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Abstract 8 

In this paper, the thermodynamic advantage of integrating liquid air power generation (LAPG) 9 

process and binary cycle waste heat recovery technology to a standalone pressurized oxy-coal 10 

combustion supercritical steam power generation cycle is investigated through modeling and 11 

simulation using Aspen Plus® simulation software version 8.4. The study shows that the 12 

integration of LAPG process and the use of binary cycle heat engine which convert waste 13 

heat from compressor exhaust to electricity, in a standalone pressurized oxy-coal combustion 14 

supercritical steam power generation cycle improves the thermodynamic efficiency of the 15 

pressurized oxy-coal process. The analysis indicates that such integration can give about 12 – 16 

15% increase in thermodynamic efficiency when compared with a standalone pressurized 17 

oxy-coal process with or without CO2 capture. It was also found that in a pressurised oxy-18 

coal process, it is better to pump the liquid oxygen from the cryogenic ASU to a very high 19 

pressure prior to vapourization in the cryogenic ASU main heat exchanger and subsequently 20 

expand the gaseous oxygen to the required combustor pressure than either compressing the 21 

atmospheric gaseous oxygen produced from the cryogenic  ASU directly to the combustor 22 

pressure or pumping the liquid oxygen to the combustor pressure prior to vapourization in the 23 

cryogenic ASU main heat exchanger.  The power generated from the compressor heat in the 24 

flue gas purification, carbon capture and compression unit using binary cycle heat engine was 25 

also found to offset about 65% of the power consumed in the flue gas cleaning and 26 

compression process. 27 

The work presented here shows that there is a synergistic and thermodynamic advantage of 28 

utilizing the nitrogen-rich stream from the cryogenic ASU of an oxy-fuel power generation 29 

process for power generation instead of discarding it as a waste stream. 30 

Keywords:  Liquid air energy storage; Pressurised Oxy-coal combustion; Air separation unit; 31 

Process integration; Process simulation  32 

1. Introduction33 

1.1 Coal-fired power generation and Post-combustion Carbon Capture 34 

The global climate change resulting from CO2 and other greenhouse gas emissions has 35 

become one of the greatest environmental threats of our time. Reduction in CO2 emission 36 

especially from coal-fired power plants has been the mainstay of many researches on climate 37 

change mitigation. Studies show that a one percent point improvement in the efficiency of a 38 

conventional pulverised coal combustion power plant can result in a 2 – 3% reduction in CO2 39 

emission (WCA, 2014).  40 
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Despite the historical tightening of emission constraints from coal-fired power plants, its use 41 

for power generation has been on the increase mainly due to its availability, cost and the ever 42 

increasing global energy demand ((IEA, 2013, IEA, 2012, IEA, 2011). This shows that coal 43 

will continuously play a major role in meeting the global energy need. However, the success 44 

will depend on the development of technologies to control pollution and CO2 emissions from 45 

such plants (Ciferno et al., 2000) especially now that CO2 is becoming regulated in the US 46 

and Europe.   47 

Carbon capture and sequestration (CCS) technologies have been in development for over a 48 

decade (Hagi et al., 2013) and is required to provide a long term solution by virtually 49 

eliminating CO2 emission from coal-fired power plants. One of the CCS technologies which 50 

has been under investigation for decades now is the post-combustion process. Post-51 

combustion technology involves capturing the CO2 contained in the flue gas after the 52 

combustion process. Unlike the pre-combustion technology, this technology can easily be 53 

added to existing fossil fuel power plants for CO2 capture. The efficiency of this technology 54 

largely depends on the concentration of the CO2 in the flue gas. The major barriers opposing 55 

the commercialisation of this technology include: (a) high capital and operation cost; (b) 56 

steam consumption for solvent regeneration (Ciferno et al., 2000).   57 

1.2 Oxy-fuel combustion and its recent development 58 

Conventional coal based power plants produces flue gas with up to 10 - 15 vol% CO2 59 

(Ciferno et al., 2000, Hong et al., 2009). The low CO2 content of the flue gas makes the 60 

capture operation energy intensive. One way of improving the CO2 concentration in the flue 61 

gas is by using pure oxygen in the combustion process instead of air. The replacement of air 62 

with oxygen otherwise known as oxy-fuel combustion helps to produce a flue gas that 63 

contains mainly CO2 and water vapour (Hong et al., 2009, Hu and Yan, 2011, Roy and 64 

Bhattacharya, 2013), which can easily be separated.  65 

Studies had shown that there are more potential in pressurized oxy-fuel process compared to 66 

atmospheric oxy-fuel combustion power cycles. ENEL work in the area of pressurized oxy-67 

fuel combustion using a novel pressurized oxy-combustion technology, known as the 68 

Isotherm Pwr® technology shows an increased heat transfer rates on the heat recovery steam 69 

generator (HRSG) compared to atmospheric oxy-combustion process (Zheng, 2011, Barbucci, 70 

2008).  In the Isotherm PwrÒ process, combustion takes place at elevated pressures and at 71 

1400 – 1600 oC.  72 

However, one big challenge facing oxy-fuel process is the high energy requirement of the 73 

cryogenic air separation unit (ASU) which is currently the only mature air separation 74 

technology that can produce high purity, high tonnage oxygen required by the power plant. 75 

Thus improving the energy efficiency of the ASU is paramount to the success of oxy-fuel 76 

combustion process.  77 

Several studies have been carried out on how to reduce the energy demand of cryogenic ASU 78 

for oxy-fuel combustion application. Some of the studies include:(1) improving the energy 79 

efficiency of heat exchangers and compressors and (2) the use of control system with real 80 

time optimization capability (Castle, 2002, Rübberdt, 2009), (3) use of self-heat recuperation 81 

process (Kansha et al., 2011), (4) pumping the liquid oxygen produced to a very high 82 

pressure prior to vaporization and expansion to the required process pressure (Manenti et al., 83 
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2013), (5) recovery of the compressor heat using organic Rankine cycle system (Aneke and 84 

