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Abstract—The application of artificial intelligence (AI) and
data-driven decision-making systems in autonomous vehicles is
growing rapidly. As autonomous vehicles operate in dynamic
environments, the risk that they can face an unknown observation
is relatively high due to insufficient training data, distributional
shift, or cyber-security attack. Thus, Al-based algorithms should
make dependable decisions to improve their interpretation of the
environment, lower the risk of autonomous driving, and avoid
catastrophic accidents. This paper proposes an approach named
SafeML II, which applies empirical cumulative distribution
function (ECDF)-based statistical distance measures in a designed
human-in-the-loop procedure to ensure the safety of machine
learning-based classifiers in autonomous vehicle software. The
approach is model-agnostic and it can cover various machine
learning and deep learning classifiers. The German Traffic
Sign Recognition Benchmark (GTSRB) is used to illustrate the
capabilities of the proposed approach.

Index Terms—Autonomous Systems, Safety Assurance, Al
Safety, Statistical Distance Measure, SafeML, Safe Machine
Learning

I. INTRODUCTION

The rise of artificial intelligence and the advancement of
technologies have paved the way for autonomous systems
such as autonomous vehicles to enter our everyday life. Such
systems have the potential to make an enormous societal
and economic impact. For instance, as mentioned in Waymo
Safety Report [1], when human drivers are involved in driving,
around 1.35 million lives have been lost due to traffic crashes
worldwide in 2016 and 836 billion dollars have been lost
annually due to loss of lives and injuries caused by crashes.
For each person, there is a 67% chance of getting involved
in drunk driving crashes. In the US, 94% of crashes involve
human choice or error. Therefore, dependable and reliable
autonomous vehicles can help to save lives and decrease
economic losses by reducing the number of traffic crashes by
eliminating human involvement in driving.

Autonomous vehicles are increasingly given autonomous
decision-making power such that while performing safety-
critical tasks within human vicinity, they can autonomously
make their own decisions and take actions with minimal hu-
man intervention. To be able to do so, an autonomous vehicle
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has to cooperate with other vehicles, road-side infrastructures
(e.g. traffic sign), smart traffic light systems, etc. Consequently,
using Al/machine-learning (ML) such systems continuously
learn from their operation and dynamically reconfigure in
response to changes such as unexpected failures of compo-
nents/subsystems, the continuous change in the context of
operation, variable workloads, and physical infrastructures. A
key challenge for software-intensive, Al-enabled self-adaptive
autonomous systems is to provide assurance about their safety
and reliability.

For traditional non-autonomous systems, assurance is pro-
vided through design and development activities including
verification, validation, testing, conformance to standards and
certification. Safety assurances are often provided through
safety arguments where safety goals are defined, and rationales
for believing in these goals are designed to be dependent on
a variety of assumptions. These assumptions may include as-
pects like failure semantics and failure rates of both hardware
and software components, operating context, the efficiency
of the human operator to respond to events, etc [2]. In
operation, the physical system and its operating environments
are monitored to see if any of these safety assumptions are
violated, and thereby notify the users about the potential
changes in the assurance and take necessary actions to achieve
fail-safe behaviour. For example, in a car, when transient errors
in hardware like sensors affect the functionality of the software
like that for cruise control, an error detection unit (monitoring
function) can detect the error and degrade the system by
appropriate warnings and allowing the driver to take over.
Therefore, the integrity of the monitoring knowledge plays
a crucial role in providing accurate runtime assurances.

The issue of continuous assurance provision is further
complicated for autonomous systems where important pieces
of evidence are collected through ML/AI components. Due
to the blackbox nature of these components, the confidence in
the evidence provided by these components will directly affect
the confidence in the overall assurance. For instance, consider
the ML-based traffic sign recognition (TSR) system in an
autonomous car, which is responsible for identifying different
traffic signs and thus assisting in assuring safe driving. TSR for
autonomous vehicles have several shortcomings and a survey
of such shortcomings is available in [3]]. Therefore, it is likely
that in some cases, evidence/inputs received from a TSR could
be misleading. If this misleading information is considered
while providing safety assurance then it is highly likely that a
false assurance could be provided, resulting in an autonomous
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vehicle driving with false assurance. In a worst-case scenario,
this could lead to a catastrophic accident. Therefore, it is
important to improve the confidence in the output generated
by such software components in autonomous vehicles.

