the global minimum energy planar structures obtained
with each empirical potential (they have similar geometry but are not identi-
cal). Glue potential is not included. (b) At the global minimum energy planar
structures optimized at DFT level (they are identical).

for the planar minima obtained with PBE/VDB and with the
empirical potentials. Structures corresponding to each method
for each cluster size have similar geometry but are not identical.
The Voter-Chen, Sutton-Chen and Gupta potentials lead to bond
lengths shorter than PBE/VDB. For the Sutton-Chen and Gupta
potentials these bonds are larger than those predicted by Voter-
Chen, except for Au2. The Murrell-Mottram potential leads to
structures with larger bond lengths than PBE/VDB.

Considering the reported experimental value of 4.0786 ±
0.0002 Å for the lattice constant of the fcc gold structure, [90]
the experimental nearest-neighbors bond length for the bulk is
estimated as 2.8840 ± 0.0002 Å. It is desirable that the poten-
tials converge to that value in the bulk regime, but with values
only up to n = 10 is not possible to predict that convergence.
Nevertheless, it is observed that the Gupta, Sutton-Chen and
Voter-Chen potentials have a monotonically increasing nearest-
neighbors bond length while for the Murrell-Mottram potential
this magnitude is almost uniform at different cluster sizes.

Following the procedure described by Grigoryan et al., [28] a
similarity factor S was obtained for each method and for each
cluster size, derived from the root mean square (rms) value
of the differences of all interatomic distances. The similarity

6

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



Figure 7: Comparison of bond lengths obtained using empirical potentials
and PBE/VDB. (a) Average bond length between nearest-neighbors for planar
structures equivalent to the DFT minima. (b) Similarity factor for the different
methods considering all interatomic distances. PBE/VDB is the reference (s =
1). The closer to s = 1 the more similar to the reference.

factor, S , will approach one as the value for q goes towards zero,
that indicates a larger similarity between the geometry of two
structures compared.

S =
1

1 + q
, (8)

q =

 2
N(N − 1)

N(N−1)/2∑
i=1

(di − dre f
i )2


1/2

. (9)

The distances di and dre f
i (in Å) correspond to the interatomic

distances of the structure to be compared and those of the struc-
ture which acts as a reference, respectively. The same defini-
tion for q has been recently used by Rogan et al. [91] to com-
pare Gupta, Sutton-Chen and Lennard-Jones potentials for small
nickel and cooper clusters.

Figure 7(b) shows the values of the similarity factor for the
empirical potentials compared to the one for PBE/VDB (s = 1).
It shows that the structures predicted by the various empirical po-

tentials show similarity factors between 0.8 and 0.9, and that the
similarity is better for Gupta and Sutton-Chen potentials for Au5
and larger clusters. Conclusions obtained from the similarity
factor criterion are in agreement to those obtained by looking at
the average nearest-neighbors bond length. Nevertheless, since
the outcome is based on a rms value, it does not show the direc-
tion of the distance changes for each structure in comparison
with the reference. The average bond length or the similarity
factor are not sufficient criteria to evaluate the quality of empiri-
cal potentials, although they provide valuable information. For
example, the Voter-Chen potential, which yields binding ener-
gies closer to PBE/VDB, underestimates the bond lengths. The
Sutton-Chen and Gupta potentials, which largely overestimate
the binding energy, underestimate the bond lengths less than the
Voter-Chen potential does, in comparison with PBE/VDB. The
analysis of Hermann et al. [32] is also not well suited to assess
the quality of the empirical potentials. They observe that the
Glue potential well resembles the many-body expansion of the
interaction potential for the planar Au7 cluster when compared
with MP2. Nevertheless, we observe that this potential leads
to structures very different from the ones obtained using other
empirical potentials, and underestimates both the bond lengths
and binding energies.

4.2. Comparison of the 1D potential energy curves

Table 2 shows all calculated indices compared to PBE/VDB.
For Au2 and each empirical potential, the 1D index is too large
in comparison to PBE/VDB, leading to a poor description of the
1D potential energies. For the Glue and Voter-Chen potential,
this value is closer but still more than two times higher than
PBE/VDB. For Au3, only the Voter-Chen and Gupta potentials
achieve a value close to PBE/VDB for ζ1D

1 , which describes
the antisymmetric stretch mode of the molecule. For the same
cluster all potentials lead to absolute values of ζ1D

2 and ζ1D
3

that differ a lot from PBE/VDB. These two indices describe the
breathing and the bending mode of the molecule, respectively.
Only the Glue potential achieves a value close to PBE/VDB for
ζ1D

3 . By normalizing the 1D indices to the largest index of each
method, ζ1D

2 , we observe that the Voter-Chen potential is the one
which closely resembles ζ1D

3 . All of them fail to reproduce the
values of ζ1D

1 properly.

