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Objectives: Methicillin resistance in Staphylococcus spp. results from the expression of an alternative penicillin-
binding protein 2a (encoded by mecA) with a low affinity for b-lactam antibiotics. Recently, a novel variant of
mecA known as mecC (formerly mecALGA251) was identified in Staphylococcus aureus isolates from both
humans and animals. In this study, we identified two Staphylococcus sciuri subsp. carnaticus isolates from
bovine infections that harbour three different mecA homologues: mecA, mecA1 and mecC.

Methods: We subjected the two isolates to whole-genome sequencing to further understand the genetic context
of the mec-containing region. We also used PCR and RT–PCR to investigate the excision and expression of the
SCCmec element and mec genes, respectively.

Results: Whole-genome sequencing revealed a novel hybrid SCCmec region at the orfX locus consisting of a class E
mec complex (mecI-mecR1-mecC1-blaZ) located immediately downstream of a staphylococcal cassette chromo-
some mec (SCCmec) type VII element. A second SCCmec attL site (attL2), which was imperfect, was present down-
stream of the mecC region. PCR analysis of stationary-phase cultures showed that both the SCCmec type VII
element and a hybrid SCCmec-mecC element were capable of excision from the genome and forming a circular
intermediate. Transcriptional analysis showed that mecC and mecA, but not mecA1, were both expressed in
liquid culture supplemented with oxacillin.

Conclusions: Overall, this study further highlights that a range of staphylococcal species harbour the mecC gene
and furthers the view that coagulase-negative staphylococci associated with animals mayact as reservoirs of anti-
biotic resistance genes for more pathogenic staphylococcal species.
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Introduction
Awide range of staphylococcal species harbour the mecA gene en-
coding an alternative penicillin-binding protein 2a (PBP2a), which
has a low affinity for b-lactam antibiotics and allows cell wall syn-
thesis to occur in the presence of b-lactam antibiotics.1 – 4 mecA,
along with its cognate regulators mecI-mecR1, are acquired as
part of a larger mobile element known as staphylococcal cassette
chromosome mec (SCCmec).5 SCCmec elements insert into the
chromosome at the 3′ end of the orfX by site-specific recombin-
ation mediated by the CcrA and CcrB recombinases encoded
on SCCmec.6,7 Coagulase-negative staphylococcal species are

thought to be the source of mecA for methicillin-resistant Staphylo-
coccus aureus (MRSA), with a number of studies having identified
likely in vivo transfer events from a coagulase-negative staphylo-
coccal species to S. aureus.8 – 10 The evolutionary origins of the
mecA gene are thought to lie in the common ancestor of Staphylo-
coccus fleurettii, Staphylococcus vitulinus and Staphylococcus
sciuri,11 – 13 further supported by experimental evidence that the
mecA1 (pbpD) gene of S. sciuri is capable of mediating high-level
b-lactam resistance in S. aureus.13

Recently,a novel allele of mecAwas identified in MRSA from both
humans and a range of animal species (livestock, small mammals
and birds) across Europe.14 – 19 Further work in Denmark identified
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likely transmission events between livestock and humans, sug-
gesting a zoonotic reservoir for the human isolates.20,21 This type
of mec is named mecC (originally mecALGA251) and shares 70% nu-
cleotide identity with mecA.18,22 The mecC gene is present with its
cognate regulators mecI-mecR1 as part of a class E mec complex
that shares structural similarity (mecI-mecR1-mecC-blaZ) with a
mec gene complex found in Macrococcus caseolyticus.23 The
class E complex is present as part of a larger 29.4 kb SCCmec
type XI inserted at orfX, which also encodes the recombinase
genes ccrA/B and arsenic resistance genes.18 We recently
described an isolate of Staphylococcus xylosus with a novel allo-
type of mecC (mecC1) present as part of a possible ancestral
SCCmec element.24 In this work, we describe two S. sciuri subsp.
carnaticus isolates cultured from skin infection in cattle that
harbour three distinct types of the mec gene (mecC, mecA and
mecA1). This is the first demonstration of mecC in S. sciuri and sug-
gests that, like the ‘conventional’ mecA gene, mecC is also present
in a range of staphylococcal species found in animals. This isolate
also carries a novel hybrid SCCmec consisting of SCCmec type VII,
encoding mecA and a separate mecC region.