To address the above-mentioned issue with the autonomous
vehicle software, TSR in particular, in this paper, we have
proposed a novel approach called SafeML II which has the
following features:

o It ensures the safety of a machine learning-based TSR
system using modified state-of-the-art empirical statisti-
cal distance measures and can work with a variety of
distribution functions, especially exponential families.

o The implemented bootstrap p-value calculation in the
SafeML II functions improves the accuracy and validity
of its results.

o It utilises a human-in-the-loop procedure that can use
human intelligence and avoid catastrophic accidents.

« It is a model-agnostic approach that works with a variety
of Machine learning and deep learning classifiers.

The effectiveness of the approach is illustrated via an ap-
plication to the real-world German Traffic Sign Recognition
Benchmark (GTSRB) dataset.

II. SAFETY ASSURANCE CHALLENGES OF AI/ML IN
AUTOMOTIVE DOMAIN

In 2011, the International Organization for Standardization
(ISO) proposed the ISO 26262 standard to regulate functional
safety for road vehicles. It includes requirements and recom-
mendations for the entire lifecycle of car manufacturing, from
the concept phase to operation and service. The main aim
of ISO 26262 was to help the automotive industry address
functional safety issues more systematically. However, it was
defined without considering ML since the first version of ISO
26262 was published before the boom of Al. This eventually
leads to a challenging issue today for car manufacturers and
suppliers who are determined to incorporate ML for self-
driving cars. Therefore, conventional safety assurance methods
suggested by the ISO 26262 standard are insufficient or
inapplicable for the assurance of ML [4]]. In [5], Salay et
al. presented an analysis of ISO-26262 part-6 methods with
respect to safety of ML models. Their assessment of the
applicability of the software safety methods on ML algorithms
(as software unit design) shows about 40% of software safety
methods do not apply to ML models.

The AI community have recently produced several papers
on the problems of ‘Al safety’, e.g. [6]. One of the more
influential papers [7] identifies ‘concrete problems in AI’
and according to this paper Al safety issues for autonomous
vehicles can be categorized in five domains including I)
Safe exploration, II) Scalable oversight, III) Avoiding “reward
hacking” and “wire heading”, IV) Avoiding negative side
effects and V) Robustness to distributional shift. Efforts have
been made to assure safety and improve the safety performance
of ML components in autonomous vehicles. For instance, in
[8]], the safety assurance process for ML models in safety-
critical applications has been described focusing on an explicit
definition of safety requirements for ML components with

respect to the safety requirements of the overall system. The
approach has been illustrated via an application to a pedestrian
detection system in autonomous cars.

In 2019, Klis et al. [9] has emphasized on the distributional
shift in the dataset and proposed an uncertainty wrapper
based on Wilson Interval Confidence. The conceptual idea
was explained for the German traffic sign recognition example
without reporting any experimental or numerical results. In
another research, they have improved their previous approach
considering the impact of additional inputs like rain amount,
wind direction, wind speed, and vehicle orientation on the
confidence results specifically for traffic sign recognition [10],
[11]. A year later, they have proposed a framework for
generating an uncertainty wrapper for data-processing models
and their dataflow in [12]. In all three research works, the
drawback was the lack of a designed safety mechanism after
measuring confidence. While in the SafeML approach [13],
three different scenarios including I) repeating the measure-
ment or requesting additional data, II) providing a human-
in-the-loop procedure and III) trusting the machine learning
decisions and providing confidence report are considered based
on empirical cumulative distribution function (ECDF)-based
statistical distance measures. The SafeML approach was not
able to work with images particularly for the Convolutional
Neural Network (CNN) based classifiers and more importantly
the lack of consideration of p-values of statistical distance
measures in the procedure could lead to a wrong decision. In
other words, there are some cases where a statistical distance
exists but based on an invalid associated p-value it should not
be considered for the confidence evaluation. In SafeML II,
the ECDF-based statistical distance measure functions have
been improved with a bootstrap-based p-value evaluation. It
means that in the confidence evaluation of SafeML II only the
measured statistical distance value with a valid p-value will
be considered and the others will be dropped from the list.
Moreover, by converting the images to flatten vectors, SafeML
IT is able to do a pixel-wise ECDF-based statistical distance
measure and generate the confidence that will be explained in
the next sections.

