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A B S T R A C T

Wind energy has emerged as a highly promising source of renewable energy in recent times.
However, wind turbines regularly su�er from operational inconsistencies, leading to significant
costs and challenges in operations and maintenance (O&M). Condition-based monitoring (CBM)
and performance assessment/analysis of turbines are vital aspects for ensuring e�cient O&M
planning and cost minimisation. Data-driven decision making techniques have witnessed rapid
evolution in the wind industry for such O&M tasks during the last decade, from applying sig-
nal processing methods in early 2010 to artificial intelligence (AI) techniques, especially deep
learning in 2020. In this article, we utilise statistical computing to present a scientometric review
of the conceptual and thematic evolution of AI in the wind energy sector, providing evidence-
based insights into present strengths and limitations of data-driven decision making in the wind
industry. We provide a perspective into the future and on current key challenges in data avail-
ability and quality, lack of transparency in black box-natured AI models, and prevailing issues
in deploying models for real-time decision support, along with possible strategies to overcome
these problems. We hope that a systematic analysis of the past, present and future of CBM and
performance assessment can encourage more organisations to adopt data-driven decision mak-
ing techniques in O&M towards making wind energy sources more reliable, contributing to the
global e�orts of tackling climate change.

1. Introduction

The worldwide capacity of wind power generation has continued to evolve rapidly, with increasing deployments
of wind farms, especially o�shore [1, 2]. However, owing to the complexity of the deployed turbine environments and
the very nature of their electrical and mechanical components [3], they experience irregular loads and operational in-
consistencies. Operations and maintenance (O&M) is crucial for preventing such incidents and/or providing corrective
actions to avert/fix any occurring faults [4].

A vital aspect of O&M is Condition-based monitoring (CBM), which plays an integral role in identifying op-
erational changes in various turbine components [2]. CBM methods span the areas of fault detection, fault predic-
tion/prognosis and fault diagnosis [5], and facilitate condition-based maintenance for early detection of any degradation
or incipient faults before they can lead to significantly costly failures. Besides this purpose, CBM can help in keeping
healthy turbines in continued operation, reducing outages which can occur due to redundantly scheduled maintenance
activities [6]. Besides CBM for turbine control, failure diagnosis and prediction, there are some other areas which are
integral to O&M planning and performance assessment/analysis for energy cost minimisation [7]. These pertain to
design optimisation of turbines and wind farms, forecasting and prediction of vital parameters (like wind speed, power,
torque, power factor) etc. [8]. All such activities are essential for ensuring e�cient O&M, especially for o�shore wind
power systems owing to the multifaceted systems and the harsh environments in which they generally operate [9].

During the last decade, most existing studies have utilised signal processing or physics-based numerical models
towards CBM pertaining to turbine health monitoring, particularly leveraging vibration data for this purpose. More re-
cently, with the rising interest in adopting data-driven solutions for CBM [2, 10] and performance assessment/analysis
of turbines [11, 7], Artificial intelligence (AI) techniques have been applied for decision making to learn from Super-
visory Control & Acquisition (SCADA) data regularly generated by turbines through various sensors. [12, 13, 14].
While AI techniques have been game changers for many domains such as healthcare and finance [15, 16], the wind
industry has not benefited as much from recent advances in AI, especially in deep learning, likely due to lack of a clear
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Nomenclature

ADASYN Adaptive synthetic sampling
AI Artificial intelligence
ANFIS Adaptive neuro fuzzy inference system
ANN Artificial neural networks
ARIMA Autoregressive integrated moving average
BERT Bidirectional Encoder Representations from

Transformers
CART Classification and regression trees
CBM Condition-based monitoring
CBR Case-based reasoning
CNN Convolutional neural networks
DAE Denoising autoencoders
DCGAN Deep convolutional generative adversarial net-

works
DW T Discrete Wavelet Transform
ELM Extreme learning machine
EMD Empirical Mode Decomposition
FDI Fault detection and isolation
GDA Gaussian discriminative analysis models
GMM Gaussian mixture models
GPT Generative Pre-trained Transformer
GPU Graphics Processing Unit
GRU Gated recurrent units
GUI Graphical user interface
HPC High Performance Computing
IMF Intrinsic mode functions
IoT Internet of Things
kNN K nearest neighbours
LDPC Low-density parity check

LIME Local Interpretable Model-Agnostic Explanations
LMedS Least Median of Squares
LSTM Long short-term memory networks
MCKD Maximum correlated kurtosis deconvolution
MIMO Multi-input-multi-output
ML Machine learning
MLP Multilayer perceptron
MTTF Mean Time to Failure
NLG Natural language generation
NW P Numerical weather prediction
O&M Operations and maintenance
PCA Principal component analysis
RAMOBoost Ranked minority oversampling in boosting
RBFNN Radial basis function neural networks
RL Reinforcement learning
RNN Recurrent neural networks
ROI Return on Investment
RUL Remaining Useful Life
SCADA Supervisory Control & Acquisition
Seq2Seq Sequence-to-sequence
SK Spectral kurtosis
SMOTE Synthetic Minority Over-Sampling technique
SVM Support Vector Machine
TPU Tensor Processing Unit
XAI Explainable AI
xDNN Explainable Deep Neural Networks
XGBoost Gradient-boosted decision tree classifier

perspective and limited trust in such models. The multitude of directions in applying AI techniques (e.g. for supervised
learning, unsupervised learning, reinforcement learning etc.) make comprehensive analysis of AI integral for the wind
industry.

Some previous studies have reviewed applications of Machine learning (ML) techniques for CBM and perfor-
mance assessment/analysis towards data-driven decision making from various perspectives. Stetco et al. [2] reviewed
144 papers post-2011, presenting an overview of the challenges and potential of such techniques for classification
and regression tasks in the wind industry. Wang et al. [17] have outlined the applications of AI towards optimising
wind farm control systems for improved e�ciency. Pliego-Marugán et al. [18] reviewed 190 papers in the last five
years, presenting the challenges and technological gaps in utilising artificial neural networks in time-series forecast-
ing of certain parameters (e.g. wind speed and turbine power), with a perspective on fault diagnosis and prognosis.
Maldonado-Correa et al. [19] have reviewed 37 articles in applying AI techniques for short-term energy forecasting.
In another recent study, Maldonado et al. [10] systematically reviewed 95 papers from the past three years, analysing
present challenges in utilising CBM techniques (including AI) and the increasing growth in number of CBM-related
publications in the wind energy sector across di�erent journals. This included the analysis of some principal publi-
cation metrics such as impact factor, and segregating articles pertaining to di�erent CBM techniques (such as signal
processing methods, machine learning techniques etc.). This can be useful for a ready reference of historical literature
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Table 1
Summary of logical queries and retrieved records for the scientometric analysis.

Domain Logical Query (Inclusion criteria) No. of
Retrieved
Records after
Filtering

All papers relating to CBM ("wind turbine" AND "condition monitoring") OR
("wind energy" AND "condition monitoring")

734

Papers specifically relating
to AI for O&M (Includes
publications pertaining to
CBM and performance
assessment/analysis)

("wind turbine" AND "machine learning") OR
("wind energy" AND "machine learning") OR
("wind turbine" AND "deep learning") OR ("wind
energy" AND "deep learning") OR ("wind turbine"
AND "artificial intelligence") OR ("wind energy"
AND "artificial intelligence") OR ("wind turbine"
AND "AI") OR ("wind energy" AND "AI")

422

in CBM for O&M of wind turbines, such as the di�erent techniques suitable for monitoring vital metrics e.g. wind
speed, pitch angle etc., and predicting faults. The study does not however provide a more thorough analysis of AI in the
wind industry (especially recent advances in deep learning, such as the application of recurrent neural networks and
causal inference [20, 21]) and its evolution over time. Most existing studies evidently focus on time-series forecasting
of vital parameters in data-driven decision making, rather than predicting incipient faults and suggesting maintenance
actions [22, 23].

Despite playing an important role in summarising applications of AI towards data-driven decision making in wind
turbines, these studies lack systematic and comprehensive analysis of the changing trends and insights from a broader
perspective beyond the narrow focus on either fault prediction or power forecasting, which is especially important
with the ongoing rapid growth of academic publications in this area. Additionally, there is little attention towards very
recent developments, especially in applying e.g. natural language generation and reinforcement learning techniques
for decision support in the wind industry and associated challenges and opportunities. Such developments demand
systematic analysis to show the bigger picture, by analysing existing literature to identify changes in research trends
with time, key themes in data-driven O&M, and shifts in boundaries of applying AI towards CBM and performance
assessment/analysis.

Bibliometrics is a family of statistical techniques commonly utilised in library and information sciences for analysing
and discovering patterns in publications. For analysis specific to scientific literature, the sub-field of Bibliometrics
called Scientometrics has gained prominence. While various domains such as medicine and finance [24, 25] have
reaped the benefits of Bibliometrics (and Scientometrics), the wind industry has seen limited application of such tech-
niques. Few studies perform scientometric assessment of the wind energy domain as a whole, such as Kanagavel et al.
[26], Ye et al. [27] and Mohanathan et al. [28], who analyse the growth in research productivity based on the rise in
number of publications to show the increased uptake of wind turbines in recent times. However, these studies do not
focus on the assessment of data-driven decision making models for the wind energy sector, and cannot provide thematic
descriptions and analysis of the research trends and patterns for AI in CBM and performance assessment/analysis. The
domain of O&M for the wind industry is highly complex, with widely varying methodologies, data utilised and tasks
performed. This is enunciated in Figure 1, through network visualisation of data-driven decision making publications
over the last decade.

In this paper, we aim to provide comprehensive evaluation of the applications of AI for data-driven decision making
(mainly focusing on CBM but also including performance assessment/analysis wherever relevant to O&M) in the wind
industry by harnessing statistical computing for scientometrics. To this end, we utilise Bibliometrix [29] (a statistical
computing technique in R) along with CiteSpace [30] (a Java program for analysing science literature) and VOSviewer
[31] (a software application for visualising bibliometric networks) to derive insights into the conceptual and thematic
structure of data-driven decision making for wind turbines. We also utilise Datawrapper [32] (a web application for
data analytics) to develop insightful visualisations. The proposed technique can provide novel insights on the evolution
of AI for the wind industry, establishing a knowledge taxonomy for research themes in this area.
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VOSviewer Figure 1: Network visualisation showcasing the complexity of data-driven decision making
in wind industry, based on publications from 2010-2020. The different colours indicate
specific clusters to which each keyword belongs, with strong association between terms
from the same cluster.

This study, to the best of our knowledge, is the first in the wind energy domain to apply statistical computing
towards systematic analysis of historical literature for data-driven decision making in O&M of wind turbines. The key
contributions of this article are:-

• A data-mining approach is applied for bibliographic analysis, utilising state-of-art statistical computing for sci-
entific mapping. This can help reduce bias and subjectivity in varying perspectives on AI in the wind industry,
providing a comprehensive thematic analysis.

• The insights derived from this study can provide an understanding of the conceptual developments, emerging
trends and thematic areas, challenges and opportunities in applying AI for data-driven decision making in the
wind industry.

• We perform an extensive analysis of the past and present of AI in data-driven decision making for wind turbines
by reviewing 422 research publications in this domain from the last decade, and additionally provide insights
into the future based on identified successes and failures. This analysis is scalable and can be extended as future
publications emerge. Our data used for this study is publicly available 1, and can help future researchers build
upon the analysis in this study.

By tracing the evolution of data-driven decision making techniques for the wind industry through scientometrics,
we show the role which AI plays at present, and the rapidly evolving growth in application of AI techniques for O&M.
We also provide a perspective into the future, including key issues such as lack of transparency and interpretability in
AI models, deployment of models for real-time decision support, and data availability and quality, which presently hold
the field back in adopting data-driven decision making, and suggest possible ways to overcome these challenges. The
paper is organised as follows: Section 2 describes the data utilised for our analysis. Section 3 discusses the evolution
of data-driven decision making techniques in the wind industry, from signal processing in the past to rise of AI at
present. In Section 4, we outline the challenges and opportunities presently faced by the wind industry in adopting AI
techniques, along with possible strategies to overcome these issues. A discussion on the roadmap with likely major

1Data utilised for scientometric review: https://github.com/joyjitchatterjee/ScientometricReview-AI
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focus areas for the wind industry towards adopting AI is provided in Section 5. Finally, Section 6 concludes the paper
and describes the path for future.

2. Data Collection

As the primary analysis step, the Web of Science database 2 was queried to retrieve all papers relating to CBM
of wind turbines in the last decade (2010 to present), leading to an initial record of 818 publications. Of this, we
eliminated the review articles to ensure robustness in identifying specific topics rather than broad perspectives. The
search was further refined by only retaining papers from journals and conference proceedings in English language.
There were some non-relevant papers which were manually removed from consideration. Finally, we arrived at a
total of 734 records pertaining to CBM in wind turbines consisting of a variety of techniques (e.g. signal processing,
vibration analysis etc.) besides using AI.

As our key motivation was in identifying papers applying AI to data from wind turbines, we separated the publica-
tions utilising AI techniques for CBM as well as performance assessment/analysis by specifying an additional logical
criterion. This led us to a total of 422 records, which consist of mainly papers pertaining to CBM but also include
some instances of performance assessment/analysis tasks in O&M. Table 1 summarises the logical criteria utilised for
retrieving the historical literature. All retrieved records were exported as plain text files, which can later be utilised for
scientific mapping, as described in the following sections.