Wang, 2015b, Aneke and Wang, 2015a). 85 

1.3 Liquid air power generation and Motivation for process integration  86 

The recent breakthrough in liquid air power generation (LAPG) provides a new synergistic 87 

advantage for minimizing the high energy concern associated with oxy-fuel combustion of 88 

fossil fuels through integration with other processes. In a typical oxy-fuel combustion process, 89 

high tonnage gaseous nitrogen rich stream which contains about 80 mol% - 95 mol% nitrogen 90 

is produced together with the 95 mol% oxygen required for the oxy-fuel process. Presently, 91 

this gaseous nitrogen rich stream is discarded as waste since there is usually no need for 92 

nitrogen on site. However, demonstration plant studies had shown that this waste gas stream 93 

is an ideal working fluid for LAPG (Strahan, 2013). Thus, LAPG could be annexed to an 94 

oxy-fuel combustion process in order to improve both the overall power output and energy 95 

efficiency of the process. More heat integration opportunities could be possible depending on 96 

the plant configuration. 97 

1.4 Novel contributions of this study and outline of this paper 98 

In this study, the thermodynamic advantage of integrating LAPG and binary cycle waste heat 99 

recovery heat engines to pressurized oxy-coal combustion with supercritical steam power 100 

cycle will be investigated through modeling and simulation using Aspen Plus® version 8.4 101 

simulation software. The entire process will be analysed to evaluate the impact of integrating 102 

the aforementioned process to the thermodynamic efficiency of a pressurized oxy-coal 103 

supercritical steam power cycle process which is used as the base case scenario.  Different 104 

process scenarios will be investigated with/without carbon capture consideration. To the 105 

knowledge of the authors, this is the only work that has introduced the concept of utilizing 106 

the nitrogen rich stream from the ASU of an oxy-fuel combustion process for power 107 

generation instead of the current practice where it is discarded as a waste stream.  108 

This paper is presented in five sections. The first section is the introduction and covers the 109 

carbon capture technologies, the liquid air power generation technology and the synergistic 110 

advantage of integrating oxy-fuel technology with liquid air power generation technology 111 

which is the underlining novelty of the paper. In the second section, the description of the 112 

different processes is presented while in section three, the Aspen simulation of the overall 113 

process is presented together with the modeling parameters and process efficiency definitions 114 

and equations. In section four, the results from the process simulation were presented and 115 

discussed while in section five, the conclusions drawn from the study carried out is presented.  116 

2. Process Description 117 

Figure 1 shows the process flow diagram of the pressurized oxy-coal combustion 118 

supercritical steam power cycle integrated with liquid air power generation and binary cycle 119 

heat engines proposed in this study. The process shown in Figure 1 consists of eight primary 120 

units: 1) Cryogenic ASU; 2) Pressurized oxy-coal combustor unit; 3) Steam generation unit; 121 

4) Supercritical steam power generation unit; 5) Air liquefaction unit; 6) LAPG unit; 7) Flue 122 

gas purification, Carbon dioxide capture and compression unit; 8) Binary cycle waste heat 123 

recovery units.  124 

The pressurized oxy-coal combustor, steam generation unit and supercritical steam power 125 

generation unit were adapted from Hong et al., (2009) and Zheng (2011). The cryogenic ASU 126 
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and heat recovery using binary cycles were based on the previous work of the authors (Aneke 127 

et al., 2012, Aneke and Wang, 2015a, Aneke et al., 2011b), flue gas purification, carbon 128 

dioxide capture and compression unit were adapted from White et. al., (2009) while the air 129 

liquefaction and LAPG unit were adapted from a demonstration plant study carried out by the 130 

authors. 131 

An overview of the process flow diagram shown in Figure 1 is as follows: the 10 bar 132 

pulverised coal slurry (stream 5) is first dried at the entrance to the combustor. This is 133 

followed by the decomposition of the coal into its constituents based on the properties of coal 134 

as shown in Table 1.  135 

Figure 1: Overall Process Flow Diagram of the Pressurized Oxy-coal Power Cycle for 136 

Carbon Capture Application Integrated with LAPG and Binary Cycle Engine 137 

Table 1: Properties of coal used in the simulation (adapted from (Hu and Yan, 2011)) 138 

The pressurized coal is burnt with 95.68 mol% oxygen from the cryogenic ASU (stream 4) 139 

and a portion of the recycled flue gas, (stream 10) which helps to maintain the combustion 140 

temperature at 1550 oC. A second portion of the flue gas recycle (stream 9) is used to control 141 

the temperature at the heat recovery steam generator (HRSG) inlet, which is kept close to 800 142 

oC to avoid slagging  (Zheng, 2011) and also minimize hot corrosion and oxidation (Hong et 143 

al., 2009). The hot temperature-controlled flue gas (stream 6) is passed through the HRSG 144 

where it is used to generate supercritical steam used in the supercritical steam power 145 

generation unit.  146 

The HRSG consists of two superheaters, a once-through boiler and an economizer. The steam 147 

reaches the supercritical state of 600 oC at 250 bar before being delivered to high pressure 148 

turbine (HPT) of the supercritical steam power generation unit. The superheater also acts as a 149 

re-heater to generate two reheat subcritical steam of 620 oC at 50 bar and  10 bar  for the 150 

intermediate pressure turbine (IPT) and the low pressure turbine (LPT) respectively. Due to 151 

the presence of SOx and NOx in the flue gas, flue gas from the exit of the HRSG must be 152 

maintained at a temperature higher than the acid dew point.  This is maintained at 239 oC in 153 

this present work. The remaining flue gas after the recycle is compressed to 15 bar and sent to 154 

the flue gas purification unit where water, SOx, NOx and inert gases are removed from the 155 

flue gas to achieve about 95.35 mol% CO2 which is compressed to 110 bar (stream 52) and 156 

sent to the storage facility. 157 

The nitrogen rich gas stream gas (stream 3) from the ASU unit is compressed and liquefied to 158 

produce the working fluid for the LAPG unit. The liquid nitrogen-rich stream otherwise 159 

known as the liquid air is pumped to a pressure of 120 bar (stream 33) vaporized using heat 160 

extracted from the supercritical steam power generation unit and expanded in a 4 stage 161 

turbine and reheat arrangement in the LAPG unit to produce power. 162 

The compressor heat from the intercooler and after-cooler heat exchangers in the cryogenic 163 

ASU unit, LAPG unit, the flue gas purification and the CO2 compression unit were utilized 164 

for power generation using binary cycle heat engine which uses R134a as the working fluid. 165 