III. ML SAFETY APPROACH

In this paper, we extend the initial idea of SafeML [13]] to
propose SafeML II for I) image-based classification problems
and II) dealing with outliers in data. Fig. [I[(a) illustrates the
flowchart of SafeML II. It has two main phases: the training
phase is an offline procedure and the application phase is an
online procedure. In the training phase, the procedure starts
with loading the trusted dataset. It is assumed that the dataset
covers the majority of situations, the dataset labelling has been
done perfectly and the dataset is relatively balanced. Having
loaded the trusted dataset, a classifier will be trained with those
data and its performance will be evaluated accordingly. In this
part of the procedure, standard methods for cross-validation
and explainability should also be considered. If the accuracy
of the classifier and its explainability were high enough (e.g.
more than 95% accuracy), the classifier will be selected and the
procedure goes to the next step. Otherwise, other classifiers or
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Fig. 1. SafeML II - Flowchart and Application Block Diagram

even data refinement will be needed to achieve a certain level statistical parameters of each feature in each class including
of accuracy. Having selected the appropriate classifier, the cumulative distribution function, mean and variance will be



stored to be used for comparison in the next phase.

In the application phase, there would be a buffer to collect
enough samples. The buffer size should be defined at design
time by an expert in a way that the collected data contain
the statistical characteristics of their class. Note that these
upcoming data are not labelled. Having collected enough
samples, the trained and tested classifier in the previous
phase will be used and based on its decisions, the data
will be labelled. Based on classifier decision, the statistical
parameters of buffered data will be collected and compared
with training dataset through empirical cumulative distribution
function (ECDF)-based statistical distance measures such as
Kolmogorov-Smirnov, Kuiper, Anderson-Darling, Cramer-Von
Mises, and Wasserstein [[14]]. Moreover, in the design time,
an expected confidence threshold should be defined for each
statistical distance measure. The confidence level will be
calculated based on the aforementioned comparison and will
be again compared with the expected confidence threshold.
Three different scenarios have been considered; I) when the
confidence is a bit lower than the threshold, the system
should collect more data, IT) when the confidence has a huge
difference in comparison to the predefined threshold, then it
is assumed that the upcoming data have not been seen by the
classifier before and a human-in-the-loop procedure should be
taken into consideration, and III) when the confidence is higher
than the predefined threshold the results of the classifier will
be accepted and a report of the statistical comparison will be
stored in the system.

To have a better understanding of the idea, the illustrated
example in Fig. [T(b) is used. In this example, it is assumed
that there is an autonomous vehicle and there is a specific
module in the vehicle software for traffic sign recognition
based on the machine learning algorithm. The main task for
the machine learning algorithm is to classify the upcoming
images from the vehicle’s embedded camera(s) and based on
a look-up table a required action will be generated to be used
in the control unit. It can simply be a brake or acceleration
command. The main question is “How one can make sure that
the decision is always correct?” The idea of SafeML II can
be a solution to this question. As an example, consider there
is an 80 Km sign in the road and the vehicle’s embedded
camera reads it. Most of the time it is expected to be a
clear image but in rare conditions such as having a faulty
camera, heavy rain, fog, or a cyber-attack the image may not
be clear. In such rare cases, the SafeML II can compare the
images with the trusted dataset and creates confidence. For
the very low confidence situation, it means that the input is
not something that the trained ML algorithm has seen before
and it is better to be handled by the driver (human-in-the-loop
procedure). In autonomous vehicles that do not have a wheel
to control such as the car like Amazon Zoox, it is suggested
that a human agent from the control centre control the car
remotely. It should be noted that the needed reaction time and
possibilities to involve the human in the loop can be another
research subject to be investigated in the future. When the
confidence is low, the SafeML II may ask for more data or
communicate with surrounding cars and increase the level of
confidence. If the confidence is high and the upcoming images

are statistically similar to the trusted dataset, the decisions can
be accepted. Having a high confidence decision, the needed
control command will be generated to be sent to the main
control unit. All confidence reports should be stored in the
system to be used for system improvement.