3. Science Mapping Analysis

3.1. The Past: Prevalence of Signal Processing & Vibration Analysis

For our systematic review, the period from 2010 to 2015 is considered as the past 3. This is based on careful
consideration and the mostly prevalent consensus that any period beyond the last 5 years falls outside scope of cur-
rent literature [33]. Analysis of past literature is important for deriving insights in predicting future trends based on
identified strengths and weaknesses of existing techniques. In this period, interestingly, we observed that the major-
ity of influential papers focused on CBM pertaining to health monitoring of turbines and their sub-components, with
negligible focus on performance assessment/analysis (e.g. for wind power forecasting). Therefore, we will direct our
discussion and analysis of the past mainly on CBM for a comprehensive analysis, but wherever relevant, we would
also include the few studies which focused on performance assessment/analysis.

From our 734 total records on CBM, 311 records belonged to this period of analysis. Figure 2 outlines the frequency
of the most common words in CBM-based publications during this period. Note that these words were automatically
determined based on the Keywords Plus metric 4 [34] which, besides using the author provided keywords in the papers
also considers the titles and abstracts of the paper alongside the references and highlights relevant content which may
have potentially been overlooked based on keywords listed by the authors, and can thereby help expand the search for
analysing all relevant papers in this period of time. From all identified keywords, as not all keywords were relevant
so signal processing/vibration analysis based on their semantic definition e.g. classification, we manually highlighted
those which were relevant to signal processing/vibration analysis based on their occurrence in relevant domain-specific
publications. For instance, we considered frequency to be a part of the signal processing domain based on its occurrence
in the abstract of [35], wherein, the authors performed vibration signal processing, and a similar approach was adopted
for highlighting other keywords based on relevant publications. As can be seen, multiple keywords pertain to the
domain of signal processing (e.g. wavelet transform, empirical mode decomposition etc.) and vibration analysis (e.g.
vibration signals, amplitude etc.). To further discuss the prevalence of signal processing and vibration analysis for
CBM, we will focus our discussion on some of the most relevant papers during this period.

Vibration analysis has been popular for fault diagnosis in turbine structures and sub-components, especially in the
rotational parts [36]. Zimroz et al. [37] utilised data with RMS of vibration acceleration signal and generator power
obtained through a professional monitoring system to perform vibration analysis and identify abnormal behaviour
of turbine bearings under non-stationary load/speed conditions, and decomposed the data into multiple sub-ranges of
loads to facilitate CBM. Additionally, they utilised these parameters as features to identify any deviations in operational

2Web of Science Database: https://apps.webofknowledge.com/
3Note that while our scientometric analysis would mainly focus on utilising publications in this period, for the sake of thoroughness in analysing

the past, we would also mention few notable studies outside this period in our reviews which are relevant to the scope of this paper
4Keywords Plus: http://interest.science.thomsonreuters.com/content/WOKUserTips-201010-IN
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Figure 2: Frequency of top-50 words in CBM publications for wind turbines in the past.
Words relevant to the signal processing domain are highlighted.

behaviour through statistical processing. In a similar vein of work, Liu [36] proposed the statistical estimation of total
wind force prevalent in the turbine’s blade-cabin-tower system by applying physics-based techniques for vibration
analysis which was described as a mathematical framework, although they did not utilise any data to demonstrate the
applicability of the method. Their paper focuses on deriving kinetic equations and natural frequency of the coupling
system using Fourier transform and other probabilistic techniques. Their technique can help in identifying random
wind vibrations and its e�ects based on the analysed spectrum, facilitating fault diagnosis.

Multiple studies [38, 39, 35] have utilised vibration signals and applied Empirical Mode Decomposition (EMD) for
detecting incipient faults in the turbine’s mechanical and electrical sub-components, by decomposing these signals into
intrinsic mode functions (IMFs). Feng et al. [35] for instance, proposed demodulation analysis of planetary gearbox
vibration signals, by accounting for the IMFs produced using an ensemble EMD method. Comparing the amplitude
and instantaneous frequency of the demodulated signal envelope’s Fourier spectra with the ideal theoretical values
can help detect abnormalities in the gearbox operation, including wear and chipping faults. Some variations in this
technique have also been applied for short-term forecasting of wind speed, wind power etc. Zheng et al. [40], for
instance, utilised historical wind farm data with wind speed, wind direction and turbine power outputs. The authors
utilised EMD for decomposition of wind power into multiple IMFs and one residue, along with radial basis function
neural networks (RBFNN) as a prediction model. The paper also utilised statistical control algorithms like Kalman
filtering for elimination of noise .

Some studies have performed signal processing of vibration signals in the frequency domain by estimating spec-
tral kurtosis (SK) for CBM. In this technique, the kurtogram can help determine non-stationarities within the signals,
potentially contributing to any defect in the turbine’s sub-components. The SK technique plays an integral role in
extending the general concept of kurtosis (which is a global value) to a function of frequency which is capable of
indicating impulsiveness in signals [41]. In a notable study in this area, Saidi et al. [41] proposed a squared enve-
lope technique based on SK for diagnosing skidding in high-speed shaft bearings through degradation analysis for
performing run-to-failure testing. The paper utilises real-world vibration data from high-speed shaft bearings, and
demonstrates that the maximum value of the SK can serve as an indication of severity of the prevailing damage, while
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the square root of the SK can help extract transients in the signal. The authors performed experimental runs across
di�erent cases pertaining to normal zone, degradation zone and failure zone, and their study shows the immensely
powerful role SK can play in diagnosing faults in critical parts of rotating sub-components in turbines.

As vibration signals can often be subject to high background noise, Jia et al. [42] have proposed an improvement
in the conventional SK technique for fault diagnosis in the rolling-element bearings, applying Maximum correlated
kurtosis deconvolution (MCKD), which can help clarify periodic fault transients in noisy signals, making them more
suitable for diagnosis of incipient failures. Despite their simplicity and no requirements for historical failure data to
develop the fault-prediction model, these studies do not present any performance metrics (e.g. accuracy) in identify-
ing faults, and their predictions cannot be validated, making them lack robustness. They also cannot be utilised for
estimating vital O&M parameters of the turbine and its sub-components, such as Remaining Useful Life (RUL), Mean
Time to Failure (MTTF) etc.

Besides the conventional Fourier transform, some studies have applied wavelet transform for CBM by analysing
vibration signals in the frequency domain. Guo et al. [43] utilised Discrete Wavelet Transform (DWT) to identify
gear faults using the vibration acceleration signal. The DWT can better characterise time-varying components of the
signal and its energy distribution over traditional stationary signal processing methods, providing easier identification
of faults. In another similar study, Yang and An [44] proposed a hybrid approach combining Empirical Mode Decom-
position (EMD) with wavelet transform. In this methodology, the wavelet transform is used to analyse the vibration
signals, while the EMD contributes to better decomposition of the signal into IMF components, facilitating a more
thorough prediction of the signal’s instantaneous frequency as it can address aliasing in the signal resulting from inter-
ference caused by high-frequency components of the transformed signal. Despite their simplicity in analysing signals
for detecting faults, techniques such as wavelet transform can be highly computationally intensive for fine-grained
analysis compared to present AI algorithms, and often require careful considerations in choosing shifting, scaling and
other parameters for any potential success [45].

Figure 3 depicts the treemap tracing the hierarchical composition of signal processing and vibration analysis
methods used in the past. The treemap shows the combination of di�erent possible keywords in this domain (e.g.
empirical mode decomposition co-occurred as a keyword alongside system, design, behaviour etc., spectral kurtosis
co-occurred with keywords like transform, spur gear, drive etc. in the majority of publications). This provides a low-
level view in line with our reviews above. For instance, the treemap shows that empirical mode decomposition has
been utilised in predicting faults, forecasting power output and designing turbine control systems. Spectral kurtosis, as
another prevalent method has been associated with modelling vibration signals for turbine sub-components, especially
the gearbox. Demodulation techniques have been commonly applied during signal processing of the vibration signals in
O&M. Similarly, other relationships outline key elements prevailing in the past for the application of signal processing
and vibration analysis. For damage detection of turbine sub-components, as evident, the task has been performed with
the angles of fault prediction, optimisation of operations and prevention of friction etc. Figure 4 provides a more
fine-grained view of the clusters of prevalent techniques and their common applications.

While the past has mostly seen applications of signal processing and vibration analysis techniques for CBM, a
few important studies have demonstrated promising results in applying conventional AI techniques prevalent in the
past for performance assessment and analysis of turbines. Clifton et al. [46] utilised aerostructural simulations data
for a turbine and applied regression trees to forecast turbine power output, accounting for wind speed, turbulence and
shear, and their methodology has demonstrated success in forecasting turbine performance at new sites with simply
the wind resource assessment data, which is generally available easily to turbine operators. Several other studies have
also modelled wind turbine power outputs with conventional AI techniques such as time-series cluster analysis of
power forecasts during periods of normal operations and anomaly [47], Support Vector Machine (SVM) enhanced
Markov models [48], Gaussian processes and Numerical weather prediction (NWP) models [49] etc. There have been
some attempts at applying hybrid models for power forecasting to achieve improved results. Soleymani et al. [50] for
instance, utilised a real-world wind farm dataset and applied probabilistic approximation techniques in conjunction with
conventional AI optimisation algorithms to develop a hybrid modified firefly algorithm which can provide forecasts
of turbine power outputs, while also considering the prediction’s confidence intervals. Moreover, such techniques are
simple to apply and interpret, due to reliance on probabilistic and statistical inference in the prediction making process.
However, as would be evident from the later discussions, these methods are generally significantly outperformed by
more recent approaches, especially deep learning for time-series forecasting.

Interestingly, the past has seen very limited application of AI in predicting faults in turbines and its sub-components.
This requires careful consideration of the trade-o� in installing additional sensors for vibration analysis of signals, and
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utilising SCADA data, to ensure optimal results for data-driven decision making.

3.2. The Present: Rise of AI in the Wind Industry

In the past, numerical model-based and signal processing techniques have been the most popular for CBM, par-
ticularly leveraging vibration signals for health monitoring with promising results. There have been some instances
of using AI with SCADA data for performance assessment/analysis, but these are rare in comparison to the focus
on utilising vibration data for CBM. However, data-driven techniques, wherein, historical SCADA data is utilised to
train AI algorithms are often much cheaper as well as simpler to use [13]. Additionally, as present-day wind turbines
are generally fitted with various sensors, taking periodic measurements and forming a part of the SCADA data as a
standard, there are rarely any requirements to install measuring and instrumentation devices [51].

Post the year 2015, the wind industry has seen a rapid growth in applications of Machine Learning (ML) models
for data-driven decision support, particularly in utilising SCADA data for data-driven decision making. Interestingly,
we observed that in this period, there was a significant rise in focus on performance assessment/analysis tasks for
O&M, while CBM techniques for health monitoring also continued to remain popular, although there was a signifi-
cant shift from utilising vibration data to more attention on SCADA data. Figure 7 shows the top 50 keywords for
data-driven decision making publications at present, outlining the growing dominance of neural networks. This has
directly contributed to an increase in the number of publications utilising AI for CBM and performance assessment
of turbines, especially post-2017, as evident from the growing annual production of publications shown in Figure 6.
Note that in 2017, the wind industry experienced an AI winter, with a significantly reduced interest in applying AI
for O&M, possibly due to reduced funding and/or resources, including quality data. In between 2015 to 2020, AI
techniques have been utilised in a variety of aspects, for which the thematic evolution is depicted in Figure 8. As evi-
dent, conventional ML techniques based on variational approximations, Bayesian inference and maximum likelihood
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Figure 6: Evolution of AI in the wind industry. The significant interest in AI for CBM
post-2017 can clearly be inferred.

Figure 7: Word dynamics in CBM publications per year. The rise of AI algorithms (in-
cluding neural networks) is clearly outlined.

estimation etc. have dominated the early evolution of AI in the wind industry. In particular, note that unsupervised
linear transformation techniques such as principal component analysis (PCA) have been utilised for feature extraction
and dimensionality reduction. There has also been an interest in novelty detection (e.g. abnormal events) in health
monitoring of turbines. In the later half of this period (post 2017), we can observe the thematic rise of deep learning
models, especially feedforward neural networks towards regression (e.g. predicting turbine power output time-series
and short-term prediction of wind speed), fault diagnosis, optimisation of turbine operations and system design etc.
Figure 5 outlines the most frequent words in AI publications applied to CBM at present. Such diverse applications of
AI demand careful consideration and analysis of the present, which we discuss below specific to di�erent categories
of algorithms.

Figure 9 depicts the treemap outlining hierarchical composition and the focus areas of various AI techniques for
CBM and performance assessment of turbines in the wind industry, wherein, relevant keywords co-occur together
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(e.g. the keyword neural-network co-occurred with performance, decomposition, regression, classification etc. in
majority of the papers in this period of time). Di�erent tasks e.g. classification and regression with applications in fault
diagnosis, maintenance, power forecasting etc. are also clearly visible. Interestingly, there are still mentions of terms
prevalent in signal processing such as wavelet transform and empirical mode decomposition, outlining that the wind
industry has not foregone these techniques, but their use has continued to complement many modern AI techniques
for data-driven decision making. Figure 10 shows the clusters and context of applying AI techniques for wind turbine
O&M, clearly outlining the dominating role of classification techniques for fault diagnosis and regression techniques
for predicting vital turbine operational parameters in multi-step time series forecasting, utilised in conjunction with
conventional decomposition techniques in signal processing.

Regression techniques in CBM and performance assessment The simplest form of ML algorithms which
have been utilised in the wind energy sector span the family of regression techniques, wherein, the continuous values
of vital parameters are predicted over time. The time-varying nature of the SCADA data makes it extremely suitable
for applying regression techniques in a supervised learning environment for predicting target values, such as power
output, wind speed, wind direction etc. in new, unseen data.