Materials and methods

Bacterial strains and growth conditions
Isolates were grown on blood agar (Oxoid, UK) and in tryptone soya broth
(TSB) at 378C. A list of isolates used in this study is shown in Table 1. Anti-
microbial susceptibility testing was performed using disc susceptibility
testing according to BSAC criteria (BSAC Methods for Antimicrobial Suscep-
tibility Testing Version 11.1 May 2012). Isolates were tested for resistance to
oxacillin, chloramphenicol, erythromycin, cefoxitin, ciprofloxacin, penicillin,
neomycin, tetracycline, fusidic acid and gentamicin. NCTC 12493 and NCTC
6571 were used, respectively, as control resistant and susceptible isolates
for oxacillin and cefoxitin.

Whole-genome sequencing
Genomic DNA of S. sciuri isolates GVGS2 and GVGS3 was extracted from
overnight cultures grown in TSB at 378C using the MasterPure Gram Positive
DNA Purification Kit (Cambio, UK) or by the isothiocyanate/guanidine
method.25 Illumina library preparation was carried out as described by
Quail et al.26 and Hi-Seq sequencing was carried out following the manufac-
turer’s standard protocols (Illumina, Inc., USA).

Sequence analysis and phylogenetics
Contigs for GVGS2 were assembled de novo from Fastqs with Velvet.27

Contigs containing the orfX region were closed by PCR using specific
primers at the ends of each contig and ABI sequencing of the resulting
PCR amplicons (Source Bioscience, Cambridge, UK). Sequences of the orfX

region in S. sciuri isolate GVGS2 were submitted to the EMBL database
under the accession number HG515014. Annotation was carried out
using the automated RAST server28 and then manually with Artemis.29

Orthologous proteins were checked against the NCBI or EBI databases
using BLAST. Comparative genomics was carried out using WebACT30 and
viewed with the Artemis comparison tool (ACT).31 The presence of antibiotic
resistance genes was identified using the ResFinder-1.3 Server (http://cge.
cbs.dtu.dk/services/ResFinder/)32 and by BLAST. Nucleotide sequences of
mecA homologues were aligned using ClustalW in Seaview33 and a
maximum likelihood tree was generated using RAxML.34

PCR for SCCmec excision
Primers were designed using Primer 3 (http://primer3.sourceforge.net).
Genomic DNA was extracted using the MasterPure Gram Positive DNA Puri-
fication Kit (Cambio, UK) from stationary-phase cultures grown in TSB. PCR
was carried out using MyTaq DNA Polymerase (Bioline, UK). Primer sequences
are listed in Table 2. PCR amplicons were ABI sequenced (Source Bioscience,
Cambridge, UK).

Oligonucleotide primer design and strain screening
The sequences of mecC from S. aureus LGA251 and S. sciuri GVGS2 and
mecC1 from S. xylosus S04009 were aligned with Seaview33 and conserved
primers were designed using Primaclade.35 The presence of mecC was con-
firmed by PCR on boilates or genomic DNA using primers: mecC-Uni-F and
mecC-Uni-R. Primer sequences are listed in Table 2. Boilates were prepared
by inoculating two or three single colonies in 50 mL of sterile H2O and boiling
for 5 min, followed by centrifugation at 16000 g for 2 min.

Transcriptional analysis of mec gene expression by RT–PCR
Isolates GVGS2 and GVGS3 were grown in 5 mL of TSB supplemented with
0.1 mg/L oxacillin overnight at 378C with 200 rpm shaking. After�16 h, the
cultures were diluted 1/50 into 5 mL of fresh TSB supplemented with
0.1 mg/L oxacillin and grown for 3 h under the same conditions to an
optical density of �0.8 at 595 nm. An S. sciuri mecA/mecA1-positive
isolate and an ST130 S. aureus mecC-positive isolate were also grown
under the same conditions as controls. Total RNA was then extracted
from 1 mL of culture using the SV Total RNA Isolation System (Promega,
UK) following the manufacturer’s standard protocol for Gram-positive bac-
teria. After an additional DNAse step using RQ1 RNase-Free DNase
(Promega, UK), cDNA was synthesized using ProtoScriptw II Reverse Tran-
scriptase (NEB,UK) and a Random Hexamer primer (Fisher Scientific, UK) fol-
lowing the manufacturer’s standard protocol. Controls without reverse
transcriptase were generated for all samples and showed no amplification
in the subsequent PCRs. cDNA was used undiluted in a standard PCR for the
detection of mecC (mecC-Uni-F/R), mecA (MecA1/A2) and mecA1 (mecA1-
spec-F/R) (Table 2). PCR was carried out using MyTaq DNA Polymerase
(Bioline, UK). A PCR for 16S rRNA (Uni-16s-Ctrl-F/R) was also carried out as a
positive control for cDNA synthesis (Table 2).