The detailed description of each of the process unit is as given below. 166 

2.1 Cryogenic Air Separation Unit 167 
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As aforementioned, oxy-coal combustion process uses oxygen at >95mol% purity instead of 168 

air for combustion operation. For the pressurized oxy-coal combustion process developed in 169 

this study, the combustion pressure is assumed to be 10 bar while the combustion chamber is 170 

maintained at 1550 oC using a mixture of oxygen and flue gas recycle. The oxygen used in 171 

the combustion chamber is produced from a cryogenic ASU and should be supplied at a 172 

pressure of 10 bar.  173 

The process flow diagram of the cryogenic ASU for the specialist application proposed in this 174 

work is shown in Figure 2. Unlike the conventional ASU, the ASU proposed in this work 175 

makes use of only 2 columns to produce nitrogen-rich gaseous stream and 95.68 mol% liquid 176 

oxygen stream since there is no need for pure nitrogen and argon stream. The nitrogen-rich 177 

gaseous stream and the liquid oxygen stream exchanges heat with the in-coming air stream in 178 

the main heat exchanger in order to obtain an all gaseous product.  179 

In the process, atmospheric air is filtered, cleaned and compressed in a 3 stage compressor 180 

with inter-cooling to a pressure of 6.35 bar. The compressed air is split into two, cooled and 181 

partially liquefied against leaving product streams (gaseous nitrogen-rich stream and liquid 182 

oxygen-rich stream (95.68 mol% purity)). One of the streams is sent to the high pressure 183 

column (HPC) where nitrogen is separated at a pressure of about 6 bar. The other stream is 184 

expanded in an air expander to a pressure of about 1.2 bar and sent to the low pressure 185 

column (LPC). The top nitrogen product from the HPC is condensed against the boiling 186 

oxygen in the reboiler of the LPC, before being depressurized and sent to the top of the LPC. 187 

The bottom liquid product form the HPC is also sent to the LPC after been depressurized in 188 

the JT valve. In the LPC, gaseous nitrogen-rich stream which contains about 94.54 mol% 189 

nitrogen leaves through the top of the column while the liquid oxygen rich stream (95.68 190 

mol% oxygen) which is required for the oxy-coal combustion leaves through the bottom of 191 

the column. 192 

It is proposed in this work that the liquid oxygen produced in the cryogenic ASU be pumped 193 

to about 200 bar prior to vapourization in the main heat exchanger against in-coming air feed 194 

to the system. The high pressure gaseous oxygen from the main heat exchanger will then be 195 

expanded in the turbine to 10 bar (required combustion pressure), thus generating extra 196 

energy.  197 

Figure 2: Process Flow Diagram of Cryogenic ASU 198 

2.2 Pressurized Coal Combustion, Steam Generation Unit and Supercritical Steam 199 

Power Generation Unit 200 

The pressurized coal combustor process is based on the novel Isotherm Pwr® technology 201 

developed by ENEL (Zheng, 2011, Hong, 2009). The combustion is assumed to take place at 202 

a pressure of 10 bar and temperature of 1550 oC.  In the process, wet coal is first dried and 203 

burnt with a mixture of 95.68 mol% oxygen and 23.4% (by mass) recycled flue gas in order 204 

to maintain the temperature of the combustor at 1550 oC. The exit flue gas from the 205 

combustion chamber is mixed with about 66.6% of the recycled flue gas in order to maintain 206 

the temperature to the HRSG at about 730 oC.  207 

The supercritical steam generation unit otherwise known as the HRSG comprises of two 208 

superheaters, a once-through boiler and an economizer. The heating in the steam generation 209 

unit is provided by the temperature controlled flue gas at 730 oC in a counter-current flow 210 
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arrangement. The flue gas enters the first superheat of the HRSG at about 730 oC and is used 211 

to generate a supercritical steam at 600 oC and 250 bar and a subcritical steam (reheat stream) 212 

at 620 oC and 50 bar. The effluent flue gas from the first superheater is sent to the second 213 

superheater where is it used to further generate a subcritical steam (reheat stream) at 620 oC 214 

and 10 bar. From the second superheater, the flue gas enters the once-through boiler and the 215 

economiser where it is used to preheat and generate steam respectively before exiting the 216 

HRSG at about 239 oC.  217 

The steam power generation unit comprises of a supercritical Rankine cycle. The 218 

supercritical steam at 600 oC and 250 bar generated in the first superheater of the HRSG 219 

enters into the high pressure turbine (HPT).  The steam is expanded in the HPT to produce 220 

power. Part of the steam from the HPT is also injected into the pressurized combustor. Part of 221 

the exit steam from the HPT is reheated in the HRSG and used to provide steam for the 222 

intermediate pressure turbine (IPT) while the remaining is sent to the deaerator via a heat 223 

exchanger arrangement which is used to preheat the feed water system. The reheated steam at 224 

620 oC and 50 bar is expanded in the IPT to produce more power. Steam bleeding from the 225 

IPT is also used to preheat the feed water from the deaerator. Part of the exit steam from the 226 

IPT is returned to the HRSG and reheated to 620 oC before being sent to the low pressure 227 

turbine (LPT) while the remaining steam is sent to the deaerator. In the LPT, the steam is 228 

expanded for power generation. The exit steam from the LPT is condensed using cooling 229 

water at 25 oC. The condensed stream is preheated using heat from the water used to cool the 230 

combustion chamber wall. The combustor is assumed to lose 2% of the lower heating value 231 

of the coal to the water-cooled wall of the combustor (Hong et al., 2009). The preheated 232 

stream is sent to the deaerator where the whole liquid stream together with the makeup water 233 

is collected and pumped back into the HRSG to complete the steam cycle. The process flow 234 

diagram for these units is shown in Figure 3. 235 

Figure: 3 Process Flow Diagram of Pressurized Combustor Unit, Steam Generation 236 