Interestingly, while signal processing techniques have dominated CBM and performance assessment of turbines
pre-2015, there have been some studies exhibiting early applications of conventional ML techniques which are worthy
of mention. Clifton et al. [52] utilised data from aero-structural simulations of a 1.5 MW turbine to apply regres-
sion trees in predicting turbine power output accounting for wind speed, turbulence intensity and shear expected. The
technique was found to be significantly more accurate compared to conventional curve fitting (using power curves) in
predicting the power output. Additionally, the paper demonstrated that regression tree models can further be applied
to new turbine test data for predicting the performance of the turbine at a new site without requiring additional training
data. In a similar work by Clifton et al. [53], the authors utilised decision trees coupled with regression for evalu-
ating and predicting turbine performance in a mountain pass region in response to the pass wind time series. Some
studies have also applied support vector regression techniques [54] for predicting the power output. Yang et al. [55]
have utilised support vector regression to develop a reconstruction-based machine learning model for real-time fault
detection in turbine sub-components, identifying anomalies in SCADA features based on the residual error between
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these signals. While such approaches for CBM are simple to apply and interpret, they do not leverage historical turbine
data for decision making. Also, mathematically modelling reconstruction models is computationally expensive, which
defeats the purpose of scalable real time predictions, which should require minimal computational resources.

In another area of CBM utilising regression techniques, Park et al. [56] have previously utilised Gaussian mixture
models (GMM) and Gaussian discriminative analysis models (GDA) for structural health monitoring of turbines, with
wind field characteristics data (such as wind speed, direction, turbulence, profile etc.). Their study shows that such
approaches are promising for load response prediction, and can be extended to new turbine sites, accounting for the
openly available wind resource assessment data.

Post-2015, there has been a significant rise in the application of ML techniques for regression tasks. Especially,
there has been a major move towards deep learning techniques. In one of the early works in this period, Du et al.
[57] proposed an anomaly detection technique, using the Pearson correlation coe�cient for parameter selection in
modelling the wind turbine’s behaviour and self-organising map for dimensionality reduction of SCADA features. The
paper utilises the end predictions to map the power outputs to the ideal power curve of the turbine, and thereby identify
potential faults based on points that fall o� the curve. Despite being promising and simple to apply, the proposed
technique relies on power curves for the final anomaly prediction process, making it less competent compared to
other AI algorithms which can directly generate predictions based on vital SCADA parameters [58]. In another study,
Morshedizadeh [59] focused on wind turbine power production based on the historical turbine performance data,
demonstrating that a combination of a dynamic Multilayer perceptron (MLP) model and the Adaptive neuro fuzzy
inference system (ANFIS) can help predict turbine power outputs optimally, although such techniques have in the last
few years been outperformed by more sophisticated algorithms, especially utilising deep learning.

In the move towards more sophisticated AI models, deep learning techniques have been utilised for predicting vital
turbine operational parameters, which can help in performance assessment. Quereshi et al. [60] utilised operational

Page 12 of 50



Scientometric Analysis of AI for Wind Energy

de
co
m
po
si
tio
n

ne
ur
al
−n
et
wo

rk

m
od
el

sy
st
em

al
go
rit
hm

en
se
m
bl
e

hy
br
id

op
tim

iz
at
io
n

ne
ur
al
−n
et
wo

rk
s

re
gr
es
si
on

pr
ed
ic
tio
n

m
ac
hi
ne

sp
ee
d

m
ul
tis
te
p

cl
as
si
fic
at
io
n

di
ag
no
si
s

−1

0

1

2

H
ei

gh
t

Topic Dendrogram

Figure 10: Dendogram depicting the clusters and context of applying AI techniques for
O&M

data from a wind farm to develop an ensemble approach, combining deep auto-encoders (base-regressor) with Deep Be-
lief Networks (meta-regressor) towards wind power prediction using meteorological features. The paper demonstrates
that such hybrid ensemble approaches can significantly outperform conventional regression techniques. Additionally,
the paper shows that the proposed model can facilitate transfer learning, providing power output predictions in the lack
of additional training data. There has been a recent interest in utilising Recurrent neural networks (RNNs), especially
Long short-term memory networks (LSTMs) [61, 62] for time-series SCADA features and meteorological parameters.
Unlike conventional Artificial neural networks (ANNs) [63], RNNs can account for past temporal information, making
it competent for processing data with sequential nature, as evident in the wind industry. In an early development in
this area, Kulkarni et al. [64] utilised LSTMs for long-term forecasting of wind speed at a farm site, wherein, the pre-
dictions were finally used to perform fatigue analysis of a 5MW wind turbine blade. The approach shows that RNNs
are highly promising in facilitating dynamic wind load calculation. There have been similar applications of LSTMs
for time-series forecasting of turbine power output such as by Zhu et al. [65] and Liu et al. [66], demonstrating high
forecasting accuracy of LSTMs for short-term wind power predictions, generally outperforming ANNs and SVMs.

Classification techniques in CBM and performance assessment In machine learning, classification techniques
serve an integral aspect of classifying/segregating two or more categorical variables e.g. fault types in di�erent turbine
sub-components, operations in di�erent regions of the power curve etc. While some of the simplest classification
techniques utilise e.g. logistic regression [67], which is simple to model and can make probabilistic predictions, thus
making it possible to understand the most probable (or least probable) classes falling into a particular group. However,
these methods often perform poorly in modelling and classifying non-linear data, when there are multiple possible
hyperplanes, which is generally the case with SCADA data being highly complex and non-linear.

Classification techniques have widely been used over the last decade for analysing, diagnosing and predicting wind
turbine faults. In an early application of classification techniques, Leahy et al. [68] utilised SCADA data from the
turbine and applied various classification algorithms towards filtering & analysing faults and alarms, in conjunction
with the turbine’s power curve. The paper demonstrated that Support vector machines (SVM) were the best performing
classifier model for predicting incipient faults in advance across multiple turbine sub-components. Despite showcasing
the promise of AI for CBM of turbine sub-components, the paper lacks in using more sophisticated methods other than
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the binary classifiers for the multi-class classification problem in identifying specific faults. Also, no feature selection
and dimensionality reduction was performed, thereby not accounting for that all SCADA features used may not be
relevant when used with the SVM.

Some studies have utilised decision trees as an integral methodology for Fault detection and isolation (FDI). Si et
al. [69] applied random forests with a combination of Principal component analysis (PCA) towards identifying faults
in multiple sub-components of the turbine (such as pitch system, yaw drive, blades etc.) and determining dominant
SCADA signals. The paper demonstrates that decision tree algorithms like random forest can measure and parameterise
the importance of SCADA signals, which can be extremely useful in analysing predicted faults. Moreover, these
algorithms can be fed with large datasets directly and are extremely e�cient in terms of their training time, compared
to more popular approaches like support vector machine (SVM), which despite their usual merits, su�er from the lack
of capability to work on large datasets and preventing overfitting. In another notable study, Canizo et al. [70] utilised
big data frameworks such as Apache Kafka, Apache Spark, Apache Mesos and HDFS to develop a real-time predictive
maintenance system consisting of an online fault tolerant monitoring agent, utilising the random forest algorithm as
the learning model. They utilised SCADA data and historical logs of failure previously stored in the cloud server
to provide predictions of turbine operational status every 10 minutes by performing SCADA data stream processing.
This can be helpful in real-time decision support in the wind industry for assisting engineers & technicians in O&M
activities. Also, this is likely the only paper in the area of utilising ML techniques for fault prediction to propose a
complete solution right from model development and training to its deployment on a cloud server with a front-end
dashboard. However, the paper mentions that the trained predictive models were not updated to adapt to the actual
operational status of the turbines, and the authors propose to perform online updates in future work.

In a similar vein of research on utilising classification techniques for CBM, Abdallah et al. [71] utilised Classifica-
tion and regression trees (CART) to identify root causes of faults in the turbine. Specifically, the paper demonstrates
that ensemble bagged trees are highly promising in identifying sequence of events that lead to a fault in particular sub-
components of the turbine. Moreover, this approach also gives a brief description of the range of values for SCADA
features leading to the fault (e.g. the gearbox oil temperature going beyond a particular range). The decision trees
can be easily visualised by O&M engineers, who can thereby take corrective actions. Despite the promise, the study
does not provide any details regarding performance metrics (such as accuracy, prediction speed etc.) of the ensemble
bagged tree classifier. Moreover, the paper fails to explain how incipient faults can actually be averted by using a
decision tree classifier, given that SCADA data contains a series of measurements over time, and for temporal data,
models like recurrent neural networks (RNN), Autoregressive integrated moving average (ARIMA) etc. are generally
better suited for reliable predictions. In another study in this area, Abdallah et al. [72] proposed a conceptual frame-
work with description of a hardware-software solution that utilises decision trees for real-time detection of faults. They
also propose the interfacing of predictive decision tree model with a distributed data storage cloud server to perform
analytics in real-time. The proposed framework can help provide autonomous decision support with simple and easy
to interpret models like decision trees. However, utilising more sophisticated AI models (especially deep learners) for
interfacing with such frameworks for real-time decision support would likely lead to significantly added complexity
and challenges in deployment in the wind industry, which we believe is a critical issue that needs to be addressed in
the near future.

More recently, there has been rapidly growing interest in applying deep learning techniques for O&M tasks, espe-
cially for classification of turbine faults. Figure 11 outlines the evolution of trend topics in data-driven decision making
for the wind industry with time, clearly showing a move from more traditional methods based on signal processing in
the past towards neural networks for time-series SCADA data.

The essence of deep learning is the use of neural networks with multiple layers, capable of learning from complex
non-linear relationships in data [73]. Neural networks have the ability to find associations or patterns between inputs
and outputs, making them extremely competent to learn and model complex intermediate representations within the
data [74], which is generally the case with SCADA features. In a recent e�ort in utilising neural networks for CBM
of specific turbine sub-components, Lu et al. [75] utilised SCADA data and applied ANNs for predicting life percent-
age of the turbine sub-components. Their approach can be utilised to identify faults based on conditional probability
of failures, obtained through the ANN’s predictions and the historical component failure time distribution. Such ap-
proaches can assist O&M operators and technicians to better plan the inventory and maintain surplus storage for the
sub-components most prone to failure. However, the paper does not enunciate on the training and testing performance
of the ANNs, as well as the basis of choosing the specified network architecture. Moreover, the paper only focuses on
predicting the lifetime percentage for four sub-components of the turbine, viz. pitch system, gearbox, generator and ro-
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Figure 11: Trend topics for data-driven decision making in the wind industry. The rising
interest towards more sophisticated algorithms e.g. neural networks is clearly outlined,
while conventional techniques (e.g. based on signal processing) still continue to be in use.

tor, which, the authors mention, are most prone to failures. However, there are many other integral sub-components in
a turbine, including drive train, yaw system, hydraulic system, electrical system etc. which the paper does not address.

Qian et al. [76] have previously proposed an Extreme learning machine (ELM) model for CBM, which can help
identify faults based on deviation from ideal SCADA signals. The paper shows that the ELM model performs better
than the conventional feedforward neural networks and takes considerably less time to train and make predictions,
given that it can randomly update the weights and bias unlike ANNs, which utilise gradient-based learning algorithms
for optimisation. Moreover, the model can predict incipient faults in advance for specific sub-components, directly
contributing to reduced maintenance costs. However, the paper lacks in presenting the details of the ELM model used
and a comparison between the performance of the ANNs and ELM in terms of fault prediction accuracy and training
time. Also, as deviation from ideal signals might not always be indicative of a fault, this approach can often raise false
alarms owing to the high sensitivity of the sensors, inadvertently causing forced outages and increased costs.

Some studies have applied AI in computer vision techniques for fault diagnosis and indications of incipient failures
in external turbine sub-components [77, 78, 79, 80]. In this domain, (CNNs) have been utilised by Li et al. [78] to
identify faulty instances of turbine blade images, achieving accuracy close to 100% in some cases. In addition, hybrid
models such as combinations of SVM with CNNs proposed by Yu et al. [77] have also shown success in learning from
small datasets of labelled turbine blade images. While such methods are well suited for CBM of external turbine sub-
components like blades, they cannot be utilised for anomaly prediction in several other integral turbine sub-components
such as gearbox, pitch system etc. Additionally, given that drones or other similar image capturing devices need to be
employed for recording images, this methodology is not cost-e�ective, and is prone to failures and false alarms during
rain, mist, snow etc.

Installing wind turbines at new sites generally requires critical analysis of the location and weather conditions to
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ensure maximum power production possible at the lowest cost. There has been some work in the area of optimising
turbine performance by appropriate planning of layouts such as by [81, 82, 83] etc. A significant study in this area
by Dutta et al. [83] makes use of AI techniques, such as genetic algorithms, for layout planning of turbines and
optimisation algorithms like the ant colony algorithm for deciding optimal line connections in the topology. The study
considers wake e�ect and utilises wind speed time series and cable parameters for turbine interconnections in the wind
farm for optimising turbine layout. The paper demonstrates the immense promise which AI provides in optimising
turbine topologies, as AI algorithms can take into account an exponential number of cases and distributions for finding
optimal solutions, which is generally infeasible through manual optimisation techniques.

Clearly, while most existing studies focus on performance assessment based on power prediction metrics (e.g.
power curve) and deviation from ideal SCADA signals, the research specifically focused on CBM pertaining to anomaly
prediction and identification of incipient faults is still in an embryonic stage. In an early work in this area (which
interestingly, is possibly the only paper pre-2015 to focus on deep learning for CBM), Zaher et al. [84] have utilised
SCADA data from turbines for temperature anomaly detection in sub-components such as the gearbox and generator.
The paper applies multilayer neural networks towards identifying abnormalities in operational temperature of these sub-
components, and the methodology was extended to an entire wind farm using a multi-agent system (MAS) architecture.
This study did not utilise historical fault logs, which were not available to the authors and are generally di�cult to
obtain for research, owing to its commercial sensitivity to the wind farm operators. While this early work showed
immense promise for deep learning towards CBM and anomaly prediction in specific sub-components, the purpose
of complete automation is defeated, as it still requires professional technicians/maintenance engineers to identify and
classify specific classes of faults (e.g. based on severity and specific alarm events).