Table 1. Isolates of S. sciuri subsp. carnaticus and key genotypic and phenotypic characteristics described in this study

Isolate Resistance genotypea Resistance phenotypeb Reference

GVGS2 str, blaZ, mecA, mecC, mecA1, erm(C), fexA, tet(K) OXA, CEF, CHL, PEN, TET, FUS this work
GVGS3 str, blaZ, mecA, mecC, mecA1, fexA, tet(K) OXA, CEF, CHL, PEN, TET, FUS this work

astr, streptomycin resistance; blaZ, b-lactamase (penicillin resistance); mecA, b-lactam resistance; mecC, b-lactam resistance; mecA1, potential for
b-lactam resistance with a promoter mutation;51 fexA, chloramphenicol resistance; tet(K), tetracycline resistance; erm(C), erythromycin resistance.
bOXA, oxacillin; CEF, cefoxitin; CHL, chloramphenicol; PEN, penicillin; TET, tetracycline; FUS, fusidic acid.
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Results

Multidrug-resistant S. sciuri subsp. carnaticus from wound
infections in cattle

A farm in the south-west of England had multidrug-resistant bac-
terial infections in caesarean incision wounds in several Belgian
Blue cattle. Multidrug-resistant Staphylococcus species (Table 1)
were isolated from wound swabs taken from two cows (GVGS2
and GVGS3); both isolates were subjected to whole-genome se-
quencing. Analysis of 16S rRNA genes revealed these isolates to
be S. sciuri. Further sub-speciation by BLAST comparison of the
hsp60, sodA, dnaJ and tuf genes against the NCBI database identi-
fied the isolates as S. sciuri subsp. carnaticus.36,37 BLAST compari-
son of the four largest contigs (total size of contigs: 703911 bp,
�26% of GVGS2 genome) of the complete GVGS2 de novo
genome assembly against GVGS3 identified only one single-
nucleotide polymorphism (SNP), suggesting that the two isolates
were very closely related (the same strain). The two isolates were
resistant to a range of antimicrobial drugs (Table 1). Analysis of
the genome sequence identified a number of resistance genes, in-
cluding str, erm(C) (GVGS2 only), fexA and tet(K). These findings
match the phenotype for these isolates, except for isolate
GVGS2, which was susceptible to erythromycin on disc testing
despite being positive for erm(C) (Table 1). Further analysis of the
GVGS2 erm(C) gene revealed it to be part of a putative �2.5 kb
plasmid (datanot shown). Theerm(C) genewas intact, but contained
an Ile123Val substitution compared with the most closely related
S. aureus erm(C) sequences in the NCBI database (accession
number YP_001901404).

The orfX region of isolate GVGS2 contains both mecA
and mecC

BLAST analysis identified that both isolates (GVGS2 and GVGS3)
harboured three different homologues of the mecA gene: mecA,
mecA1 and mecC. We further analysed the genome of GVGS2 in
detail and identified that two of the mecA homologues (mecA
and mecC) were found at the orfX locus (the SCCmec insertion

site) (Figure 1), while mecA1 was part of the previously reported
chromosomal locus that shared the greatest similarity to S. sciuri
subsp. carnaticus strain ATCC 700058 (accession number
AB547236) (data not shown).12 Comparative genomics of the
orfX locus identified that the region was made up of two distinct
parts; immediately downstream of the orfX locus was an SCCmec
element that is most closely related to the SCCmec type VII in
Staphylococcus pseudintermedius strain KM241 (Figure 1).38 The
SCCmec in GVGS2 differed from the SCCmec type VII in S. pseudin-
termedius by the presence of a number of extra genes and a small
deletion. Firstly, an extra hypothetical protein and a putative short-
chain dehydrogenase/reductase were present at the 5′ end prox-
imal to orfX and downstream of the ccrB5 gene, respectively,
both of which are absent in S. pseudintermedius. Next, the two
small hypothetical proteins present upstream of the ccrA gene in
the S. pseudintermedius SCCmec were absent in GVGS2. At the 3′