Table 2: Comparison of various empirical potentials to PBE/VDB. 1D indices
for Au2 and Au3, and 2D indices for Au3 are referred to PBE/VDB and scaled
by 103.

Method Au2 Au3

ζ1D
1 ζ1D

1 /ζ1D
2 /ζ1D

3 ζ2D
1,2 /ζ2D

1,3 /ζ2D
2,3

(×10−3) (×10−3) (×10−3)

PBE/VDB 8.9 1.0/3.8/0.5 220/37/85

Voter-Chen 44.5 0.6/54.2/7.7 165/27/77

Murrell-Mottram 464.5 5.3/479.8/9.8 1103/193/595

Gupta 149.4 1.3/131.0/5.7 218/34/109

Sutton-Chen 156.8 3.1/136.7/7.0 382/56/132

Glue 19.5 0.1/13.2/0.4 5/4/14
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Figure 8(a) shows the six 1D indices obtained for Au4. For
a suitable comparison they are normalized to the value of the
index ζ1D

3 for each set of values. Only for ζ1D
2 , ζ1D

5 and ζ1D
6

do all empirical potentials reproduce the relative magnitude of
the index with respect to the reference index ζ1D

3 . The Glue
potential shows a lesser agreement in comparison with the other
ones. None of the potentials reproduce ζ1D

1 and ζ1D
4 , which cor-

respond to the breathing and the bending mode of the molecule,
respectively. An exception is ζ1D

4 , which is roughly reproduced
by Murrell-Mottram. Figure 8(b) shows the nine 1D indices for
Au5. For a suitable comparison they are normalized to the value
of the index ζ1D

1 for each set of values. None of the potentials
reproduce the relative magnitude of ζ1D

2 (breathing mode) and
ζ1D

3 with respect to the reference index ζ1D
1 . Index ζ1D

4 is well
predicted by all potentials, ζ1D

5 and ζ1D
6 are partially reproduced

only by the Voter-Chen potential, and the remaining indices
show a reasonable agreement with PBE/VDB for all potentials
used.

Figure 8: Values of the 1D indices, as calculated with PBE/VDB and with
empirical potentials. (a) Au4: empirical potentials do not reproduce the DFT
values for the indices 1 and 4; therefore, badly predicted values were omitted
and the remaining ones were normalized to the value of the index 3 for each set
of values. (b) Au5: empirical potentials do not reproduce the DFT values for the
indices 2, 3, 5 and 6 (Voter-Chen does not reproduce 2 and 3 but it does with 5
and 6); therefore, badly predicted values were omitted and the remaining ones
normalized to the value of the index 1 for each set of values.

For Au4 and Au5, all potentials fail to completely reproduce
the main features of the 1D potential energy curves obtained
using PBE/VDB, although the Voter-Chen potential makes a
better description than the other potentials.

4.3. Comparison of the 2D potential energy surfaces

We investigate how all potentials studied reproduce the
PBE/VDB reference 2D PES. For Au3, the best agreement with
the PBE/VDB values is obtained by the Voter-Chen and the
Gupta potential (see Table 2). All potentials except the Glue
model reproduce the same order of the PBE/VDB 2D indices.
For a suitable comparison for Au4 and Au5, we normalize each
2D index to the largest value for each method and then organize
all values according to the order obtained using PBE/VDB.

Figure 9(a) shows the 2D indices obtained for Au4 (15 cou-
plings). In this case, the Voter-Chen and Murrell-Mottram poten-
tials reproduce better the order and magnitude of the 2D indices
showing the lowest rms values. Figure 9(b) shows the 2D indices
for Au5 (36 couplings). Again, the Voter-Chen potential shows
the best agreement with PBE/VDB. The few indices that vary
significantly from those obtained with PBE/VDB do not affect
the order at the pair-couplings with the highest values of the
index. The Murrell-Mottram potential shows very large values
for some indices that correspond to small values in the reference
2D PES, thus largely affecting the order of the indices. For
both Au4 and Au5, the Sutton-Chen and Gupta potentials lead to
large deviations from the 2D indices obtained with PBE/VDB.
As a consequence, the order of the indices is largely affected.
The Glue potential leads to very large deviations of the index
values, therefore it does not reproduce the order of these indices
properly (indices for Glue potential are not shown in Fig. 9).

5. Conclusions and remarks

Comparing only average bond lengths or binding energies is
not sufficient to decide if a certain empirical potential is suitable
to reproduce high-level theory results. Instead, investigating how
each potential reproduces the potential energy surface obtained
with high level theory, gives a deeper insight into its features.
Therefore, we proposed a local comparison of 1D and 2D po-
tential energies, expressing the position of the atoms in terms
of normal coordinates. Of the various DFT approaches studied,
the PBE functional with a plane-wave basis set and a Vanderbilt
pseudo potential (PBE/VDB) yields the best agreement with
experimental binding energies. Consequently, we chose this
approach as the reference method for the comparison of the
empirical potentials.