Unit and Supercritical Steam Power Generation Unit 237 

2.3 Air Liquefaction Unit 238 

Figure 4 shows the liquefaction unit where the nitrogen-rich (94.54 mol %) gaseous stream 239 

from the cryogenic ASU is liquefied to produce liquid nitrogen-rich stream otherwise known 240 

as liquid air. The process is based on the principle of Claude liquefaction cycle. The nitrogen-241 

rich gas stream from the ASU is compressed in a 3 stage compressor with intercooler and 242 

after-cooler arrangement. The compressed gaseous stream is further compressed using a 243 

compressor joined to the shaft of an expander. The compressed gas is cooled with water and 244 

further cooled in the cold box with cryogenic gaseous stream from the expander outlet. The 245 

cold gaseous stream is expanded in the expander and the pressure dropped to produce a two 246 

phase stream (liquid and gas). The gaseous stream is used to cool incoming stream in the cold 247 

box while the liquid phase is sent to the cryogenic tank. 248 

Figure 4: Process Flow Diagram of Air Liquefaction Unit 249 

2.4 Liquid Air Power Generation (LAPG) Unit  250 

In this unit, the liquid air in the cryogenic tank is pumped to about 120 bar and vapourized 251 

indirectly using a hot water loop which collects heat from the steam power generation unit. 252 
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The vapourized air is expanded in a series of 4 stage expanders with inter-heaters to produce 253 

power (Figure 5). 254 

Figure 5: Liquid Air Power Generation Unit 255 

2.5 Flue gas purification, carbon dioxide capture and compression unit 256 

After recycling of about 90% of the flue gas leaving the HRSG, the remaining flue gas is 257 

cleaned to remove the NOx, SOx and the inert gases. The cleaning of the flue gas starts with 258 

an increase in the pressure of the flue gas to 15 bar. After the compression operation, direct 259 

contact scrubbing was used to cool the flue gas product as well as condense water vapour 260 

present in the flue gas and remove residual ash particles and highly soluble SO3.  261 

The removal of SO2 involves the reaction of NO2 with SO2 to form sulphuric acid. 262 

                                    NO2 + SO2 + H2O             NO + H2SO4                                              (1) 263 

This reaction is fast and so is considered to be equilibrium limited. Since most of the NOx in 264 

the flue gas occurs as NO, the NO would have to be converted to NO2 to allow equation 1 to 265 

proceed. The conversion of NO to NO2 occurs as  266 

                                                  NO + 1/2O2           NO2                                                           (2) 267 

Reaction 2 is a third order reaction with reaction rate given as (White et al., 2009)  268 

                                                    d[NO2]/dt =  2k[NO]2.[O2]                                                  (3) 269 

where k, in l2 mol-2 s-1 is 1200 x 10230/T where T is in Kelvin (White et al., 2009, Tsukahara et 270 

al., 1999). 271 

Since the rate is proportional to pressure to the 3rd power, it is assumed that the reaction rate 272 

will become significant at the pressure of 15 bars and low temperature obtained after 273 

scrubbing. 274 

After the removal of SO2, the flue gas is compressed to about 30 bar, dried and then purified 275 

further to remove the inert gases such as nitrogen and argon using low temperature 276 

processing. In the process, the impure flue gas is cooled in HX1 and HX2 against evaporating 277 

lower pressure liquid CO2 streams to a temperature of -55 oC, which is close to its triple point. 278 

The inert stream leaving the cold equipment at about 30 bars is further heated and expanded 279 

to produce power while the 95.35 mol% pure CO2 streams leaving the cold equipment are 280 

compressed adiabatically in a second stage of CO2 compression to a pressure of 110 bars. The 281 

process flow diagram is shown in Figure 6. 282 

 Figure 6: Process Flow Diagram of flue gas Cleaning, CO2 purification and 283 

compression unit  284 

2.6 Binary Cycle/Organic Rankine Cycle (ORC) Waste Heat Recovery Unit 285 

Because there is no need for further heat integration in the process, the ORC unit is used to 286 

convert the waste heat from the compressor exhausts to electricity by acting as the 287 

compressor intercooler and after cooler system(Aneke and Wang, 2015b). In the ORC unit, 288 

the waste heat from the compressor exhaust is used to preheat and vapourise an organic 289 

working fluid in the evaporator. The vapourised organic fluid from the evaporator passes 290 

through the turbine where it is expands to produce work which turns the shaft connected to 291 
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the generator to produce electricity (Aneke et al., 2012). The process flow diagram of a 292 

typical ORC system is shown in Figure 7. The system is used in all the compressors as shown 293 

in Figures 2 to 6 to compressor heat to electricity. The process uses R134a as the working 294 

fluid (Aneke et al., 2012, Aneke et al., 2011a). 295 

Figure 7: Process Flow Diagram of Organic Rankine Cycle 296 

The individual process flow diagrams presented in this work are linked to each other using 297 

alphabets from A to J.  298 

3. Aspen Plus
®

 Simulation of the Overall Process 299 

The overall model of the process was developed using Aspen Plus® v8.4. Aspen is modular 300 

mode steady state simulation software. It contains modules of unit operations (like heat 301 

exchangers, reactors, turbine, flash, pumps etc.) used in the development of the model of the 302 

entire process described in this paper. The model equations used to model the individual unit 303 

operations and the physical property calculator used to model the process stream property in 304 

Aspen were standard equations. Due to the complexity of the flowsheet and in order to 305 

improve the convergence and the simulation time, the entire flowsheet of the process as 306 

represented in Figure 1 is split into five main sub-processes: 1) pressurised coal combustion, 307 

steam generation and supercritical steam power generation unit, 2) cryogenic air separation 308 

unit, 3) nitrogen-rich stream air liquefaction and liquid air power generation unit, 4) flue gas 309 

purification, carbon capture and CO2 compression unit and 5) binary cycle heat engine  units. 310 

The sub-processes were simulated individually and the results transferred to the appropriate 311 

sub-process as inputs.  312 

Coal is modeled as a non-conventional component using the ultimate and proximate analysis 313 

(Table 1). The coal combustor in this work is modeled using the RGibbs reactor while the 314 

coal decomposition is modeled using RYield reactor together with the proximate and ultimate 315 

analysis of the coal. The fluid property of the overall process is modeled using Peng 316 

Robinson while the steam properties is modeled using STEAM-TA (ASME 1967 steam table 317 

correlations). The SO2 removal is modeled using RadFrac column with chemical reaction.  318 