end of the SCCmec, an extra AAA superfamily ATPase and a puta-
tive serine protease were also present in S. sciuri. The SCCmec
element was bounded by two intact repeats (SCCmec attR
and attL) (Figures 1 and 2). The region containing the mecC gene
was immediately downstream of the SCCmec element and
was bounded by a second SCCmec attL site at the 3′ end (attL2)
(Figures 1 and 2). The mecC gene, as in S. aureus and S. xylosus,
was part of a homologous class E mec gene complex
(mecI-mecR1-mecC-blaZ).18,24 The mecC gene in GVGS2 shared
96.3% nucleotide identity with mecC from LGA251 and 91% nu-
cleotide identity with mecC1 from S. xylosus. The other genes,
mecI, mecR1 and blaZ, shared 95.6%, 97.1% and 97.7% nucleotide
identity, respectively, with their respective homologues in LGA251.
Fourother genes were present between the mec gene complexand
attL2. Immediately downstream of mecI was an AsnC family tran-
scriptional regulator and putative glyoxalase, which were most
closely related to an AsnC family transcriptional regulator in Clos-
tridium arbusti SL206 (accession number ZP_10773559) and a
glyoxalase/bleomycin resistance protein in Paenibacillus sp. JDR-2
(accession number YP_003008991), respectively. Next, there was
a PhnB-like protein and a DeoR family putative transcriptional regu-
lator, which are found in a number of S. aureus SCCmec elements in
the DDBJ/EMBL/GenBank databases. Immediately downstream of

Table 2. Oligonucleotide primers used in this study

Primer name Sequence 5′ –3′ Target/function Source

P1 TATCATCGGCGGATCAAACG detection of SCCmec excision this work
P2 TGCGGAGGCTAACTATGTCA detection of SCCmec excision this work
P3 TTGCCAATTAAAAGGTTGGTTAG detection of SCCmec excision this work
P4 TCTCAAGTAACATCTCAGCAATGA detection of SCCmec excision this work
P5 TGTGGTGCCAATGTCAAAGT detection of SCCmec excision this work
P6 TCGCTTTACAAGTGTCATGTTT detection of SCCmec excision this work
MecA1 GTAGAAATGACTGAACGTCCGATAA mecA 52

MecA2 CCAATTCCACATTGTTTCGGTCTAA mecA 52

mecC-Uni-F GGATCTGGTACAGCATTACAACC mecC/mecC1 this work
mecC-Uni-R TGCTTTAAATCRATMTTGCCG mecC/mecC1 this work
mecA1-spec-F TTGAAGAAGCAACAACGCAC mecA1 this work
mecA1-spec-R GAACCGTAGTCATCTTTCATGTTG mecA1 this work
Uni-16s-Ctrl-F ACACGGTCCAGACTCCTACG 16S rDNA this work
Uni-16s-Ctrl-R ATAATTCCGGATAACGCTTGC 16S rDNA this work
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attR attL

S. pseudintermedius KM241

SCCmec type VII

S. aureus LGA251

SCCmec type XI

S. sciuri
GVGS2

% G/CmecA-mecR1-mecI cadD cadA cadC ccrB ccrA

attR

4 kb

attL attL2

attLattR

arsCBR

arsCBR

mecA-mecR1-mecI

blaZ-mecC-mecR1-mecI

cadD cadA cadC ccrB ccrA

ccrB ccrA Dlip

SCCmec type VII mecC region

ABC

transporter

blaZ-mecC-mecR1-mecI

Figure 1. Comparison of the novel hybrid SCCmec-mecC in S. sciuri isolate GVGS2 (EMBL accession number HG515014), SCCmec type VII in S. pseudintermedius strain KM241 (EMBL accession
number AM904731) and SCCmec type XI in S. aureus LGA251 (EMBL accession number FR821779). Areas of red show regions conserved between the two sequences and homologous coding
DNA sequences are marked in the same colour. Blue dots indicate the SCCmec att sites. The percentage G/C content of the region is shown above each genome schematic.
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the mecC region attL2 were four genes also present in the full
SCCmec VII element upstream: a putative transmembrane pro-
tein, a putative transcriptional regulator, a rhodanese domain-
containing protein and a metallo-b-lactamase superfamily protein.
These genes are also part of the S. fleurettii chromosomal mecA
locus that has been suggested to be the template for the mec
complex in mecA SCCmec elements.12 Finally, downstream of
this was an arsenic resistance gene cluster, arsCBR, which is part
of the SCCmec type XI and which was also found to be present in
the chromosome of S. xylosus S04009.24