All empirical potentials studied fail to reproduce completely
the 1D potential energy curves obtained with PBE/VDB. Nev-
ertheless, the Voter-Chen potential and the Murrell-Mottram
potential, to a lesser degree, behave better than the others and
reproduce partially the PBE/VDB 1D curves. All of them fail
to reproduce the index associated with the breathing mode of
the molecule and to a lesser degree the index associated to the
bending mode. The Voter-Chen potential is the most suitable for
reproducing the ordering of the normalized 2D indices obtained
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Figure 9: 2D indices for (a) Au4 and (b) Au5, as calculated with PBE/VDB
and various empirical potentials. They are shown following the order of the
DFT values. Each set of values is normalized to its own highest value. Results
from the Glue potential are omitted because of their larger deviations from DFT.
Values in parenthesis denote root mean square deviations (RMSD) from the
PBE/VDB reference values.

using PBE/VDB even if the differences on absolute values are
large. The performance of the Murrell-Mottram potential is still
adequate but fails to reproduce properly some indices at the
largest values of the pair couplings. For the Gupta, Sutton-Chen
and Glue potentials, the agreement to the order of 2D indices is
not satisfactory.

The Voter-Chen potential reproduces the DFT binding ener-
gies better, although it underestimates the bond lengths more
than the Gupta and Sutton-Chen potentials. The Glue potential
does not reproduce the same structures as the other potentials,
and largely underestimates bond lengths and binding energies.
Since this potential has been developed for bulk systems, the
result is not surprising. The Murrell-Mottram potential predicts
structures with regular bond lengths. With the parameters sug-
gested by Cox et al., it is the only potential predicting planar
structures without constraints.

We have introduced an alternative methodology in order to
reveal the main differences between empirical potentials. These
empirical potentials are often cataloged as unreliable for describ-
ing structural and energetic properties accurately compared to
high-level theory. For the case of very small gold clusters, we

have observed that they can partially reproduce some of these
properties, i.e. some of them can make predictions of the bond
lengths or the energies better than other potentials. However,
a simultaneous prediction of structural and energetic values is
not observed. Although the use of geometrical constraints is
necessary in order to reproduce the planar geometries predicted
by high-level theory, the methodology presented here provides a
valuable criterion to compare these and eventually other empiri-
cal potentials.

Acknowledgments

This work was supported by a grant (”SFB-569/TP-N1”) from
the German Science Foundation (DFG) through the Special
Research Unit “Hierarchical Structure Formation and Function
of Organic-Inorganic Nanosystems”. We thank A. F. Voter (Los
Alamos National Laboratory) for providing information about
his method, and L. Leick for proofreading the manuscript.

References

[1] F. Ercolessi, M. Parrinello, E. Tosatti, Simulation of gold in the glue model,
Phil. Mag. A 58 (1) (1988) 213–226.

[2] J. N. Murrell, R. Mottram, Potential energy function for atomic solids,
Mol. Phys. 69 (3) (1990) 571–585.

[3] H. Cox, X. Liu, J. N. Murrell, Modelling Cu, Ag and Au surfaces using
empirical potentials, Mol. Phys. 93 (6) (1998) 921–924.

[4] R. J. Gupta, Lattice relaxation at a metal surface, Phys. Rev. B 23 (12)
(1981) 6265–6270.

[5] F. Cleri, V. Rosato, Tight-binding potentials for transition metal and alloys,
Phys. Rev. B 48 (1) (1993) 22–33.

[6] A. P. Sutton, J. Chen, Long-range Finnis-Sinclair potentials, Phil. Mag.
Letters 1990 (3) (1990) 139–146.

[7] A. F. Voter, Embedded atom method potentials for seven fcc metals: Ni,
Pd, Pt, Cu, Ag, Au, and Al, Tech. Rep. LA-UR 93-3901, Los Alamos,
unclassified (1993).

[8] A. F. Voter, S. P. Chen, Accurate interatomic potentials for Ni, Al and
Ni3Al, Mat. Res. Soc. Symp. Proc. 82 (1987) 175–180.

[9] A. F. Voter, Intermetallic Compounds, Vol. 1, Wiley, 1994, Ch. 4, The
embedded-atom method.

[10] M. S. Daw, M. I. Baskes, Embedded-atom method: Derivation and appli-
cation to impurities, surfaces and other defects in metals, Phys. Rev. B
29 (12) (1984) 6443–6453.

[11] S. M. Foiles, M. I. Baskes, M. S. Daw, Embedded-atom method functions
for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys, Phys. Rev. B
33 (12) (1986) 7983–7991.

[12] R. Wesendrup, T. Hunt, P. Schwerdtfeger, Relativistic coupled cluster
calculations for neutral and singly charged Au3 clusters, J. Chem. Phys.
112 (2000) 9356–9362.
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