IV. NUMERICAL RESULTS

In this section, numerical results comparing the proposed
approach and existing approaches in the literature are pre-
sented for a German Traffic Sign Recognition (GTSR) dataset
[15]. The dataset has been released in 2011 and it includes
43 different traffic signs. The dataset is unbalanced and the
number of samples for some classes can be more than the
others. Regarding the cross-validation, the hold-out method
is used to split 80% of the data for training and 20% for
validation. It should be noted that the dataset has a separate
folder for test data.

As mentioned before, the SafeML II is a model-agnostic
approach that can be used on top of any machine learning
classifier regardless of its structure. In this paper, a Deep
Convolutional Neural Network (CNN) classifier is used be-
cause of its reputation on image classification. The following
structure is used as the configuration of CNN. The input has a
2D convolution layer (Conv2D) with a filter size of 32, kernel
size of 5 x 5 and the relu activation function. The second layer
has another Conv2D with a filter size of 64, kernel size 3 x 3
and the relu activation function. Then, a max pooling layer
with a size of 2 x 2 and a dropout layer with a rate of 0.25 is
used. After that, another Conv2D layer with a filter size of 64,
kernel size of 3x 3 and relu activation function is added. A max
pooling with a size of 2 x 2 and a dropout with the rate of 0.25
is applied on top of it. A flattened and dense layer with a size
of 256, and relu activation function, with 0.5 percent dropout
is used. Finally, for the output, a dense layer with the size of
43 and Softmax activation function is considered. Moreover,
the Adaptive Moment Estimation (ADAM) optimiser and the
cross-entropy loss function are used in the training procedure.

Using the above configuration, the performance of the CNN
classifier was 0.9797 on the test dataset. The next level is to
check whether the achieved accuracy is high enough or not?
This part was not considered in the first version of the SafeML
and it could reduce the precision of the proposed approach
when a poor classifier is chosen in the offline phase. In the case
of having a poor classifier, the loop should be repeated until
reaching a certain level of satisfaction for accuracy. It is also
possible to consider explainability approaches to make sure the
trained classifier behave reasonably and focuses on the right
part of the image. Assuming that the level of achieved accuracy
is acceptable for safety experts, the images of each class will
be separated to R, G, and B matrix and converted to the flatten
vectors accordingly. As the size of each image is 30 x 30, the
equivalent vector will be 1 x 900. The ECDFs of each class
will be generated and stored for use in the next phase. In the
online phase, the buffer size is considered as 15. In a practical
scenario, the buffer size should be defined by safety experts
and designers. As there was no real-time data, the test data
are considered as the upcoming data and we are going to see