Both the SCCmec type VII and a hybrid SCCmec-mecC can
excise from the chromosome

Previously, excision of a tandem arginine catabolic mobile element
(‘ACME’)-SCCmec and a SCCmec type IV cassette at a secondary
attR site (attR2) was reported in S. aureus.39,40 Further analysis of
the flanking repeats showed that the attL2 repeat downstream
of the mecC region contained an SNP (C to A) at the central cytosine
previously shown to be essential for recombination between attB
and attS (attSCC), suggesting that this repeat might not be func-
tional (Figure 2b).41 The attR of the SCCmec also contained an
SNP in the central 8 bp region in comparison with the attR of
S. aureus N315 (T to A); however, substitutions in this position
have been demonstrated not to adversely affect recombination.41

Therefore, as the SCCmec and mecC region in GVGS2 are bounded
by a single attR and two different attL sites (attL and attL2)
(Figures 1 and 2a) we designed PCR primers in order to detect exci-
sion and circularization of either the SCCmec type VII element
alone (attR×attL) or a putative larger hybrid SCCmec-mecC
element (attR×attL2) (Figure 2a). PCRs were designed to amplify
across the orfX attB region if excision of either the SCCmec type
VII alone (P1+P4) or a hybrid SCCmec-mecC (P1+P6) element oc-
curred. A second set of PCRs were carried out to detect the putative
extrachromosomal circular forms of either the SCCmec type VII
(P2+P3) or the SCCmec-mecC (P2+P5) hybrid (Figure 2a). PCR con-
ducted on �250 ng of genomic DNA from stationary-phase cul-
tures produced weak positive PCR amplicons for P1+P4, P1+P6,
P2+P3 and P2+P5 primer combinations. Sequencing of the PCR
amplicons confirmed formation of attB between both attR×attL
(P1+P4) and between attR×attL2 (P1+P6). Sequencing also con-
firmed the formation of the attSCC (present in the circular form)
between attR×attL of the SCCmec type VI (P2+P3) and the attR×
attL2 of the hybrid SCCmec-mecC (P2+P5).

Transcriptional analysis of mecC and mecA

In order to assess if both mecC and mecA were expressed in the
same isolate, S. sciuri GVGS2 and GVGS3 were subjected to tran-
scriptional analysis in the presence of low levels of oxacillin

P2

P2
mecA-mecR1-mecI cadD cadA cadC ccrB ccrA attL

mecC regionSCCmec type VII

Hybrid

SCCmec-mecC

attL2 arsCBR
P1

attR

P3

P3 P4

P2 P5

4 kb

P5 P6

SCCmec
type VII

attR_N315
ATCGCGCATTTAAGATCATGCGTGGGGAAGCATATCATAAATGATGCGGTTTTTTCAGCCGCTTCATAAAGG
ATAGAGCGTTTAAGATTATGCGTGGAGAAGCGTATCACAAATGATGCGGTTTTTTTAACCTCTTTACGTATG

AAAACCTCATCATTAACTGATACGCAGAGGCGTATCATAAGTAAAACTAAAAAATTCTGTATGAGGAGATAA

AAAACCGCATCATCTACCGATAAGCAGAAGCATATCATAAGTAGAAGGGGTATTAGCCAATTTAATAAATAA
AAAACCGCATCACTACCTGATAAGTAGAGCCATATAATAAATAATCCTGAAAATCCACCCAATTTAAAGTAT

TAAACCGCATCATTAACTGATAAGCATAGAGTTATCAATCTTTTTGATAATAAGAAAGTACAGAGCAACTAA

attR_SCCmec
attR_LGA251

attL_N315
attL_SCCmec
attL_LGA251
attL2_mecC

ATAGAGCATTTAAGATTATGCGTGGAGAAGCATATCATAAATGATGCGGTTTTTTCAGCCGCTTCATAAAGG

(a)