Following a di�erent methodology, Andersen et al. [85] have utilised convolutional neural networks (CNN) for
fault prediction using vibrational signals from turbines. The paper demonstrates highly promising results, with the
CNN outperforming conventional ML techniques used as baselines significantly. Ibrahim et al. [86] have achieved
similarly promising results with deep learning applied to SCADA data, specifically utilising current signature analysis
and artificial neural networks for anomaly prediction. More recently, Pang et al. [87] utilised a hybrid spatio-temporal
fusion neural network for multi-class fault prediction using SCADA data. Specifically, the paper proposes the appli-
cation of a multi-kernel fusion convolution neural network to learn multiscale spatial features and correlation between
these variables along with an LSTM to further learn temporal dependencies. The proposed technique outperformed
several conventional ML techniques, outlining the promise of deep learners, especially hybrid models for fault predic-
tion in turbines. In a closely related study, Kong et al. [88] developed a hybrid model consisting of CNNs along with
Gated recurrent units (GRUs) for fusing spatio-temporal SCADA features. Similar to LSTMs, GRUs are able to learn
temporal dependencies in complex and non-linear SCADA data, while utilising fewer training parameters, which (in
some cases) make it more computationally e�cient and accurate as demonstrated in the paper. This CNN-GRU model
was trained using historical data for normal behaviour of turbines, and any deviation from normal operation in terms
of residuals was utilised to detect anomalies. The paper demonstrated the e�ectiveness of the method for anomaly
prediction, especially as a monitoring indicator during CBM. Note that while these studies show such deep learners
to predict faults with high accuracy, they cannot provide rationales and transparency in their decisions, regarding the
features exactly leading to the predicted faults [3], which may make turbine operators reluctant to practically adopt
such approaches.

Given the challenges (and time-consuming nature) of obtaining historically labelled SCADA data with fault records,
some studies have applied unsupervised learning techniques for anomaly prediction. This includes application of de-
noising autoencoders (DAE) by Jiang et al. [89], who utiliummed time-series SCADA data from multiple sensors
and demonstrated the ability of DAEs to learn non-linear representations of SCADA features in situations of noise
and input fluctuation. The authors trained DAE with normal data, and by using a multivariate reconstruction model,
they analysed the reconstruction error for detecting faults. The study also utilised a sliding-window technique, which
can help capture the prevailing non linear correlation between multiple SCADA features as well as the temporal de-
pendencies in the features, which provides it highly promising performance for e�ectively detecting faults. As neural
networks have mostly been applied in supervised learning scenarios in the past, this study demonstrates the promise
of unsupervised learning for real-world operational data from turbines. Note that one common challenge which most
existing studies face is the lack of transparency in the black-box natured AI models, which despite generating highly
accurate predictions fail to provide rationale behind their decisions. Also, unsupervised learning techniques when
utilised without historical ground truth for failures cannot be validated, which makes them less robust in comparison
to supervised learning methods.
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Figure 12: Citation burst for AI in the wind industry during 2016-2019. The top 15 terms
(logarithmic scale) prevalent in cited papers utilising such models are used.

Some studies have employed Explainable AI models to tackle the issue of transparency. Chatterjee and Dethlefs
[3] utilised a hybrid model consisting of LSTMs along with a Gradient-boosted decision tree classifier (XGBoost)
towards explainable anomaly prediction in wind turbines. This study also demonstrated the feasibility of transfer
learning, facilitating prediction of faults in new domains (e.g. wind farms which have not been in operation for long)
without access to historically labelled failure data. Wang et al. [90] have utilised a specialised type of LSTM with
attention mechanism to achieve transparent and interpretable wind power prediction. The attention mechanism [91]
in neural architectures facilitates learning models to dynamically focus on the vital and relevant predictive features
in the sequential data (time-series) and also provides the list of features influencing the model’s decisions, leading to
more accurate and transparent predictions. Similar e�orts have been made to apply CNNs with attention mechanism
in order to achieve highly accurate and explainable predictions, e.g. by Kumar et al. [92] for short-term prediction of
wind speed, by Jianjun et al.[93] for imbalance fault detection in turbine blades and Chatterjee and Dethlefs [21] to
identify causal associations in SCADA data during fault predictions. All these studies provide novel insights on the
feasibility and promise of AI models tailored for the wind industry, especially RNNs and CNNs. However, clearly,
the applications of Explainable AI to the wind industry is very limited compared to other domains such as computer
vision and natural language processing (NLP) [94], and we discuss more on this in Section 4.

Figure 12 shows the top 15 keywords in publications applying AI for CBM, which have received the strongest
citation bursts (demonstrating significant research interest) in the wind industry. Interestingly, we note that this period
was prevalent from 2016-2019, which clearly shows that AI for wind turbine CBM received a massive interest amongst
researchers during this time. We also note that the publications utilising artificial neural networks in 2016 garnered
maximum citations, with SVMs being the second most popular technique. An important inference is the dynamic shift
of the interest from conventional ML techniques (such as k-nearest neighbour, logistic regression, genetic algorithms,
random forests and particle swarm optimisation) in the early applications of AI in the wind industry (2016-17) to
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more sophisticated models, specifically utilising deep learning (extreme learning machine, deep neural networks etc.).
From 2019, convolutional neural networks and hybrid models combining multiple neural net architectures have driven
significant research interest in the wind industry. In comparison to this growth, there has been comparatively little
interest in adopting many other AI models (including long short-term memory networks, autoencoders and fuzzy
neural networks). Figure 13 depicts the composition of these less popular techniques. Support vector regression and
recurrent neural networks have interestingly dominated these less popular techniques despite their limited attention,
which shows that they are likely highly promising for CBM. We believe it is integral for the wind industry to more
widely adopt such models for optimal benefits from data-driven decision making.
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Figure 13: Pie chart outlining composition of less popular AI techniques for CBM based
on keywords citation burst during 2016-2019. The least frequent keywords in cited papers
across 291 CBM publications utilising such models are used.

Natural language generation techniques for human-intelligible decision support While most existing stud-
ies applying AI models for data-driven decision making focus on utilising SCADA data, they have significantly ne-
glected additional vital information available, especially historical logs of alarms/failures. These records (generally
referred to as event descriptions) contain comprehensive information of the historical faults in turbines in the form
of natural language phrases describing the alarms in turbine sub-components (e.g. pitch system, gearbox, yaw etc.)
in addition to the time-stamps for the events in relation to the SCADA features. To generate informative messages
from SCADA data, which is a data-to-text generation problem, some studies have applied Natural language genera-
tion (NLG) techniques, building upon the immense success which such methodologies have shown in domains like
weather forecasting, spatial navigation, automated planning etc. [95, 96, 97, 98]. NLG can often play a critical role
towards shortening the analysis time frames in O&M decision support as well as providing human-intelligible deci-
sions, assisting engineers to better understand the context of occurring faults. Additionally, the purpose of data-driven
decision making and automated planning is more or less defeated if AI models are not able to provide maintenance
action suggestions besides accurate fault predictions. NLG techniques are a boon towards achieving transparent deci-
sions, especially considering the sequential nature of data in the wind industry (alarm messages, maintenance report
documents and SCADA features). Specialised NLG techniques, such as few-shot learning [99] also provide the ability
to generate informative messages even with limited training data, making NLG highly promising for adoption in the
wind industry.

In one of the earliest works in this domain, Sowdaboina et al. [100] utilised rule-based NLG techniques to sum-
marise time-series information relevant to the wind industry, primarily wind speed, wind direction etc. Dubey et
al. [101] have applied Case-based reasoning (CBR) techniques to develop an end-to-end system to generate textual
summaries of such meteorological information, demonstrating highly promising results when CBR techniques are
combined with rule-based NLG techniques. Despite showing success in presenting such information, a key drawback
of current studies is that they can only present very limited information (i.e. 1-2 parameters), when there are multiple
(often hundreds) of SCADA features and di�erent failure types in turbines that could be utilised for transparency in
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decision support. Developing NLG systems for such tasks is not only challenging and time-consuming, but also creates
specific constraints when su�ciently labelled information is not available (e.g. ground truth labels of SCADA features
contributing to faults).

To tackle such challenges, AI models have seen very limited, but extremely promising results in the wind in-
dustry. In possibly the only work in this area, Chatterjee and Dethlefs [23] have demonstrated the ability to utilise
AI-based NLG models, such as transformers for decision support. The transformer [102, 103, 104] is a specialised
neural architecture consisting of multi-head attention mechanism, giving it the ability to focus on relevant features
in sequential datasets and eliminating recurrence used in vanilla RNNs completely. This generally helps the model
better learn relationships between features and also reduces the computational complexity significantly, making trans-
formers highly promising for training on modern ML hardware. Given the sequential nature of SCADA data and the
desired outputs (alarm messages and maintenance actions), such techniques have shown success in providing detailed
human-intelligible diagnoses for failures as well as suggesting maintenance actions appropriate to avert catastrophic
failures. Additionally, such models are explainable and transparent, and can provide exact lists of features which lead
to predictions of alarms and maintenance actions through mechanisms based on multi-head attention [102]. Further
brief details on such NLG models is provided later in Section 4. It is clear that while NLG techniques have seen
promise in their early applications to CBM, they have not been widely applied and adopted for data-driven decision
making. We believe it is vital to utilise NLG models, especially leveraging deep learning to generate human-intelligible
maintenance reports for O&M.
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Figure 14: Network visualisation in VOSviewer for AI in the wind industry as evident from
publications from 2010-2020. The graph edges indicate conceptual association between
terms across clusters, with similar colours depicting strong association.

Reinforcement learning for planning and optimisation Owing to the highly complex and uncertain environ-
ment in which turbines are deployed, optimisation and control of turbines as a system is often critical. To achieve
this, Reinforcement learning (RL) [105, 106], a specialised branch of AI techniques, has seen some application in the
wind industry for autonomous decision making and planning. In some early studies, e.g. Tomin et al. and Gauna et
al. [107, 108] trained RL algorithms for intelligent control of a multi-input-multi-output (MIMO)-based controller in
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the turbine system. These studies achieved promising results compared to traditional control methods, which often
face challenges in multi-objective problems common to modern wind turbines. In another vein of work, Aguirre et al.
[109] have applied deep reinforcement learning techniques for wind turbine yaw control and demonstrated that such
techniques incorporated with the learning capabilities of ANNs significantly outperform traditional RL algorithms.
Chatterjee and Dethlefs [94] have demonstrated similar promise of deep reinforcement learning for maintenance plan-
ning of o�shore vessel transfers based on operational SCADA data and other parameters e.g. weather conditions and
predicted fault types and severity. This shows that reinforcement learning is highly promising and feasible for the
wind industry, and we believe that more research should be pursued in this domain to provide better planning and
optimisation in O&M approaches.

Figure 14 shows network visualisation of all AI publications in the last decade, outlining the stagnant rise of AI
for CBM in the wind industry. Based on the graph edges and multiple clusters (represented by di�erent colours), it
can be enunciated that there is prevalence of predictive techniques for classification, regression and optimisation tasks
with neural networks and signal processing techniques (e.g. wavelet transform) and power curves being used for such
purposes. Also, note that feature selection and feature extraction continue to play an important role in such models,
outlining significant focus on feature engineering in SCADA data, as in conventional ML algorithms. There is clearly
extremely limited focus on NLG and reinforcement learning techniques.

4. Perspectives into the future

As evident from scientometric analysis of the past and present, the wind industry is facing an interesting and
challenging problem in autonomous prediction and scheduling of O&M using data-driven techniques. While existing
studies make advances in some specific areas, such as wind power forecasts [110] and anomaly prediction [111], there
has been limited research in incorporating explainability and transparency into data-driven AI models. The lack of
research, particularly in fault prediction during CBM, can most likely be attributed to the issue of obtaining SCADA
data from wind turbines (especially with labelled history of alarms and failures), which is often commercially sensitive
to the wind farm operators.

Below, we discuss some of the major challenges the wind industry is presently facing (and will likely continue
to face in the near future) in applying AI techniques for data-driven decision making, and provide a perspective on
possible ways to tackle them.

4.1. Data availability and quality ensurance

AI techniques rely on huge amounts of data for optimal decision making in real-world applications [125]. However,
given the commercially sensitive nature of data from wind turbines [3], most wind farm operators are reluctant to share
such information openly in the public domain, which is vital for researchers. Additionally, annotating rapidly changing
events and alarms for complex engineering systems like wind turbines is challenging for engineers and wind farm
operators, and may not always be on top of the agenda. In some cases, new turbines may not have been in operation
for long [3], creating a challenge in acquiring even small datasets. To analyse the present situation in terms of data
availability in the wind industry, we present a summary of some openly-available datasets which can be utilised for
CBM of turbines in Table 2, which to the best of our knowledge, are the only sources of information available in
the public domain. Notably, only two of the above sources of data contain historical logs of alarms and failures. It is
also interesting to note that there are some other types of openly available datasets falling outside the scope of CBM
as listed in Table 3. While these cannot generally be utilised for informative decision making to train AI models
pertaining to fault diagnostics or prognostics in O&M, they can help in performance assessment of turbine operations
(e.g. e�ciency and power production). The interested reader is referred to [126] for comprehensive details on the
applications of various datasets available in the wind industry for O&M.