how the proposed approach will react to the wrong decisions.
To have better visualization, class number three is chosen.
This class is related to the 60 Km speed limit sign and it has
1410 images in the training dataset and 450 images in the test
dataset. Various risks can be considered for miss-classification
of this sign like having a lower speed and blocking the road or
having a higher speed and increasing the probability of hitting
pedestrians passing the street. The associated risk for miss-
classification of each class can be investigated in a separate
research study. The accuracy of the classifier for this class
specifically was 0.9655. In other words, 435 images are de-
tected correctly but 15 images are detected as the other classes.
Based on the SafeML II procedure, the R, G, B matrix of test
images are converted to flatten vectors and their ECDFs have
been generated. Furthermore, using the ECDF-based statistical
distance measures such as Kolmogorov-Smirnov (KS), Kuiper
(K), Anderson-Darling (AD), Cramer-Von Mises (CVM), and
Wasserstein (W), the statistical distances will be obtained. The
first version of SafeML will jump to a comparison between
statistical distance measures and the pre-defined expected
confidence threshold. However, in SafeML II, a bootstrap
algorithm with 1000 iterations is used to obtain the P-value
and validate the measures [16]. Thus, the measures with a P-
value lower than 0.05 are stored and others will be omitted.
The validated statistical distance measure can be compared
with the expected confidence level. It should be noted that for
each ECDF-based statistical distance measure, there should
be a particular expected confidence threshold predefined by a
safety expert. The decision of the machine learning classifier is
accepted and trusted if the distance measure is higher than the
predefined threshold. Additionally, a report of the statistical
distance measure will be stored in a database to be used for
the further development of the system. In the situation that the
statistical distance measure is 5% lower than the predefined
threshold, the system may ask for further data. It should also
be mentioned that in that situation, the autonomous vehicle can
use other existing sources of information to validate the deci-
sion. For example, the autonomous vehicle can communicate
with nearby vehicles or use GPS and pre-loaded map data. The
mentioned percentage can also be changed based on the safety
experts’ and system designers’ opinion. At the moment there
is no published standard to define these levels but in the future,
these parameters can be defined using the published standards.
The worst scenario is that the statistical distance measure is
hugely different from the expected threshold, meaning the
upcoming data has not been seen by the classifier before and
there is a risk of missed classification. The SafeML Il idea is to
put human-in-the-loop and ask the driver to make the decision.
It is assumed that the driver has enough time for making the
decision. However, there might be some cases where the time
is restricted and SafeML II cannot be used. As mentioned
before, the autonomous vehicles that do not have the wheel-
based driving capability, it is suggested that a human agent
from the control centre control the car remotely. The first row
of Fig. [2]illustrates the Wasserstein distance measure of the 60
Km traffic sign (Class 3) for R, G, and B part of the images.
As can be seen, the middle of the image has more statistical
differences in all three colour layers. Besides, the blue part

of the image has less statistical distance in comparison to
the red and green parts of the image. As can be seen, in
the first layer, a previous version of SafeML is used which
has a lack of P-value based distance validation while in the
second row the SafeML II is used that has the embedded P-
value distance validation. Comparing the first and second row
of this figure, it is clear that SafeML II has a better statistical
distance representation and it does not catch the background
areas of the signs. The third row of this figure illustrates a
sample image where the classifier has correctly detected the
sign, while the fourth row shows a sample image where the
classifier was not able to detect the sign correctly. However,
it seems that it can be detected by a human with careful
observation. Therefore, in these cases, human-in-the-loop can
help the system to make the right decision and also learn it
to make better decisions in the future. The Al system can be
considered as a talented and clever child that needs to work
in parallel with human and become mature over time. This
figure also demonstrates how the ECDF-based Wasserstein is
calculated for a pixel in the image.