(b)

blaZ-mecC-mecR1-mecI

Figure 2. SCCmec-mecC element excision and repeats. (a) Schematic representation of potential excised circular SCCmec and hybrid SCCmec-mecC, and
location of PCR primers used to detect excision. (b) DNA sequences of attR and attL sites in S. aureus N315 (N315), SCCmec type VII in S. pseudintermedius
strain KM241 (SCCmec), SCCmec type XI in S. aureus LGA251 (LGA251) and downstream of the mecC region in S. sciuri GVGS2 (mecC). The bases that make
up the inverted repeat are underlined. The bases in blue represent the core 8 bp regions identified in the attB site with mutations highlighted in red.41 The
central cytosine is thought to be essential for attB×attSCC recombination and is highlighted with an arrow.41
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(0.1 mg/L). RT–PCR for mecC and mecA confirmed that both genes
were expressed in GVGS2 and GVGS3 under the conditions tested,
while no mecA1 transcript was detected.

Screening of S. sciuri isolates for mecC

Using a multiple sequence alignment of mecC from S. aureus
LGA251, S. xylosus S04009 and S. sciuri GVGS2, we designed univer-
sal mecC primers and tested a selection of S. sciuri isolates to
determine the prevalence of mecC genes. We tested 11 isolates
of S. sciuri subsp. carnaticus isolated between 1990 and 1992
from different hosts (cattle, rodents and cetaceans) in the USA42

and 12 isolates from human clinical infections in England sent to
Public Health England for further testing between 2006 and
2011. None of the isolates were positive by PCR for mecC.

Discussion
In this work, we have identified a further staphylococcal species
that harbours the mecC gene. The mecC from GVGS2 is more
closely related to mecC from S. aureus than mecC1 from
S. xylosus. Phylogenetic analysis of mec gene homologues shows
that the S. xylosus mecC1 probably represents a more ancestral
form of mecC, as previously suggested (Figure 3).24 Like both

S. aureus LGA251 and S. xylosus S04009, the S. sciuri isolates har-
bouring the mecC gene were again obtained from a bovine host,
suggesting that selective pressure for the maintenance of mecC
might be present in this or a closely linked ecological niche. mecC
was also recently identified in a Staphylococcus stepanovicii
isolate from a wild Eurasian lynx (Lynx lynx), suggesting that
mecC-positive staphylococci are also present in diverse wildlife
populations, as reported for S. aureus mecC isolates.16,43,44 We
found that both mecC and mecA were expressed under laboratory
growth conditions with low levels of oxacillin, suggesting that they
may both contribute to the resistance phenotype of these
isolates. The presence of both mecA and mecC in a single isolate
is interesting, and suggests that the PBP2a proteins encoded
by mecA and mecC might have distinct biological roles. This is
further corroborated by the recent finding of a difference in
temperature and substrate specificity of PBP2a encoded by mecC
in comparison with mecA.45 It is of interest to find out how the
two mec systems are regulated—whether regulation is hierarchal,
with one system regulating the other, as seen with BlaR1/MecR1
regulation of mecA, and whether the recently described
mecR2 also regulates mecC.46,47 Understanding the regulation
of mecA and mecC under different conditions might provide
further insights into the biology of the two mec genes and
identify suitable measures for reducing the selective pressures
that maintain them.

mecA_S_aureus_MRSA252

mecA_S_vitulinus_CSNO42

mecA_S_haemolyticus_M1570-10

mecA_S_sciuri_subsp_rodentium_K3_MM2

mecA1_S_sciuri_subsp_carnaticus_GVGS2

mecA1_S_sciuri_subsp_rodentium_ATCC700061

mecA1_S_sciuri_subsp_rodentium_K3_MM2

mecC_S_sciuri_subsp_carnaticus_GVGS2

mecB_M_caseolyticus_JCSC7528

mecA1_S_sciuri_SCBM1

mecC1_S_xylosus_S04009

mecC_S_aureus_LGA251

mecA_S_equorum_SMK37o

mecA_S_fleurettii_CCUG43834
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100
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mecA_S_fleurettii_M4460-09