The pressure drop in the heat exchangers is assumed to be negligible. The simulation 319 

parameter for the overall process is given in Table 2. 320 

Table 2: Process Simulation Parameters 321 

In order to investigate the contribution of each of the process unit to the efficiency of a 322 

standalone pressurised oxy-coal process with/without carbon capture, different kinds of 323 

process efficiencies were evaluated and analysed in this study. The first three process 324 

scenarios show the impact of how gaseous oxygen is supplied from the cryogenic ASU on the 325 

efficiency of the pressurized oxy-coal process. Three different methods of supplying 326 

pressurized gaseous oxygen to the combustion chamber were investigated in the paper. The 327 

first is by pressurizing the gaseous oxygen produced in the cryogenic ASU to combustion 328 

chamber pressure of 10 bar (Case 1), the second is pumping the liquid oxygen produced in 329 

the cryogenic ASU to 10 bar before vapourizing it in the ASU main heat exchanger (Case 2) 330 

while the third is by pumping the liquid oxygen to 200 bar before vapourizing it in the ASU 331 

main heat exchanger and then expanding the high pressure gaseous oxygen to the required 332 

combustion chamber pressure of 10 bar (Case 3) thus producing extra power from the 333 

expander. 334 
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The baseline process scenario also known as the standalone pressurized oxy-coal process 335

(Case 1) is regarded as the configuration where there is no heat recovery from compressors of 336

the cryogenic ASU unit, no integration with liquid air power generation unit and where 337

gaseous oxygen product from the cryogenic ASU is compressed to the combustor pressure of 338

10 bars before being mixed with the recycle flue gas stream going into the combustion 339

chamber. As aforementioned, other alternatives include: pumping the liquid oxygen produced 340

in the LPC of the cryogenic ASU to 10 bars prior to vapourization in the main ASU heat 341

exchanger and subsequent mixing with the recycled flue gas into the combustor (Case 2) and 342

pumping to 200 bar prior to vapourization and expanding the gaseous oxygen to 10 bars 343

before been sent to the combustor with the recycled flue gas (Case 3). All the process 344

scenarios were evaluated with/without carbon capture. 345

For processes without carbon capture, the efficiencies are defined as follows: 346

For Case 1, the efficiency of the standalone pressurised oxy-coal combustion process with 347

supercritical steam power cycle and 10 bar gaseous oxygen from the cryogenic ASU 348

(baseline process) is defined as: 349

                                                                                             (4) 350

where, 351

 is the sum of the power generated from the supercritical steam power generation unit 352

and the power from the cryogenic ASU air expander;  is the sum of the power 353

consumption by the air and gaseous oxygen compressors in the ASU as well as the pumps in 354

the supercritical power generation unit and  the thermal energy input into the system from 355

the coal. 356

For Case 2, the efficiency of the standalone pressurized oxy-coal combustion process with 357

pumped liquid oxygen to 10 bars is defined as: 358

                                                                                          (5) 359

where, 360

  is the sum of the power generated from the supercritical steam power generation unit 361

and the power from the cryogenic ASU air expander;  is the sum of the power 362

consumption by the air compressors of ASU, liquid oxygen pump and the pumps in the 363

supercritical power generation unit and  is the thermal energy input into the system from 364

the coal. 365

For case 3 where oxygen is pumped to 200 bars prior to vapourization in the main ASU heat 366

exchanger followed by expanding to 10 bars, the efficiency is defined as: 367

                                                                                       (6) 368

where, 369
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  is the sum of the power generated from the supercritical steam power generation unit, 370

the power from the ASU air expander and the power from the oxygen expander;   is 371

the sum of the power consumption by the air compressors of ASU, liquid oxygen pump and 372

the pumps in the supercritical power generation unit and  is the heat input into the system 373

from the fuel. 374

In Case 4, the efficiency improvement of Case 3 as a result of the recovery of the compressor 375

waste heat using binary cycle heat engine is evaluated. In this case, the efficiency of the 376

standalone pressurized oxy-coal combustion process with pumped oxygen to 200 bars prior to 377

vapourization in the main ASU heat exchanger followed by expanding to 10 bars (i.e. Case 3) 378

together with binary waste heat recovery from the ASU compressors is defined as: 379

                                                                                      (7) 380

where, 381

  is the sum of the power generated from the supercritical steam power generation unit, 382

the power from the ASU air expander, the power from the oxygen expander and the power 383

from the binary cycle for heat recovery from ASU compressors;  is the sum of the 384

power consumption by the air compressors of ASU, liquid oxygen pump, pumps in the 385

supercritical power generation unit and the binary cycle pump and  is the thermal energy 386

input into the system from the fuel. 387

Case 5 focuses on the liquid air power generation unit of the entire process. The efficiency is 388

defined as:  389

                                                                                      (8) 390

where, 391

is the power generated from the liquid air power generation unit;   is the discharging 392

pump power consumption and  is the sum of the heat input into the system by the 393

steam from the steam generation unit and the power consumption by the liquefaction 394

compressor (i.e. the charging power). 395

In Case 6, the impact of the binary heat recovery from the charging compressor exhaust heat 396

was investigated (i.e. Case 5 with heat recovery from the charging compressor exhaust heat 397

using binary cycle heat engine). The efficiency of the liquid air power generation unit with 398

binary cycle waste heat recovery from the compressors is given as:  399

                                                                             (9) 400

where, 401

is the sum of the power generated from the liquid air power generation unit and the 402

binary cycle waste heat recovery from compressor;   is the sum of the pump power 403

consumption by the liquid air power generation during the discharging operation and by the 404
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binary cycle engine pump and  is the sum of the heat input into the system by the 405

steam from the steam power generation unit and the liquefaction process compression power. 406

In Case 7, the efficiency of the entire process is considered. The efficiency of the pressurized 407

oxy-coal combustion process with pumped oxygen to 200 bars prior to vapourization in the 408

main ASU heat exchanger followed by expanding to 10 bars integrated with liquid air power 409

generation unit and binary cycle engine (i.e. Case 4 + Case 6)  is defined as 410

                                                                                  (10) 411

where, 412

 is the sum of the power generated from the overall process except the inert expander 413

This comprises of the power from the supercritical steam power generation unit, the liquid air 414

power generation unit, the binary cycle waste heat recovery units (except those in the flue gas 415

cleaning, CO2 purification and compression unit), the oxygen expander, the air expander of 416

the cryogenic ASU,  is the sum of the power consumption by the auxiliary equipment 417

such as pumps and ASU compressors except those in the flue gas cleaning, CO2 purification 418

and compression unit;  is the sum of the thermal energy input from the coal and  power 419

consumption by the compressors of the liquefaction process (charging power  consumption). 420