While the datasets with historical weather information and turbine power outputs can be beneficial for forecasting
future trends and deriving useful insights about operational feasibility of turbines (e.g. through power curves) [127],
they cannot be utilised for predicting faults in specific sub-components of turbines and providing possible causes
behind a particular fault. The datasets consisting of vibration data, especially those which include vibration signals
recorded during circumstances of faulty conditions are potentially more useful as they characterise the operational
status of specific turbine sub-components (e.g. gearbox) and can play an integral role in supporting vibration analysis
based CBM in O&M of turbines. The SCADA datasets presently available openly provide the ability to identify
operational parameters in the turbine and its sub-components (such as pitch angle, gearbox oil temperature, active and
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Table 2
Summary of openly available datasets in the wind energy sector which can be utilised for
CBM

Dataset Type Year Released

2011 PHM Society
Conference- Anemome-
ter Fault Detection Data
Challenge [112]

Paired anemoemeter data based at same height and
shear data for anemometers at different heights,
comprising parameters like wind speed, wind direc-
tion and temperature aimed at identifying excessive
error owing to damage or wear conditions

2011

Wind Turbine High-Speed
Bearing Prognosis Dataset
[113, 114, 115]

Bearing health prognosis dataset consisting of vibra-
tion and tachometer signals from a real-world turbine
high-speed shaft bearing [115], which also faced ac-
tual inner race fault conditions

2013

ENGIE La Haute Borne [116] SCADA data from an operational onshore wind farm 2013

NREL Wind Turbine Gear-
box CBM Vibration Analysis
Benchmarking Dataset [117]

Vibration data obtained through accelerometers and
high-speed shaft RPM signals collected during dy-
namometer testing, alongside information on real
damage conditions in turbine gearbox for performing
benchmarking of vibration based CBM techniques

2014

Platform for Operational
Data: Levenmouth Demon-
stration Turbine [118]

Data from an operational offshore wind turbine, in-
cluding SCADA, historical logs of alarms, substation
data, and Met mast data

2017

Ørsted Offshore Operational
Data [119]

SCADA data from 2 operational wind farms, with
on-site 10 minutes statistics from wave-buoy and
ground based LiDAR

2018

EDPR Wind Farm Data [120,
121]

Historical dataset from an operational offshore wind
farm comprising of SCADA signals, Met mast data,
turbine failure logs and relative positions of turbines
and Met mast

2018

Table 3
Summary of openly available datasets in the wind industry which can be utilised for per-
formance assessment of turbines

Dataset Type Year Released

NREL Western Wind Dataset
[122]

Data with historical weather information (wind
speed, air temperature, pressure etc.) and power
output from multiple operational wind turbines

2004

NREL Eastern Wind Dataset
[123]

Simulated data of wind speed and turbine power out-
put, with short-term forecasts

2004

Platform for Operational
Data: Floating Turbine
Design Cases [124]

Measurements from an operational floating turbine,
with operational cases for multiple wind speeds and
wave heights

2019

reactive power etc.). Additionally, these datasets usually contain meteorological information (wind speed, air pressure,
temperature etc.) measured at the Met Mast [128], and can be useful for wind resource assessment. In cases wherein
historical records of alarms logs in the turbine are not available, unsupervised AI techniques for outlier detection [129]
can be applied to discover hidden patterns in the SCADA features and identify potential faults based on discriminatory
features a�ecting data points in certain clusters. However, such techniques cannot be validated due to lack of ground
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truth for normal behaviour/anomaly, and more importantly, lack the ability to provide more detailed description of
faults and their causes, e.g. through alarm messages.

SCADA datasets containing labelled history of alarms prove to be more useful in applying AI techniques, as super-
vised learning techniques for fault prediction [130] can be used to develop predictive models by training on a portion
of the historical data, and facilitate making predictions on new, unseen test data. This is often more reliable, as per-
formance metrics (e.g. accuracy) can be obtained given that original labels (normal operation/anomaly) are available.
Also, as alarm logs contain detailed description of faults in terms of messages describing exact sub-component hav-
ing the fault and its characteristics [23], it can provide significantly detailed insights for O&M. However, as already
outlined earlier, such datasets are extremely di�cult to obtain. In addition, this creates a major challenge in producing
meaningful new results and comparisons with baselines, because researchers generally apply models to very specific
SCADA datasets (which vary widely in terms of features and specifications), and the data used in the papers are mostly
not shared with the published research. This trend severely limits comparability and replicability of published research.

Besides the significant di�culty in access to data, there are also major challenges posed by the quality of datasets
available in this domain. With continuing developments in the wind industry, di�erent types of big data with high
resolution and complexity are becoming available from lidars and buoys, wind and wave metrics and operational data
from hundreds of sensors etc., making it integral to perform proper filtering and quality control for clearly providing
vital information on state of the turbines [131]. Note that data quality issues a�ect not only fault diagnostics and
prognostics in CBM, but also additional O&M tasks which may be beyond the scope of CBM but could be vital to
turbine operators pertaining to performance assessment.

The wind industry has witnessed very limited attention in identifying key issues that persist with utilising turbine
data, which is particularly vital for training AI models which rely on accurate and scalable data [132] for informative
decision making. In possibly the only study which specifically focuses on data quality, Leahy et al. [5] outlined
the pressing issues pertaining to lack of unified standards for di�erent datasets in the wind industry (such as SCADA,
alarm codes, maintenance and work orders etc.), limited availability of alarm data with useful context and the significant
requirements for manually processing datasets into usable formats for training data-driven CBM models. More recently,
with growing research in utilising AI for O&M in the wind industry, particularly deep learning techniques, other
new issues are emerging in this domain for development and deployment of highly sophisticated models as described
below:-

1. Imbalanced datasets: SCADA datasets consisting of historical records of alarms generally su�er from a major
imbalance prevailing between the data samples for normal operation and anomalies [3], with a significantly
higher number of data samples categorised as normal operation owing to limited records for failure conditions,
or with some types of faults (e.g. in gearbox, generator and blades) having much higher failure rates than others
[133]. Training on imbalanced datasets can make the AI models biased towards the majority class (labelled as
normal operation), and thereby lead to missed detections with the model classifying anomalous situations as
normal. These situations are likely to be overlooked by turbine operators during O&M [134], and can result in
unexpected failures and significant costs.

2. Inadequate quality of contextual information on faults: The SCADA alarm systems record alarm patterns
which can indicate failure occurrences in turbine sub-components, as well as the relationship of component fail-
ures amongst other sub-components and adverse environmental conditions [135]. More recently, these alarms are
often available in the form of brief natural language phrases, which provide contextual information of the faults
(e.g. Wind direction transducer error 1 & 3) and can be utilised in data-to-text generation systems for producing
event descriptions from SCADA data to fix/avert failures corresponding to expert judgements [23]. Data-to-
text generation systems utilise natural language generation (NLG) techniques for generating human-intelligible
unstructured textual descriptions of failures from structured SCADA data. NLG techniques, especially neural
machine translation models heavily depend on appropriate quality of data samples for training and low-quality
examples are quickly memorised by such models [136]. In the wind industry, the alarm messages available
are often of inadequate quality for training NLG models to achieve human-level intelligence, and su�er from a
lack in diversity of available corpus as some types of alarm messages (e.g. Pitch System Fatal Error owing to
the fairly frequent occurrence of pitch angle disorientation in turbines) [23, 137] are generally very common in
O&M routine tasks and are thereby given more attention in the wind industry. Engineers & technicians may not
prioritise manually annotating (or developing suitable automation techniques) to develop corpus for alarm mes-
sages summarising contextual information for low-priority faults (e.g. HPU 2 Pump Active For Too Long) [138],
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which leads to a significant variation in the quality of available messages across di�erent sub-components. Ap-
propriate diversity in data samples is essential for generating coherent text and providing useful insights [139]
for domain-specific tasks, which makes utilising NLG in decision support challenging for the wind industry.
Moreover, unlike plain text (e.g. utilised for translating from one language to another) alarm messages in the
wind energy domain often consist of important symbols & numbers (e.g. (DEMOTED) Gearbox oil tank 2 level
shutdown [138] detailing the exact tank in the gearbox which was shut down as a result of the fault), and NLG
models generally miss out on learning these nuances with such symbols potentially contributing as noise within
the natural language message phrases [140, 23].
Besides the aspect of contextual failure information being vital for NLG, there are also some other areas which
may potentially benefit significantly from adequate availability of such information. This may, for instance, in-
fluence planning of o�shore vessel transfers for O&M, wherein, improved context on faults can generally help
maintenance personnel better anticipate the required parts to carry. This can thereby help facilitate improved
inventory management and planning in the wind industry. In other potential uses of contextual failure infor-
mation, the context may include thorough details presented in the form of service logs for turbines, which can
be instrumental in contextualising rarer faults and new errors/operational inconsistencies which were witnessed
by maintenance personnel during O&M of the turbine. All these aspects thereby directly contribute to human-
intelligible and informative decision making, which can be integral for O&M in the wind industry.

Below, we outline some of the key areas wherein the wind energy sector may focus to tackle the challenges in data
availability and quality:-

• Encouraging more wind farm operators to provide open data: The simplest way to apply AI models is to
acquire more useful data, which can be used to train the decision making models over more diverse scenarios of
turbine operation. While a few organisations have already taken the positive steps towards making SCADA data
(and in some cases, historical logs of alarms) publicly available (as per Table 2), clearly, this is not su�cient
for training present-day AI models to become more robust (and autonomous), especially deep learners which
generally require high volumes of data [141] to tune the model and its parameters.
If a few turbine operators can make their data public, what stops other operators from sharing their SCADA
data (and failure logs) for the purposes of Research & Development? According to [142], competition is the
prime reason behind this, as the sensitive data from turbines can often reveal performance metrics and expose
poor design practices. While this is indeed a challenge, we believe that there are multiple options which the
wind farm operators could explore, including developing non-disclosure agreements and anonymising certain
sensitive information (e.g. detailed technical specifications). Also, as wind turbines su�er degradation and are
decommissioned after the end of their useful life[143], we believe that historical data from the decommissioned
(thereby non-operational) turbines can help facilitate development and training of AI models for experimentation,
tests etc., which can later be adapted to any new data sources when they become available, at the same time not
falling into the constraints of commercial sensitivity.

• Wider adoption of transfer learning in leveraging insights from any available data: In machine learning, it
is often challenging to obtain training data for creating high-performance learning models matching the feature
space distribution of test data [144]. This makes it integral to create learning models for the target domain
by training on a closely related source domain as depicted in Figure 15. The wind industry has seen very
limited application of transfer learning techniques in comparison to applications in other domains such as natural
language processing and computer vision [145, 146]. Only a few studies focus on applying transfer learning
techniques to SCADA data from turbines, and are primarily aimed at wind power prediction [60] for performance
assessment/analysis. Some other studies utilise transfer learning for short-term wind speed prediction [147]
and ice assessment on turbine blades [148]. However, to the best of our knowledge, there has been scarce
application of transfer learning towards predicting faults in turbines, which is an integral aspect of O&M. The
only works in this area either focus on prediction of faults in di�erent turbine sub-components [3] or monitoring
vital parameters e.g. of the gearbox to identify deviation from normal behaviour towards fault prediction [149].
It is vital for the wind industry to apply AI techniques towards more fine-grained analysis and prediction of
failures in turbines by utilising transfer learning from historical alarm message records, operator manuals, work
orders etc. Moreover, given that such records (as described before) are the most di�cult to obtain for researchers
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Figure 15: Depiction of the typical process for knowledge transfer. Source domain data can be SCADA features,
meteorological parameters as well as unstructured data such as maintenance manuals etc.

and challenging to annotate for engineers, applying transfer learning can be extremely beneficial in facilitating
the development of high-performance learners even in the absence of su�cient training data. We envisage that
a wider adoption of such techniques in the wind industry can help in enhancing the uptake of AI for CBM and
contribute towards making the O&M process more dependable in situations with paucity of data.

• Quality control of datasets: Some studies have highlighted the necessity for quality control of datasets in
the wind industry, especially through standardisation of information and development of unified standards and
taxonomies by turbine operators and manufacturers [5, 131]. This is indeed important to successfully develop
and deploy highly sophisticated AI models in a long-term perspective. Based on our review in this paper, we
believe that there some options which could be leveraged to encourage quality control of data. Firstly, wind farm
operators could provide basic skills training to engineers & technicians on following a standardised pathway
towards annotating, analysing and interpretation of information on turbine operational conditions in line with a
common framework or industry standards which could be developed for O&M based on consensus of multiple
turbine operators globally. Secondly, it would likely be beneficial to encourage the adoption of data science
and analytics techniques in the wind industry, by providing specialised resources in this domain (e.g. software
applications with interactive graphical user interfaces (GUIs) to simplify the storage, annotation and analysis of
SCADA data, failure logs and alarm messages) to engineers & technicians, and supporting them with guidance
and insights from data scientists. While the wind industry has invested heavily on some critical areas (e.g. design
and manufacturing), we believe that there is insu�cient investment in monitoring, development and analysis of
datasets. By adopting unified standards and investing in this area, we envisage that the wind industry can benefit
greatly in terms of Return on Investment (ROI) , which can help train AI models for decision support with high
quality datasets, making such models potentially more informative, accurate and scalable.