mecA_S_fleurettii_SFMP08

Figure 3. Phylogenetic relationships of mec homologues. Maximum likelihood tree of nucleotide sequence of mec homologues. The tree is rooted in
M. caseolyticus mecB as an outgroup. Bootstrap values for branches are shown.
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We also identified that both the SCCmec type VII element and
the SCCmec-mecC hybrid can excise from the chromosome and
form a circular intermediate, despite the presence of SNPs in the
attL2 and attR repeats. The fact that the C to A mutation in the
attL2 does not prevent the excision reaction, as previously reported
for the attB×attSCC integration reaction, suggests that this base is
either not required for attL×attR recombination or that CcrA1 and
CcrB5 have different sequence specificity compared with CcrA2
and CcrB2 from S. aureus N315 (71% and 86% amino acid identity,
respectively). It is not possible to deduce if mecA and mecC were
transferred together or independently into GVGS2 and GVGS3.
There are no further regions of homology to either the SCCmec
type XI or to the mecC region in S. xylosus S04009, which suggests
that the mecC region was either transferred into the strain on a
distinct element or has undergone significant decay. Recently, it
was demonstrated that CcrA and CcrB recombinases can
mediate recombination reactions between any combination of
SCCmec repeats (attR/attL/attB/attSCC), raising the possibility
that SCCmec type VII integrated into the attR of the mecC region
or vice versa.7 The four genes immediately downstream from the
attL2 of the mecC region are also present in the SCCmec VII
element upstream and in the S. fleurettii chromosomal mecA
locus, which has been suggested to be the template for the mec
complex in mecA SCCmec elements (Figure 1).12 It is possible that
these genes were also part of another SCCmec element that
brought the mecC region into the chromosome. However, given
that these genes are located outside of the mecC region attL2, it is
equally likely that this just represents another, now decayed, SCC
element present at the orfX locus.

The discrepancy of the presence of erm(C) and the lack of eryth-
romycin resistance in GVGS2 is puzzling. The amino acid substitu-
tion in Erm(C) is unlikely to have caused a loss of function, as the
Ile123Val mutation is present in a variable region of Erm-family
proteins.48,49 A previous study has reported S. aureus erm(C)-
positive isolates susceptible to erythromycin that could be selected
to produce a resistance phenotype.50 Further investigation is
required to understand the erythromycin-susceptible phenotype
in GVGS2. In conclusion, this study further highlights that the
mecC gene, like mecA, is disseminated widely amongst members
of the Staphylococcus genus.

Nucleotide accession numbers

The nucleotide sequences determined for GVGS2 were deposited in
the EMBL database under accession number HG515014.
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46 Arêde P, Milheiriço C, de Lencastre H et al. The anti-repressor MecR2
promotes the proteolysis of the mecA repressor and enables optimal
expression ofb-lactam resistance in MRSA. PLoS Pathog 2012; 8: e1002816.

47 Hackbarth CJ, Chambers HF. blaI and blaR1 regulate b-lactamase and
PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob
Agents Chemother 1993; 37: 1144–9.

48 Maravic G, Bujnicki JM, Feder M et al. Alanine-scanning mutagenesis of
the predicted rRNA-binding domain of ErmC’ redefines the substrate-
binding site and suggests a model for protein-RNA interactions. Nucleic
Acids Res 2003; 31: 4941–9.

49 Maravic G, Feder M, Pongor S et al. Mutational analysis defines the roles
of conserved amino acid residues in the predicted catalytic pocket of the
rRNA:m6A methyltransferase ErmC’. J Mol Biol 2003; 332: 99–109.

50 Martineau F, Picard FJ, LansacN et al. Correlation between the resistance
genotype determined by multiplex PCR assays and the antibiotic susceptibility
patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob
Agents Chemother 2000; 44: 231–8.

51 Couto I, Wu SW, Tomasz A et al. Development of methicillin resistance in
clinical isolates of Staphylococcus sciuri by transcriptional activation of the
mecA homologue native to the species. J Bacteriol 2003; 185: 645–53.

52 Perez-Roth E, Claverie-Martin F, Villar J et al. Multiplex PCR for
simultaneous identification of Staphylococcus aureus and detection of
methicillin and mupirocin resistance. J Clin Microbiol 2001; 39: 4037–41.

Harrison et al.

918

 by guest on M
ay 29, 2015

http://jac.oxfordjournals.org/
D

ow
nloaded from

 

http://jac.oxfordjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