The corresponding efficiencies for the process with carbon capture is obtained by including 421

the power generation and consumption in the flue gas cleaning, CO2 purification and 422

compression unit. This include: power generation in the inert expander, power generation in 423

the binary cycle heat engines attached to the CO2 compressor train exhaust and power 424

consumption by the pumps and compressors. 425

4. Results and Discussions 426

The summary of the simulation results, stream conditions (mass flowrate, temperature and 427

pressure) and the efficiency results for the different cases investigated in this work are shown 428

in Tables 3, 4 and 5 respectively.  429

From Table 3, it can be seen that the oxygen purity generated from the ASU is about 95.68 430

mol% which met the requirement for a typical oxy-coal combustion process. The specific 431

power consumption of the ASU is 0.309 kWh/kg-O2, which is within the range of values 432

quoted in the literature (Lombardi et al., 2011, Hong et al., 2009, Kansha et al., 2011). For a 433

standalone pressurised oxy-coal process with gaseous oxygen compression to 10 bar (Case 1), 434

the gross power generation from the supercritical steam power generation system was 435

572595.28 kW while the gross power consumption by the supercritical steam power 436

generation unit pumps, gaseous oxygen compressor and cryogenic ASU compressors were 437

22821.52 kW, 20526.91 kW and  89094.10 kW respectively. This translates to an efficiency 438

of 43.75% without carbon capture. The inclusion of carbon capture reduces the efficiency to 439

39.99% giving an energy penalty of 3.76%. Replacing the gaseous oxygen compressor with 440

liquid oxygen pump (Case 2) increases the process efficiency to 45.79% and 42.03% for 441

scenarios without and with carbon capture respectively. Case 3 shows that pumping the liquid 442

oxygen to a pressure of 200 bars and expanding the gaseous oxygen to the required 443

combustion pressure of 10 bars improved the efficiency by 0.66% and 2.7% respectively for 444
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processes with and without carbon capture when compared with processes with only liquid 445 

oxygen pump and gaseous oxygen compression.   446 

Table 3: Summary of Simulation Results 447 

Table 4: Stream Temperature, Pressure and Mass Flowrate 448 

Table 5: Process Efficiencies 449 

This is because more power is generated during oxygen expansion than is consumed during 450 

the pumping operation. For example, about 1603.21 kW of power was consumed in pumping 451 

the liquid oxygen to 200 bars while about 8182.53 kW of power is generated by expanding 452 

the high pressure gaseous oxygen to the required combustor pressure of 10 bars. The 453 

temperature of the oxygen stream changes from 20 oC before the expansion process to -454 

139.50 oC after the expansion process. The exit oxygen from the expander is mixed with part 455 

of the recycled flue gas to obtain a stream at a temperature of 210 oC which is sent back to the 456 

combustion chamber. Although there is an improvement in process efficiency when Case 3 is 457 

compared with Case 2 and 1, doing this might not be economically attractive especially for 458 

Case 3 vs Case 2 since the improvement in efficiency of 0.66% might not be able to justify 459 

the cost of installing an additional oxygen expander. Case 4 shows the importance of 460 

recovering the waste heat from the compressor exhaust using binary cycle heat engine instead 461 

of the conventional water based inter-cooling/ after-cooling arrangement. The recovery of the 462 

compressor heat in the ASU adds a net power output of 9416.91 kW. The increase in the 463 

power translates to an increase in the efficiency to 47.38 % and 43.62% for cases without and 464 

with carbon capture.  465 

Figure 8: P-h Diagram of R134a working fluid used in the ORC System attached to the 466 

Cryogenic ASU 467 

In the same vein, cases 5 and 6 shows the efficiency of the liquid air power generation unit 468 

with and without waste heat recovery from the compressor exhaust stream using binary cycle 469 

heat engines. Without waste heat recovery, the efficiency of the liquid air power generation 470 

unit is 40.17%.  This is improved to 42.69% when the waste heats from the compressors are 471 

converted to power using binary cycle heat engines. Figure 8 shows the Pressure-enthalpy 472 

diagram of the binary cycle heat engine (ORC) attached to the compressors in the cryogenic 473 

ASU. The flue gas cleaning, CO2 purification and compression unit modeled in this work 474 

consumes about 38009.75 kW of power to generate 89.30 kg/s of CO2 with purity of 95.35 475 

mol.%.  This gives a specific power consumption of 0.118 kWh/kg-CO2. The round trip 476 

efficiency of the overall process is calculated as 56.01% and 54.74% for cases without and 477 

with carbon capture respectively. It is interesting to see that the round trip efficiency for the 478 

case with carbon capture is slightly lower than that without carbon capture. The reason is 479 

because, the sum of power obtained from the binary cycle waste heat recovery heat engines 480 

attached to the compressors in the flue gas cleaning, CO2 purification and compression unit 481 

as well as the power from the inert expander is lower than the sum of the powers consumed 482 

by the compressors and pumps in the purification and compressor unit (39979.04 kW vs 483 

26112.06 kW). Thus, with the use of binary waste heat recovery heat engines to convert the 484 

waste heat from the compressors used in the flue gas purification unit, it is possible to 485 

generate up to 65% of the power consumed in the flue gas cleaning, CO2 purification and 486 

compression unit.  487 
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5. Conclusions 488 

The study carried out in this paper shows that the integration of liquid air power generation 489 

process to a standalone pressurized oxy-coal supercritical steam power generation process 490 

brings an enormous thermodynamic advantage as seen by the increase in the thermodynamic 491 

efficiency of the integrated process when compared to the standalone process. The results 492 

also show that the recovery of the waste heat from the compressors using binary cycle heat 493 

engines also helps to improve the overall power generated from the process. It was also found 494 

that the power generated by the binary cycle heat engine which recovers waste heat from the 495 

entire compressor train of the flue gas cleaning, carbon dioxide purification and compressor 496 

unit is capable of offsetting up to 65% of the power required for the flue gas cleaning, carbon 497 

capture and compression process. The results also show the significance of incorporating 498 

waste heat recovery technology to recover compressor waste heat from processes which make 499 

use of compressors.   500 

Acknowledgement  501 

The authors would like to thank UK EPSRC (through EPSRC Capital Investment on Energy 502 

Storage) and University of Hull for their financial support.  503 

References 504 

ANEKE, M., AGNEW, B. & UNDERWOOD, C. (2011a) Approximate Analysis of the Economic 505 