• Utilising specialised statistical and AI techniques for overcoming issues in data quality: Data from turbines
often consists of noise and outliers (e.g. power production at zero wind speed) resulting from communication
failures, abnormality in equipments etc. [150], which poses significant challenges in utilising such information
to train AI models. Some studies have shown that applying specialised techniques to remove such noise and
outliers can help make datasets more e�cient, versatile and suitable for information mining. In one of the earliest
demonstration of statistical techniques for robust data filtering, Llombart et al. [151] proposed the utilisation
of a Least Median of Squares (LMedS) approach to detect noise and outliers prevalent in turbine power curves.
The paper mentions that the approach outperforms other classical statistical methods for filtering (e.g. based
on mean and standard deviation for binned segments of the data) and can help eliminate the requirements for
manual filtering to reject outliers. Another similar study by Sainz et al. [152] combined the LMedS method
with a random search approach, providing the ability to filter modelled data based on parameters beyond the
wind speed, considering metrics like wind direction. In more recent studies, Shen et al. [153] have shown
that specialised algorithms such as change point grouping and quartile algorithm can help improve the quality
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of data pertaining to turbine power curves based on the outlier distribution characteristics. Some other studies
have utilised filtering techniques based on popular methods in the statistics and control domains, such as Kalman
filters to localise noise and outliers for wind energy assessment [154], but these techniques are generally complex
to apply and require extensive mathematical modelling. While data filtering approaches in the existing literature
are suited to traditional AI models, especially for regression, they cannot handle other challenges posed by
imbalanced datasets and lack of contextual information on failures as discussed before in our study.
To handle imbalanced datasets, oversampling techniques such as Synthetic Minority Over-Sampling technique
(SMOTE) [155] have been successfully utilised in the wind industry in some studies [156, 157, 3]. SMOTE is
a highly popular statistical algorithm which can generate synthetic data points for data samples which belong to
the minority class (e.g labelled records of anomaly), thereby balancing the overall distribution of majority (e.g.
normal operation) and minority classes in the dataset. There are some other oversampling techniques which are
popular in the AI community and in some cases, can be more e�cient, especially Adaptive synthetic sampling
(ADASYN) and Ranked minority oversampling in boosting (RAMOBoost) [158] but these are yet to be utilised
in the wind industry for CBM to the best of our knowledge. We believe that the wind industry needs to focus
on more widely adopting oversampling techniques, to facilitate informative decision making even in situations
with limited and imbalanced data.
For better uptake of NLG models, the optimal solution is to focus more on increasing the diversity of contextual
information on faults, which would mean that the wind industry needs to focus not only on the critical types of
failures discussed in our review, but also on low-priority faults. There are some options which could be possi-
bly explored to facilitate the generation of human-intelligible O&M policies with inadequate quality datasets.
Firstly, the wind turbine alarm logs and maintenance records should be better organised, and regularly updated
with time. Secondly, specialised NLG techniques such as few-shot learning [99] can be utilised to facilitate
NLG even in situations with limited availability of high quality training datasets. Thirdly, the wind industry
can likely benefit from utilising generalized language models which have been pre-trained with billions of pa-
rameters, such as Bidirectional Encoder Representations from Transformers (BERT) and OpenAI’s Generative
Pre-trained Transformer (GPT-2/GPT-3), and have achieved state-of-art results in several downstream natural
language processing and generation tasks [159, 104]. Such models can be fine-tuned with custom data from
small corpuses and help overcome the challenges posed by inadequate availability (and quality) of alarm mes-
sages in the wind industry, as well as facilitate more fine-grained and comprehensive descriptions of faults and
O&M strategies to fix/avert faults in comparison to only brief alarm messages presently available in this domain.
While some safety-critical domains such as for clinical decision support [160] have significantly benefited from
the better explainability and context which natural language messages and reports can provide, the wind indus-
try needs to focus on optimally utilising every type of relevant and useful datasets to facilitate decision making
under constraints of complex, unorganised and low-quality O&M records in the short-term. This is necessary
until better quality datasets are available in the wind industry, which we believe can likely only be achieved
with a long-term perspective, given the challenges in transitioning from traditional data acquisition methods
to high-quality storage and information retrieval, e.g. through cloud data centres. Besides these problems, the
wind industry needs to deal with high resolution SCADA datasets (e.g. at 1 second intervals), missing values,
and rapidly changing events and alarms, which is especially important for real-time decision making. Table 4
summarises the emerging data quality issues the wind industry is starting to witness in recent times, along with
possible strategies to facilitate informative decision making under such circumstances.

Table 4: Emerging data quality issues in the wind industry a�ecting the
development of AI models, and possible strategies to overcome these
challenges

Data quality chal-

lenge

A�ected AI techniques Possible solutions
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Imbalanced datasets Supervised learning tech-
niques for classification of
faults; Reinforcement learn-
ing techniques for O&M
planning; Natural language
processing techniques for
classifying alarm messages

Utilising oversampling techniques for
balancing imbalanced class distributions
[158] e.g. Synthetic Minority Over-
Sampling technique (SMOTE) [155],
Adaptive synthetic sampling (ADASYN)
[161], Ranked minority oversampling in
boosting (RAMOBoost) [162], Deep con-
volutional generative adversarial networks
(DC GAN) [163] etc.

Lack in diversity of
alarm messages

Natural language generation
techniques for generating
contextual information on
faults

Few-shot learning techniques [99] to learn
from low-diversity and limited training
data; Generalized language models pre-
trained on large corpuses of information
such as Bidirectional Encoder Represen-
tations from Transformers (BERT) [104],
Generative Pre-trained Transformer (GPT-
2/GPT-3) [164, 165] etc.

Low-quality datasets
with noise, corrupted
values and outliers

Supervised and unsuper-
vised classification (for
fault prediction) and regres-
sion (for forecasting vital
operational parameters)
techniques; Reinforcement
learning techniques for
O&M planning;

Change-point grouping and quartile algo-
rithms [153], Least Median of Squares
(LMedS) method [151], LMedS with ran-
dom search [152], statistical and control fil-
tering techniques like Kalman filters [154],
specialised loss functions in deep learning,
data re-weighting and training procedures
[166], class noise and attribute noise iden-
tification techniques (especially ensemble-
based noise elimination) [167], specialised
ML-based noise reduction techniques such
as Multi-step finite di�erences, Splines,
Mixture of sub-optimal curves etc. [168]

Missing values in
datasets

Supervised and unsuper-
vised classification (for
fault prediction) and regres-
sion (for forecasting vital
operational parameters)
techniques; Reinforcement
learning techniques for
O&M planning; Natural
language processing tech-
niques for classifying alarm
messages; Natural lan-
guage generation techniques
for generating contextual
information on faults

Statistical imputation techniques [169] to
replace missing values with substituted
values based on other available data
e.g. using measures of central tendency
like mean/median, K nearest neighbours
(KNN) imputation [170], Self-organizing
maps imputation for incomplete data
matrices [171] etc.

4.2. Challenges in deploying highly sophisticated O&M models for real-time decision support

While our study shows that some promising e�orts have been made in the wind industry for deploying decision
support models in real-time environments [55, 72, 70], these are clearly rare in comparison to the significant research
which has been pursued in the development of AI models. More importantly, the existing studies which deploy decision
making models in real-time mostly utilise more traditional and simpler models such as decision trees, support vector
regression and random forest, which despite being promising are clearly insu�cient for present demands of the wind
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Figure 16: Explainability challenge for AI in the wind industry: black-box natured AI models can generate predictions with
high accuracy, but fail to provide rationale behind their decisions. Explainable AI techniques can help tackle this challenge.

industry, which is experiencing an enormous rise in complexity of big data. With the global advent of Internet of Things
(IoT), some studies have outlined techniques which can be utilised for interfacing turbine sensors and actuators with
the internet and cloud. An early work in this area by Kalyanraj et al. [172] proposed the utilisation of IoT technology
to facilitate turbine control, as well as data logging of vital parameters such as power generation and vibration levels.
In another notable study, Alhmoud and Al-Zoubi [173] proposed a framework for utilisation of IoT platforms for each
turbine in a wind farm, which can be connected using a microcontroller to a cellular network. Thereby, any new data
which is available can be saved and processing performed on the cloud servers, which also facilitates the access of such
information from anywhere in the world through e.g. computers and mobile devices, wherein, suitable commands can
also be provided to turbines in the wind farm. While this is a promising framework for gathering real-time data from
sensors for performance optimisation and can also help in identifying O&M activities, the paper mentions that the
key factors limiting the practical realisation and wider deployment of IoT in the wind industry are lack of budget and
necessary skills. Other barriers which the paper mentions include security concerns, challenges with communication
protocols etc. While few such studies have clearly shown the immense potential of IoT for real-time decision making,
they do not have a specific focus on AI and the challenges in deploying such models for O&M tasks.

We believe that presently, the availability of continuous flow of information e.g. in the form of SCADA features is
not a major challenge for real-time machine learning, as most wind farm operators have placed immense emphasis on
developing e�ective and e�cient data logging and processing systems on cloud servers, as is reflected by our reviews
in this paper. However, the major challenge which the wind industry faces is the growing complexity of such datasets,
which, due to lack of unified standards and simplified formats are di�cult to be utilised for inference with trained AI
models. Also, the increasing availability of high resolution data (e.g. at 1 second intervals) instead of the conventionally
popular 10 minutes intervals creates additional constraints on feeding SCADA features into the AI models, especially
for facilitating continual updates and re-training the model as new observations become available. We believe that the
pressing issues which are holding the wind industry back from utilising AI models (especially deep learners) for real-
time decision making are primarily inadequate computing power, growing memory cost and security/privacy concerns.
While the scale of such challenges can be reduced by utilising e.g. deep learning models with fewer hidden layers,
this would also generally limit their accuracy on complex tasks, as the ability of such networks to go deeper or wider
is the key essence of their immense potential, especially in extreme-scale DNN models [174]. Thereby, only utilising
simpler/shallower models is clearly not a viable solution to tackle these challenges, as it would generally lead to a
trade-o� with the model performance, which is often critical for O&M tasks in the wind industry.

Table 5 outlines some possible strategies which can be utilised by the wind industry to overcome the rising chal-
lenges in deploying sophisticated AI models for real-time decision support.

Table 5: Emerging challenges for real-time deployment of AI models in
the wind industry, and possible strategies to overcome these challenges

Real-time deploy-

ment challenge

Description Possible solutions
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Memory cost con-
straints

AI models, especially
deep learners face high
bandwidth memory re-
quirements; Memory usage
during training is especially
dominated by the need
for intermediate activation
tensors for storing tempo-
rary information during
backpropagation [175]

In-memory computing to perform forward
and backward pass in neural networks in
place without the requirement to move
around weights [176] etc. , memory e�-
cient deep learning frameworks for large-
scale data mining [177] e.g. MXNet
[178], memory e�cient adaptive optimisa-
tion method [179], specialised frameworks
for developing memory e�cient invertible
neural networks e.g. MemCNN in PyTorch
[180], automatic e�cient management of
GPU memory by using specialised tech-
niques e.g. computational graphs for mod-
els with swap-out and swap-in operations
for holding temporary results in CPU mem-
ory [181] etc.

Inadequate comput-
ing power

Recent advances in AI, espe-
cially deep learning have led
to models which often utilise
tens of millions of parame-
ters for tasks pertaining to
real-time processing of data
streams [182]; deep learn-
ing models require substan-
tial computational resources
during training and inference
phases to run in a quick man-
ner [183]

Using dedicated hardware for ML with
High Performance Computing (HPC)
platforms such as Graphics Processing
Units (GPUs) and Tensor Processing Units
(TPUs) [184, 185, 186], cost-e�cient
training mechanisms for fast model train-
ing such as PruneTrain [187], resource
constrained structure learning for deep
networks [188], utilising edge computing
techniques during deep learning to accom-
plish low-latency and high computational
e�ciency [183]; using cloud computing
platforms [189] such as Google Cloud AI,
Amazon Web Services, Azure Machine
Learning, IBM Watson Machine Learning
etc.

Concerns on commu-
nication security and
privacy

Real-time decision sup-
port systems face risks of
security concerns during
data streaming; ML model
policies can be interfered
with malicious attacks when
performing real-time control
in dynamic environments
[190]; AI models can be
subject to adversarial at-
tacks during training/testing
phases [191]; Wind farm
SCADA systems can be
subject to cyber attacks and
intrusion [192, 193]

Secure learning approaches for defense
against training and inference time attacks
[194], encryption and secure coding of data
streams e.g. through Low-density parity
check (LDPC) [195] etc.

4.3. Lack of transparency in the black-box natured AI models:

Evidently from our discussion, while most AI models are able to provide highly accurate predictions (e.g. of turbine
power output and di�erent faults), they continue to face a significant challenge of transparency due to their inherent
black-box nature. This phenomenon is depicted in Figure 16. Additionally, while conventional ML techniques (such

Page 28 of 50



Scientometric Analysis of AI for Wind Energy

as decision trees) provide added transparency and are much simpler to interpret [196], they are generally significantly
outperformed by deep learners. The lack of rationales behind decisions made by the AI models, in turn makes wind
farm operators reluctant to adopt data-driven decision making techniques and focus on more traditional methods based
on signal processing and numerical physics models. We believe that it is essential to incorporate trust in the decisions
made by these black-box learners, and switching from black-box AI to Explainable AI as discussed below.

Table 6: Summary of Explainable AI models relevant to wind turbine
CBM and performance assessment/analysis. For models which have not
been applied till date, prospective applications are outlined.

Explainable AI

Model

Description Applicability

to wind tur-

bine CBM

and per-

formance

assess-

ment/analysis

Explainable Deep
Neural Networks
(xDNN) [197]

A non-iterative and non-parametric deep learning
architecture, combining reasoning and learning in
a synergy. Provides explanations based on prob-
ability density function automatically learnt from
training data distribution

Can prospec-
tively be
applied to-
wards fault
prediction in
turbine sub-
components,
anomaly
detection in
blade images,
predicting
vital SCADA
parameters
(e.g. wind
speed and
power output)

Long short-term
memory networks
(LSTMs) with
attention [91]

The attention mechanism allows LSTMs to focus
on vital parts of input sequences, providing easier
and higher quality learning; Attention weights can
provide transparency in key features which cause
LSTM to generate its predictions

Wind power
prediction
[90]

Convolutional neural
networks (CNNs)
with attention [198]

The attention mechanism provides ability to focus
on vital segments of input data in the CNN layers
and convolutional filters, with attention weights
providing explainablity in predictions.