In Fig. [ it is shown how SafeML can be used for
image-based classification problems and how it can provide
a statistical representation and explanation between wrong
predictions and the ground truth. It is also shown that P-
value consideration can improve the statistical explanations
(illustrated in the second row of Fig. [2). The difference in
results given by application of SafeML’s four ECDF-based
distance measures to two different datasets is illustrated in
Fig. 3 (a-d). As can be seen, the KSD measures the maximum
value between two ECDFE.The KS distance cannot detect which
ECDF has a higher value while Kuiper distance can measure
two maximum up and maximum down. In a situation where
two sets have the same mean value and different variances
like spiral and circle benchmarks, the Kuiper distance has a
better measure over KS distance. As illustrated in Fig. 3| (c),
Wasserstein distance (WD) can somehow calculate the area
between two ECDFs. Thus, WD will be more sensitive to a
change in the geometry of the distributions. The CVM distance
has similar functionality to WD, and it can perform faster. If
we reduce the step size in the CVM algorithm, the results
will be close to the WD ones. To have more detail on ECDF
distance measures one can refer to [17)]. Fig. [3| (e) provides
a comparison between true accuracy, estimated accuracy by
SafeML II, and Wilson Interval Confidence (WIC) bound from
Klas et al. [9]. For the WIC, the z-score is chosen to be
3.29053 to gain a 99.99% confidence level. The WIC usually
provides both upper bound and lower bound. To ensure the
maximum safety level, only the lower bound is considered.
From the existing 43 classes in the GTSRB, 5 safety-critical
related classes have been chosen for the comparison. The
results show that in most cases the Wasserstein-based accuracy
estimation has less error. For two cases the Wasserstein
algorithm was not successful: for class number 11 (Cross Road
Ahead), the Anderson-Darling estimation has less error and
for class number 13 (Yield), the low band Wilson Interval has
better accuracy. It should be noted that the WD, CVMD and
ADD are not always bounded between 0-1. However, based on
our experiments they are always correlated with accuracy. To
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clarify the effect of P-Value consideration, the WD algorithm
is selected as the best performing measure for GTSRB and its
results with and without P-Value consideration are compared
with true accuracy as shown in Fig. [3| (f). The original SafeML
[13]] was successful for feature-based dataset. However, our
experiments show that it is not always successful. For example,
in GTSRB, the WD measure without P-Value consideration
has failed to detect true accuracy changes while WD with P-
Value consideration was successful. Generally, using ECDF-
based distance measures with P-Value consideration are more
reliable and less noisy especially when the results are going
to be used for statistical explainability purposes.

In this paper, we have only focused on traffic sign recog-
nition and the idea can be integrated with other safety-related
parts of autonomous vehicle software to cover wider safety
perspectives. For example, in [18]], it was explained how
to build an integrated safety model and consider different
components of a cooperative operation scenario of autonomous
vehicles. The results of SafeML II can be used as an input in
the proposed safety model in that work to improve confidence
in the provided assurance. It should be noted that the SafeML
II concept has some limitations. For example, it can only work
with Machine Learning classifiers, while having the SafeML
IT concept to work for prediction and regression algorithms
is still an open research question. Moreover, we currently
investigate what specific characteristics of a dataset can lead
to a better ECDF-based statistical accuracy estimation in run
time. Due to the use of the buffering technique, in some
time-critical applications, the proposed approach may not be
able to handle a sudden shift of data efficiently within a very
short period of time. Generally, for safety-critical systems, it is
crucial to limit the possibility of making unsafe decisions and
actions that may be caused by a sudden shift in the data. A
potential solution to track sudden changes in the incoming data
is to use the soft clustering models [[19], which offer a way to
evaluate the changes through a natural measure by computing
it directly from models. Moreover, in this paper, we introduce
the model-agnostic version of SafeML where we are unable to
go inside any ML/DL algorithm. In our future research work,
we will address the model-specific version of SafeML where
we will be able to utilize CNN’s middle layer to avoid pixel-
level alignment requirements.

V. CONCLUSION

The rapid growth of artificial intelligence applications in
various domains and particularly in autonomous vehicle soft-
ware raise concerns in different perspectives such as Al
safety, Al responsibility, Al explainability and interpretability,
human-in-the-loop Al, and Al trustworthiness. This paper ad-
dressed the issue of distributional shift and its implications for
the safety of machine learning or deep learning classification
tasks in autonomous vehicle software. The paper proposed
SafeML II by extending SafeML to improve its capabilities for
the human-in-the-loop procedure and ECDF-based statistical
distance measures, and applies them to image-based classifica-
tion algorithms in a model-agnostic way. SafeML II improves
the ECDF-based statistical distance measure functions using

bootstrap-based p-value calculation. The proposed SafeML II
approach is generic in nature, therefore, we believe it can be
integrated with traditional safety assurance methods to enable
them to provide assurance for ML/AI models and also to
increase confidence in the provided assurance.

CODE AVAILABILITY

Regarding the research reproducibility, codes and func-
tions supporting this paper are published online at GitHub:
https://github.com/ISorokos/SateML.
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