Advantage of a Dual Source ORC System Over two Single ORC Systems in the Conversion 506 

of Dual low and Mid Grade Heat Sources. Journal of EUEC, 5, 1-17. 507 

ANEKE, M., AGNEW, B. & UNDERWOOD, C. (2011b) Performance analysis of the Chena binary 508 

geothermal power plant. Applied Thermal Engineering, 31, 1825-1832. 509 

ANEKE, M., AGNEW, B., UNDERWOOD, C., WU, H. & MASHEITI, S. (2012) Power Generation 510 

from Waste Heat in a Food Processing Application. Applied Thermal Engineering, 36, 171-511 

180. 512 

ANEKE, M. & WANG, M. (2015a) Improving the Energy Effficiency of Cryogenic Air Separation 513 

Unit (ASU) through Compressor Waste Heat Recovery using Direct Binary Heat Engine 514 

Cycle. IN GERNAEY, V. K., HUUSOM, K. J. & GANI, R. (Eds.) 12th International 515 

Symposium on Process Systems Engineering and 25th European Symposium on Computer 516 

Aided Process Engineering. Copenhagen, Denmark, Elservier. 517 

ANEKE, M. & WANG, M. (2015b) Potential for improving the energy efficiency of cryogenic air 518 

separation unit (ASU) using binary heat recovery cycles. Applied Thermal Engineering, 81, 519 

223 - 231. 520 

BARBUCCI, P. (2008) The Enel's CCS Project. Enel - Engineering and Innovation Division- Italy. 521 

CASTLE, W. F. (2002) Air separation and liquefaction: recent developments and prospects for the 522 

beginning of the new millennium. International Journal of Refrigeration, 25, 158 - 172. 523 

CIFERNO, J. P., FOUT, T. E., JONES, A. P. & MURPHY, J. T. (2000) Capturing Carbon from 524 

Existing Coal-Fired Power Plants. American Institute of Chemical Engineers, April, 33 - 41. 525 

HAGI, H., NEMER, M., LE MOULLEC, Y. & BOUALLOU, C. (2013) Assessment of the Flue Gas 526 

Recyle Strategies on Oxy-Coal Power Plants using an Exergy-based Methodology. Chemical 527 

engineering Transactions, 35, 343 - 346. 528 

HONG, J., CHAUDHRY, G., BRISSON, J. G., FIELD, R. & GAZZINO, M. (2009) Anaysis of oxy-529 

fuel combustion power cycle utilizing a pressurized coal combustor. Energy, 34, 1332 - 1340. 530 

HU, Y. & YAN, J. (2011) Characterization of flue gas in oxy-coal combustion processes for CO2 531 

capture. Applied Energy, 90, 113 - 121. 532 

IEA (2011) CO2 Emissions from fuel combustion: Highlights. International Energy Agency. 533 

IEA (2012) Key World Energy Statistics. International Energy Agency, www.iea.org. 534 

IEA (2013) Key World Energy Statistics. International Energy Agency. 535 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



KANSHA, Y., KISHIMOTO, A., NAKAGAWA, T. & TSUTSUMI, A. (2011) A novel cryogenic air 536 

separation process based on self-heat recuperation. Separation and Purification Technology, 537 

77, 389 - 396. 538 

LOMBARDI, L., CARNEVALE, E. & CORTI, A. (2011) Analysis of energy recovery potential using 539 

innovative technologies of waste gasification. Waste Management, 32, 640 - 652. 540 

MANENTI, F., ROSSI, F., CROCE, G., GROTTOLI, M. G. & ALTAVILLA, M. (2013) Intensifying 541 

Air Separation Units. Chemical engineering Transactions, 35. 542 

ROY, B. & BHATTACHARYA, S. (2013) Oxy-fuel Combustion Performance of Victorian Brown 543 

Coals in a 10 kWth Fluidized Bed. 3rd Oxyfuel Combustion Conference. Ponferrada, Spain. 544 

RÜBBERDT, K. (2009) Producing oxygen and nitrogen: Air separation techniques continue to 545 

advance. ACHEMA 2009, 29th International Exhibition Congress in Chemical Engineering, 546 

Environmental Protection and Biotechnology. Frankfurt am Main, Germany. 547 

STRAHAN, D. (2013) Liquid Air Technologies - a guide to potential. Centre for Cryogenic Energy 548 

Storage, University of Birmingham, UK. 549 

TSUKAHARA, H., ISHIDA, T. & MAYUMI, M. (1999) Gas-Phase Oxidation of Nitric Oxide: 550 

Chemical Kinetics and Rate Constant. Ideal, 3, 191 - 198. 551 

WCA (2014) Coal & Electricity. World Coal Association, Available at: www.worldcoal.org,  552 

Accessed 29th October: 2014. 553 

WHITE, V., TORRENTE-MURCIANO, L., STURGEON, D. & CHADWICK, D. (2009) Purificatin 554 

of Oxyfuel-Derived CO2. Energy Procedia, 1, 399 - 406. 555 

ZHENG, L. (Ed.) (2011) Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) 556 

Capture, Woodhead, UK. 557 

 558 

 559 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 

Figure 1: Overall Process Flow Diagram of the Pressurized Oxy-coal Power Cycle for Carbon Capture Application Integrated with 

LAPG and Binary Cycle Engine 

Figure
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Figure 2: Process Flow Diagram of Cryogenic ASU 
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Figure: 3 Process Flow Diagram of Pressurized Combustor Unit, Steam Generation 

Unit and Supercritical Steam Power Generation Unit 
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Figure 4: Process Flow Diagram of Air Liquefaction Unit 
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Figure 5: Liquid Air Power Generation Unit 
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Figure 6: Process Flow Diagram of flue gas Cleaning, CO2 purification and compression 

unit  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



G

R134a Binary Cycle Working Fluid

Nitrogen-rich stream

Hot fluid from compressor

Cooling Water

G Generator

Cooling Water

Hot fluid from compressor

Preheater/Evapoarator/Superheater

Pump Condenser

Expander

 

Figure 7: Process Flow Diagram of Organic Rankine Cycle 
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Figure 8: P-h diagram of R134a used in the ORC system attached to the Cryogenic ASU
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Tables 

Table 1: Properties of coal used in the simulation (adapted from (Hu and Yan, 2011)) 

Coal Type Bituminous 

Moisture (wt.%) as analysed 1.07 
Proximate (wt.%) (dry)  
Ash 8.75 
Volatile matter 35.33 
Fixed carbon 54.85 
Ultimate (wt.%) (dry)  
Carbon 77.65 
Hydrogen 5.04 
Nitrogen 1.49 
Sulfur 0.95 
Ash 8.84 
Oxygen 6.03 
Heating value (MJ/kg) 32.51 
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Table 2: Process Simulation Parameters 