Short term
wind speed
prediction
[92], imbal-
ance fault
detection in
turbine blades
[93], causal
inference for
discovering
novel insights
and hidden
confounders
[21]
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SHapley Additive
exPlanation (SHAP)
[199] + Any Black-
box AI model

Provides explainations for outputs generated by
any ML model based on local explainations
through game theory approach ; provides force
plots and interpretable explanations of decision
trees/ensembles of trees

Fault pre-
diction in
multiple
turbine sub-
components
[94]

Local Interpretable
Model-Agnostic Ex-
planations (LIME)
[200] + Any Black-
box AI model

Provides local linear explainations for the ML
model’s behavior; can be utilised for explainable
classification tasks with 2 or more classes

Prospective
applications
include ex-
plainable
binary/multi-
class anomaly
prediction in
turbine sub-
components,
classifica-
tion of blade
images, seg-
mentation
of alarm
messages

Sequence-to-
sequence (Seq2Seq)
model with attention
[201]

Specialised recurrent neural network architecture
for sequential data; incorporates attention mech-
anism to focus on vital parts of input sequential
data; can provide transparency in identifying rele-
vant features used during the prediction process

Wind power
forecasting
[202], predic-
tion of alarm
messages [23]

Transformers [102] Utilises multi-head attention mechanism and
removes recurrence in the conventional encoder-
decoder Seq2Seq architecture; can provide
transparent decisions in terms of key features
which lead to generated predictions through self-
attention scores ;more computationally e�cient
than Seq2Seq models

Short-term
load forecast-
ing [203],
prediction
of alarm
messages and
maintenance
actions [23]

eXtreme Gradient
Boosting (XGBoost)
[204]

A novel, sparsity-aware tree boosting algorithm
which can provide feature importances in datasets
utilised for predictions; highly computationally ef-
ficient and scalable

Fault de-
tection in
multiple sub-
components
[205, 3, 94,
206], wind
power fore-
casting [207],
gearbox fault
prediction
[208]

Utilising Explainable AI models: For tackling the lack of transparency in black-box AI models, Explainable AI
(XAI) [209] models provide immense promise in responsible, trustworthy and dependable decision-making. XAI
can contribute to improved performance of AI models as explanations help trace issues and pitfalls in datasets and the
behaviour of features, while also assisting engineers & technicians to better trust predictions made by such models. The
wind industry has seen very limited applications of XAI, with only a few studies applying such techniques for CBM and
performance assessment/analysis. The current applications mostly focus on turbine power prediction, while limited
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attention has been received in the area of predicting faults and maintenance actions in O&M. Table 6 summarises
some of the major XAI models which have been applied in the wind industry, along with other prospective models for
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Figure 17: Trends for applying Explainable AI models for data-driven decision making.
The slow and static growth is clearly visible.

Figure 17 shows the trends for utilising various Explainable AI models for data-driven decision making in the
wind industry, outlining the slow growth in this direction. Evidently, while explainable decision tree algorithms (such
as XGBoost), specialised libraries and packages for incorporating transparency (such as SHAP) and CNNs with atten-
tion mechanism have received comparatively greater attention in the wind energy domain, several other techniques,
especially those utilising LSTMs with attention, Sequence-to-sequence (Seq2Seq) models and Transformers are facing
paucity for application to data-driven decision support. This is likely due to the lack of available insights, as well as the
reluctance to apply AI in the wind industry, which we hope our paper can tackle. We believe that there is great potential
for such models to be applied, in particular natural language generation techniques, given that besides making accurate
predictions e.g. of turbine alarm messages, they can also generate feature importances for the causes contributing to
such failures, alongside human-intelligible descriptions of most appropriate maintenance actions to avert/fix failures
in such scenarios [23]. There are possibly a plethora of applications of XAI for data-driven decision making, which
we believe need to be explored in the near future to support human-intelligible diagnosis and prognosis of operational
inconsistencies in wind turbines. Appendix A provides a summary of all papers which we have reviewed in our study,
including the techniques they use, key applications and findings, along with their limitations wherever applicable. This
can help serve as a ready reference for researchers in the wind industry to utilise AI pertaining to CBM and performance
assessment of turbines.

5. Discussion

Figure 18 shows a graphical roadmap summarising the likely future of utilising AI for decision support in O&M
in the wind industry over the upcoming 5 years. Note that while we cannot be certain of the definite future, the current
successes and challenges outlined in this paper alongside the growing focus on AI in the wind industry shows a very
likely promising future in this avenue. More details on these focus areas are outlined in Table 7.

We have segmented the roadmap into 3 major subgroups i.e. Artificial Intelligence (for general adoption of AI in
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Figure 18: Graphical roadmap outlining the likely major focus areas in the wind industry
based on current trends, successes and challenges. First appearance of specific topics
shows that they would receive majority focus at that time.

the wind industry), Big Data (for tackling data availability and quality issues) and Deployment (for final deployment
of AI models in real-world industrial use cases), wherein, each of these subgroups have relevant specific topics (e.g.
deep learning in the AI subgroup) associated with them. Note that the roadmap shows the major focus areas for the
wind industry over the next few years, and the first time new topics arise in the roadmap (e.g. data quality in 2022)
indicates the likely high priority they would receive at that point of time. Once these highlighted topics disappear
(e.g. data quality is given a timeframe till 2024), they would continue to be important but would likely receive lesser
priority in the wind industry. Our insights are based on the general delay between the time an associated method is first
published in the AI community to the time it takes to be utilised in the wind industry. For instance, the transformer
model for NLG [102] was first published in 2017 in the AI community, but it was only utilised in the wind industry
for short-term load forecasting [203] in 2019 and generation of human-intelligible alarm messages [23] in 2020. This
clearly indicates that such methods are generally adopted 2-3 years after their first appearance in the AI community,
with this time delay being an important factor to consider. From the roadmap, it can be seen that while we envisage
that there would be an early transition to deep learning and NLG models in the short-term, along with a growing focus
on adoption of XAI models to achieve transparency in O&M decision making, the wind industry would take more time
to improve the data quality and adopt HPC & Cloud Computing techniques widely. Also, transfer learning techniques
will likely see an immense growth in the time to come, and the competitive nature of the wind industry would possibly
lead to open data sharing in the next few years, given that some wind farm operators have already taken the positive
steps to share datasets openly. However, we believe that adoption of IoT for real-time decision support will likely not be
realised soon, as there are ongoing challenges and concerns on data security and privacy which need careful consensus
and thorough analysis in the wind industry.

If the current trends in growth of employing AI models for data-driven decision making continue at the same pace
in the wind industry, we believe that it would not be an impossible feat to achieve real-time decision support across most
wind farms globally by the end of next 5 years (by 2026). This, surely is based on cautious optimism and the chances
for an AI winter to again prevail in the wind industry. However, we would enunciate that following such a roadmap
would likely lead to immense savings in O&M costs to wind farm operators, and a significantly wider adoption of wind
energy globally in the route to combat climate change.
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Table 7
Summary of future roadmap likely viable for utilising AI in the wind industry

Major focus area Description
Deep learning models Wider adoption of deep learning models for CBM (especially RNNs and

CNNs)
Explainable AI Growing focus on XAI, with transition from XGBoost to other transparent

learners (e.g. transformers with attention mechanism)
Alarm messages Better availability of alarm messages with contextual information of faults
Natural language gen-
eration models

Uptake of NLG models in "few" wind farms for real-time human intelligible
decisions

Data quality Better quality data available with improved sensors and automated pro-
cessing of alarms on cloud

HPC and Cloud Com-
puting

Wider adoption of HPC in the wind industry, especially GPUs and TPUs
through cloud computing

Transfer learning Transfer learning sees immense utilisation with rise in development of new
wind farms which lack sufficient operational data to train AI models from
scratch

Open data sharing Increased open-sharing of datasets for CBM, especially with historical alarm
and failure information

Unified industry stan-
dards

Unified industry standards developed in the wind industry pertaining to
standard taxonomies and data formats

Internet of Things IoT becomes widely popular in the wind industry, with uptake for real-time
control and O&M of wind farms from anywhere in the world

Security and privacy Security and privacy challenges are significantly overcome through adoption
of AI models after critical testing for adversial attacks; SCADA systems
become more secure to intrusions

Real-time decision
support

Highly sophisticated AI models are deployed widely by wind farm operators
across the globe for real-time decision making in O&M activities

6. Conclusion

We have provided a systematic review of the past, present and future of data-driven decision making techniques in
the wind industry through scientometric analysis using statistical computing techniques. By tracing the thematic and
conceptual structure of CBM and performance assessment/analysis through evidence-based insights, we demonstrate
there is a significant interest in applying AI techniques for decision support, especially deep learning. An important
insight from our study is that despite the growth of AI in the wind industry, more traditional techniques such as those
based on signal processing will continue to complement AI models in this rapid transition. Our study shows that the
AI applied in the wind energy domain is still in its embryonic stages compared to advances that other disciplines,
such as computer vision and NLP, have made in this area. We outline the key challenges faced by the wind industry
in widely adopting data-driven decision making techniques, particularly lack of access to quality data, problems in
deploying AI models for real-time decision support, and the issue of transparency in black-box natured AI models. To
overcome these challenges, we show that is vital to focus on more sophisticated and tailored AI algorithms, especially
utilising deep learning and natural language generation techniques for explainable AI in achieving human-intelligible,
transparent and trustworthy decision making. We envisage that this paper can encourage wind energy researchers to
specifically focus on critical areas mostly neglected in the past, helping in a smoother transition to AI from academic
labs to the wind industry.
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A. Summary of reviewed publications

Table 8: Summary of reviewed techniques utilised in the wind industry for CBM
and performance assessment of turbines pertaining to O&M. The relevant papers
are arranged mainly based on the order of their occurrence in our reviews, with
similar methods placed closer to facilitate coherence.

Relevant

Paper(s)

Utilised Technique Applications and Findings Limitations (if any)

Zimroz et al.
(2012) [37]

Vibration analysis
through statistical
processing

Abnormal behaviour of tur-
bine bearings identified during
non-stationary load/speed situ-
ations; Vibration signals used
to identify deviations from ideal
parameter values

Liu (2013) [36] Vibration analy-
sis through Fourier
transform and other
probabilistic techniques

Physics-based techniques used
to estimate wind force in tur-
bine’s blade-cabin-tower sys-
tem; Can help identify random
wind vibrations and its e�ects

Only mathematical framework
presented with no demonstra-
tion of the method on real-world
data

Feng et al.
(2012) [35]

Demodulation analysis
of vibration signals

Abnormalities in gearbox op-
eration identified using plane-
tary gearbox vibration signals;
Accounts for IMFs produced
by using an ensemble EMD
method; Proposes comparison
of demodulated signal envelope
with ideal theoretical values for
fault detection

Li (2010) [38]
and Yang et al.
(2011) [39]

EMD for vibration sig-
nal analysis

Can help identify incipient
faults in mechanical and elec-
trical turbine sub-components;
Key idea is to decompose
signals into multiple IMFs

Zheng et al.
(2013) [40]

EMD for signal decom-
position with RBFNN
as prediction model

Short-term forecasting of wind
power performed; Statistical
control algorithms like Kalman
filtering used to eliminate noise5Platform for Operational Data: https://pod.ore.catapult.org.uk
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Saidi et al.
(2015) [41]

Signal processing of vi-
bration signals in fre-
quency domain utilis-
ing SK

Squared envelope technique
based on SK utilised to diag-
nose skidding in high-speed
shaft bearings; SK utilised to
identify severity of damage
as well as transients in signal;
Experiments demonstrated with
real-world vibration data from
high-speed shaft bearings in
normal zone, degradation zone
and failure zone

Jia et al. (2015)
[42]

Signal processing of vi-
bration signals in fre-
quency domain utilis-
ing MCKD

Fault diagnosis performed in
rolling-element bearings; Can
help clarify periodic fault tran-
sients prevailing in noisy sig-
nals

Identified faults cannot be val-
idated based on performance
metrics (e.g. accuracy); The
method cannot estimate vital
O&M parameters like RUL,
MTTF etc.

Guo et al.
(2010) [43]

DWT for analysing vi-
bration signals in fre-
quency domain

Gear faults identified by utilis-
ing vibration acceleration sig-
nal; DWT helps better charac-
terise time-varying components
in signal and its energy distribu-
tion, for easier fault diagnosis

Yang and An
(2013) [44]

EMD with wavelet
transform for vibration
analysis

Wavelet transform used to anal-
yse vibration signals, and EMD
utilised for better decomposi-
tion of signals into IMF com-
ponents; Can address alias-
ing in signals to provide more
thorough prediction of instanta-
neous signal frequency

Wavelet transform can be highly
computationally intensive for
fine-grained analysis; Requires
careful consideration of param-
eters for shifting, scaling etc.