Parameters Value 

Cryogenic ASU  
Air mass flowrate  400 kg/s 
Air composition (mol. %)  
Nitrogen 78.12 
Oxygen 20.95 
Argon 0.93 
Compressor discharge pressure 6.35 bar  
LPC Pressure 1.2 bar 
HPC Pressure 5.7 bar 
No of stages in LPC 69 
No of stages in HPC 45 
Liquid oxygen pump  discharge pressure 200 bar 
Gaseous oxygen expander inlet pressure 200 bar 
Pressurized Oxy-Coal Process  
Coal mass flowrate 31.11 kg/s 
Combustor pressure 10 bar 
Combustor temperature 1550 oC 
Steam Generation Unit  
Flue gas inlet temperature to HRSG 730 oC 
Flue gas outlet temperature from HRSG 239 oC 
Supercritical Power Generation Unit  
Turbine inlet pressure 250 bar 
Turbine inlet temperature 600 oC 
Reheat  Temperature 620 oC 
Deaerator Pressure 10 bars 
Air Liquefaction Unit  
Compressor discharge pressure 8 bars 
Liquid air temperature -189 oC 
Liquid air Pressure 1.99 bars 
Liquid Air Power Generation Unit  
Turbine inlet pressure 120 bars 
Reheat temperature 70 oC 
Flue Gas Cleaning, CO2 purification and compression unit  
Inert expander inlet pressure 30 bars 
Overall Process  
Pump efficiency 0.80 
Compression efficiency 0.80 
Turbine Efficiency 0.80 
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Table 3: Summary of Simulation Results 

Performance Parameters Value 

Cryogenic ASU  
Materials  
Oxygen stream mass flowrate (kg/s) 78.01  
Oxygen stream composition (mol. %)  
Nitrogen 0.80 
Oxygen 95.68 
Argon 3.52 
Nitrogen-rich stream  mass flowrate (kg/s) 321.99 
Nitrogen-rich stream composition (mol. %)  
Nitrogen  94.54 
Oxygen 5.08 
Argon 0.38 
Power Consumption & Generation (kW)  
Compressor Power consumption 89094.10 
Liquid Oxygen Pump power consumption 1603.21 
Gaseous Oxygen Expander Power output 8182.53 
Air Expander Power output 2340.59 
Supercritical Power Generation Unit (kW)  
Gross Turbine Power output 572595.28 
Gross Pump Power consumption 22821.52 
Air (Nitrogen-rich stream)  Liquefaction Unit Power Consumption (kW)  
Compressor Power Consumption (Charging Power) 78219.00 
Liquid Air Power Generation Unit   
Liquid Air Pump Power consumption (kW) 5048.40  
Liquid Air Turbine Power output (kW) 125908.31 
Thermal Energy Input from steam for Liquid Air Vapourization (kWth) 222639.45 
Flue Gas Cleaning, Carbon dioxide purification and Compression Unit   
Flue gas purification  and CO2 compression train power consumption (kW) 37989.27 
Scrubber recirculating  stream pump power consumption (kW) 204.77 
Inert Expander Power  generation (kW)  184.29 
CO2 stream purity (mol. %) 95.35 
CO2 stream mass flowrate (kg/s) 89.30 
Binary Cycle Heat Engine Power (kW)  
ASU  compressor heat  recovery binary cycle power output  9860.37 
ASU binary cycle pump power consumption 443.46 
Liquefaction compressor heat recovery binary cycle power output 7978.31 
Liquefaction binary cycle pump power consumption 406.62 
Flue gas purification and CO2 compression binary cycle power output 25927.77 
Flue gas purification and CO2 compression binary cycle pump power 
consumption 

1785.00 
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Table 4: Stream Temperature, Pressure and Mass Flowrate 

Stream no Mass flowrate (kg/s)      Pressure (bar) Temperature (
o
C) 

1 400.00 1.01 30.00 
2    78.01           200.00 20.00 
3  321.99 1.10 20.00 
4    78.01             10.00            -139.50 
5    31.11             10.00                 25.00 
6  803.85             10.00             1550.00 
7 2106.73             10.00                239.07 
9 1602.88 10.00 239.07 
10 563.18 10.00 239.07 
12 657.78 250.00 184.46 
13 657.78 250.00 215.00 
16 657.78 250.00 600.00 
18 105.24 50.00 340.59 
19 420.98 50.00 340.59 
22 188.60 10.00 384.85 
25 188.60 0.41 232.18 
26 188.60 11.20 32.96 
30 321.99 11.77 64.40 
31 321.99 11.77 -163.00 
32 289.15 1.99 -189.00 
33 289.15 120.00 -184.08 
40 240.67 10.00 167.19 
41 199.69 15.00 217.91 
42 92.03 15.00 26.05 
43 92.03 30.00 86.93 
44 91.95 30.00 40.00 
45 91.95 30.00 -10.00 
46 55.88 30.00 -10.00 
47 2.70 30.00 -20.00 
48 2.70 7.00 -61.94 
49 53.17 30.00 -20.00 
50 53.17 5.00 -61.52 
51 53.17 20.00 161.41 
52 89.24 110.00 37.78 
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Table 5: Process Efficiencies 

Performance 

Parameters 
Case 1 Case 2 Case 3 Case  4 Case 5 Case 6 Case 7 

  1011386.10a,b 1011386.10a,b 1011386.10a,b 1011386.10a,b   1089605.10a,b 

      300858.45 300858.45  

  574935.87a 

575120.16b 
574935.87a 

575120.16b 
     

    583118.40a 
583302.69b 

    

     592978.77a 

593163.06b 
   

      125908.31   

        724524.80a 

750636.86b 
       133886.62  

  132442.53a 

170636.57b 
      

   111847.11a 

150041.15b 
113379.74b 
151573.78b 

    

     113823.20a 

152017.24b 
   

      5048.40   

       5455.02  

        114229.83a 

154208.87b 
Efficiency        
 43.75%a 

39.99%b 
45.79%a 

42.03%b 
46.45%a 

42.69%b 
47.38%a 

43.62%b 
40.17% 42.69% 56.01%a 

54.74%b 
All parameters are in kW; (a) means without carbon capture; (b) means with carbon capture 
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