Clifton et al.
(2013) [46]

Regression trees for
performance assess-
ment

Aerostructural simulations data
used to forecast turbine power
output; Accounts for wind
speed, turbulence and shear
parameters

Pravilovic et al.
(2014) [47]

Time-series cluster
analysis

Power forecasts analysed under
circumstances of normal opera-
tion and anomaly

Yang et al.
(2015) [48]

SVM enhanced Markov
models

Provides short-term wind power
forecasts; Improved forecasts in
comparison to models only util-
ising SVM

Chen et al.
(2014)

Gaussian processes and
NWP modelling

Provides up to one-day ahead
wind power forecasts; GP pro-
vides correction on wind-speed
data; Significant improvement
in forecasting accuracy com-
pared to ANNs

Soleymani et al.
(2015) [50]

Hybrid modified firefly
algorithm

Turbine power outputs fore-
casted with consideration of
confidence interval for predic-
tions; Probabilistic and statisti-
cal inference used for prediction
making, which is simple to ap-
ply and interpret

Generally outperformed by
more sophisticated approaches
(especially deep learning)

Page 35 of 50



Scientometric Analysis of AI for Wind Energy

Clifton et al.
(2014) [53]

Decision trees coupled
with regression for per-
formance assessment

Turbine performance predicted
in a mountain pass region; Fore-
casts made on e�ects of pass
wind time-series on turbine per-
formance

Yang et al.
(2019) [55]

Support vector regres-
sion for reconstruction-
based ML

Real-time fault detection
performed in turbine sub-
components based on residual
errors in SCADA signals;
Simple to apply and interpret
for CBM

Such methods do not lever-
age historical turbine data for
decisions; Mathematical mod-
elling of reconstruction models
is computationally expensive

Park et al.
(2013) [56]

GMM and GDA mod-
els for structural health
monitoring

Wind field characteristics data
utilised for load response pre-
dictions; Can be extended to
new turbine sites by utilising
wind resource assessment data

Du et al. (2016)
[57]

Pearson correlation
coe�cient and self-
organising map for
CBM utilising power
curve

Parameter selection performed
for modelling turbine behaviour
with correlation coe�cient;
Self-organising map for dimen-
sionality reduction of SCADA
features; Potential faults iden-
tified based on SCADA data
points falling of ideal power
curve; Promising and simple to
apply

Reliance on power curve for
anomaly prediction makes the
method less competent and ro-
bust

Morshedizadeh
(2017) [59]

MLP with ANFIS
model

Wind turbine power predicted
by utilising historical turbine
performance data; Hybrid
model with MLP and ANFIS
can generate optimal power
production predictions

Generally outperformed by
more sophisticated models
(especially deep learning)

Quereshi et al.
(2017) [60]

Ensemble model of
deep auto-encoders and
Deep Belief Networks
for predicting vital
operational parameters

Significantly outperforms con-
ventional regression methods
for turbine power prediction;
Can facilitate transfer learning
with power predictions in ab-
sence of additional training data

Kulkarni et al.
(2019) [64]

LSTMs for long-term
wind speed forecasting

Can help in fatigue analysis
of turbine blades; RNNs are
shown to be promising for dy-
namic wind load estimation

Zhu et al.
(2017) [65]
and Liu et al.
(2019) [66]

LSTMs for short-term
wind power forecasting

Outperforms ANNs and SVMs
utilised in existing studies sig-
nificantly

Leahy et al.
(2016) [68]

SVM for classification SCADA data from turbine
used to predict incipient faults
across multiple turbine sub-
components with promising
results; Focus on filtering and
analysis of faults and alarms, in
conjunction with power curve

Only binary classification is
performed; No feature selec-
tion and dimensionality reduc-
tion performed
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Si et al. (2017)
[69]

Random forest classi-
fier with PCA

Faults identified in multiple tur-
bine sub-components with iden-
tification of dominant SCADA
signals; Provides feature impor-
tance of SCADA signals assist-
ing in fault analysis; Algorithm
used can directly be fed with
large datasets and having very
e�cient training time

Canizo et al.
(2017) [70]

Big data frameworks
(Apache Kafka, Apache
Spark, Apache Mesos
and HDFS) with ran-
dom forest learning
model

SCADA data stream process-
ing performed on cloud; Facil-
itates real-time decision mak-
ing through an online fault tol-
erant monitoring agent; Com-
plete solution right from model
development to cloud server de-
ployment with a front-end dash-
board

No provision for online updates
in the trained model

Abdallah et al.
(2018) [71]

CART, specifically en-
semble bagged trees

Root-cause analysis of pre-
dicted faults in multiple turbine
sub-components performed;
Provides brief description of
SCADA feature values leading
to faults

No validation of performance
metrics (e.g. accuracy and pre-
diction speed); For temporal
SCADA data, other models like
RNN and ARIMA can generally
give more reliable predictions

Abdallah et al.
(2018) [72]

Decision tree interfaced
with distributed storage
cloud server

Can provide real-time analyt-
ics and autonomous decision
support Provides a complete
hardware-software solution for
detecting faults in real-time,
with simple and easy to inter-
pret decision tree model

Only a conceptual framework
is presented without experimen-
tal demonstration on real-world
data; More sophisticated mod-
els (e.g. deep learners) would
likely face more challenges in
interfacing with cloud servers

Lu et al. (2018)
[75]

ANNs for CBM Can help predict life percentage
of turbine sub-components;
Faults can be identified based
on conditional probability of
failures; Utilises the ANN
model predictions and histor-
ical component failure time
distribution for fault detection;
Can help in better inventory
planning

No details on training and test
performance of ANNs, and the
rationale for choice of network
architecture; Only focus on 4
sub-components (pitch system,
gearbox, generator and rotor)

Qian et al.
(2015) [76]

ELM for CBM Provides better performance for
fault identification in compari-
son to feedforward neural net-
works; Faults identified based
on deviation from ideal SCADA
signals; Model takes signifi-
cantly less time for training and
inference; Can predict faults in
specific sub-components

No details presented on the
ELM model architecture; Lacks
in comparing performance of
ANNs and ELM based on accu-
racy and training time; Devia-
tion from ideal signals may not
always indicate fault, so prone
to false alarms

Li et al. (2014)
[78], Li et al.
(2015) [79] and
Moreno et al.
(2018) [80]

CNNs for computer vi-
sion based CBM

Can provide high accuracy in
identifying faults with turbine
blade images

Cannot be used for predicting
anomalies in internal turbine
sub-components
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Yu et al. (2017)
[77]

SVM-CNN hybrid
model for computer
vision based CBM

Have shown success in learn-
ing to predict faults in tur-
bine blades with small labelled
datasets

Drones/other image capturing
devices are not cost-e�ective;
Method prone to failures and
false alarms e.g. during rain,
mist and snow

Wu et al.
(2014) [81] and
Menghua et al.
[82] (2007)

Turbine layout planning
methods

Can help decide optimal posi-
tions for turbines to maximise
performance; Helps in suitable
performance assessment for de-
ployment of turbines in new
sites

Dutta et al. [83] Genetic algorithms and
ant colony optimisation
algorithm

Wake e�ect considered and
wind speed time series and
cable parameters towards tur-
bine interconnections utilised
to optimise turbine layout; Can
help cover exponential number
of cases and distributions to
find optimal solutions

Zaher et al.
(2009) [84]

Multilayer neural net-
works along with a
MAS architecture

SCADA data utilised for tem-
perature anomaly detection in
sub-components like gearbox
and generator; Shows immense
promise of deep learning for
CBM and specific-component
based anomaly prediction

No historical fault logs utilised
for validation of the method;
Still requires manual in-
tervention of professional
engineers/technicians to iden-
tify and classify di�erent faults
in sub-components

Andersen et al.
(2015) [85]

CNNs for CBM with vi-
brational signals

Vibration data pertaining to
main bearing failures from
multiple turbines used to pro-
vide scalable fault detection
technique; CNN significantly
outperforms conventional ML
baseline models

Ibrahim et al.
(2016) [86]

Current signature anal-
ysis along with ANN

SCADA data utilised with
promising results for anomaly
prediction; Current signature
analysis is able to identify faults
based on frequency spectrum of
electrical signals; ANNs help to
identify faults during transient
conditions

Pang et al.
(2020) [87]

Hybrid spatio-temporal
fusion neural network
with CNN and LSTM

Facilitates learning of multi-
scale spatial features and corre-
lation between SCADA features
by utilising a multi-kernel fu-
sion CNN; LSTM is used which
further learns temporal depen-
dencies in the data; Method out-
performs multiple conventional
ML baselines
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Kong et al.
(2020) [88]

CNN-GRU hybrid
model

Performs fusion of spatio-
temporal SCADA features;
Model was trained with histor-
ical data on normal operation
of turbines, and deviations
based on residual values used
to detect anomalies; Shows im-
mense promise of the approach
for serving as a monitoring
indicator in CBM

Cannot provide transparent de-
cisions with reasoning and ra-
tionale for predictions

Jiang et al.
(2018) [89]

DAE for unsupervised
learning with sliding-
window approach

Can help detect faults based
on multiple SCADA features
from sensors without historical
ground truth for faults; Promis-
ing performance in situations
of noise and fluctuating input;
Helps capture non linear cor-
relations between SCADA fea-
tures and temporal dependen-
cies for improved predictions

Generally cannot be validated
without historical fault records;
Cannot provide rationale for de-
cisions

Kalyanraj et al.
(2016) [172]
and Alhmoud
and Al-Zoubi
(2019) [173]

IoT Applications span turbine con-
trol, data logging of vital O&M
parameters such as wind speed,
power etc. on cloud servers ;
Can help facilitate remote ac-
cess and control of turbines dur-
ing decision support

Challenging to integrate with
AI algorithms and deploy for
real-time ; Security and privacy
concerns are particularly a sig-
nificant constraint

Chatterjee and
Dethlefs (2020)
[3]

LSTM-XGBoost model
for Explainable AI

Can provide transparent
anomaly prediction in multiple
turbine sub-components with
SCADA data; Transfer learning
is demonstrated for facilitating
predictions in new domains
lacking labelled training data

Large amounts of training data
required during initial model
training in source domain to
achieve optimal results

Wang et al.
(2019) [90]

LSTM with attention
for Explainable AI

Can provide interpretable wind
power predictions; Generally
outperforms conventional ML
techniques significantly

More complex to model in com-
parison to simpler neural archi-
tectures like ANN

Kumar et al.
(2020) [92],
Jianjun et al.
(2019) [93] and
Chatterjee and
Dethlefs (2020)
[21]

CNN with attention for
Explainable AI

Multiple applications spanning
short-term prediction of wind
speed, imbalance fault detec-
tion in blades, causal inference
in SCADA features; Provides
novel insights for transparent
decisions

More complex to model in com-
parison to simpler neural archi-
tectures like ANN

Sowdaboina et
al. (2014) [100]

Rule-based NLG Can summarise vital time-
series parameters like wind
speed and direction etc.

Development is time-
consuming and challenging

Dubey et al.
(2018) [101]

CBR for NLG Provides textual summary of
meteorological information
which can be of relevance to
wind industry; Demonstrate
highly promising results on
combining CBR with rule-
based NLG methods

Can only provide very limited
information
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Chatterjee and
Dethlefs (2020)
[23]

Transformers for NLG Facilitates generation of de-
tailed human-intelligible mes-
sages for faults as well as main-
tenance strategies; Provides ex-
plainability with feature impor-
tance leading to predicted deci-
sions

Significantly complex to model
and develop in comparison to
conventional rule-based and
CBR techniques

Tomin et al.
(2019) [107]
and Gauna et
al. (2016) [108]

RL for intelligent con-
trol

Can help in intelligently con-
trolling MIMO based turbine
system controllers; Shows
promising results compared to
traditional control techniques
in modelling multi-objective
problems relevant to wind
industry

Aguirre et al.
(2020) [109]

DRL for intelligent con-
trol

Demonstrates promising results
in wind turbine yaw control;
The learning capability of
ANNs in DRLs helps signifi-
cantly outperform conventional
RL algorithms

DRL techniques can be more
complex to model; Requires
significant training time in com-
parison to vanilla RL algo-
rithms

Chatterjee and
Dethlefs (2020)
[94]

DRL for planning Demonstrates immense
promise for maintenance
action planning in o�shore
vessel transfers; Considers
SCADA data along with other
vital parameters like weather
conditions and types/severity of
faults

More complex to model in com-
parison to vanilla RL tech-
niques; Requires historically la-
belled failure data for O&M
planning

Qureshi et
al. (2017)
[60], Hu et al.
(2016) [147],
Zhang et al.
(2018) [148],
Chatterjee and
Dethlefs (2020)
[3], Pan et al.
(2020) [149]

Transfer learning for
domain knowledge
transfer

Multiple applications spanning
wind power prediction, short-
term wind speed prediction,
ice assessment on blades,
fault prediction in turbine
sub-components, monitoring
vital O&M parameters during
anomalies etc.

Generally requires high quality
historically labelled data for ini-
tial model training (in source
domain); Can be complex to
model requiring high computa-
tional power

Sainz et al.
(2019) [152]

LMedS with random
search for data filtering

Provides promising filtering
ability from data such as wind
speed and wind direction

Generally significantly outper-
formed by more sophisticated
methods based on ML for data
filtering; Cannot handle chal-
lenges posed by imbalanced
datasets

Shen et al.
(2019) [153]

Change point grouping
and quartile algorithm
for data filtering

Helps to improve data qual-
ity for modelling power curves;
Demonstrates promising results
in filtering outliers based on
data distribution characteristics

Cannot handle challenges posed
by imbalanced datasets

Yi et al. (2020)
[156], Ge et al.
(2017) [157]
and Chatterjee
and Dethlefs
(2020) [3]

SMOTE for balancing
datasets

Can generate synthetic data
points to tackle imbalanced
datasets in the wind industry;
Helps overcome challenges
posed by lack of abundantly
labelled records (e.g. for
anomalies) during AI model
training

Techniques like RAMOBoost
and ADASYN generally per-
form better than SMOTE in
most cases in other domains e.g.
healthcare (but have not been
applied yet in the wind industry)
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Chatterjee and
Dethlefs (2020)
[94]

SHAP for Explainable
AI

Can provide transparent out-
puts for predictions made by
black-box natured AI mod-
els; Demonstrates significant
promise in O&M planning
for interpretable fault pre-
diction in multiple turbine
sub-components

Cannot be utilised out of the box
for more complex AI architec-
tures (especially deep learning
models like RNNs and CNNs)

Fu et al. (2019)
[202] and Chat-
terjee and Deth-
lefs (2020) [23]

Seq2Seq model with at-
tention for Explainable
AI

Applications spanning wind
power forecasting and gener-
ation of alarm messages for
faults; Can provide feature
importances for predictions
with added transparency

Generally outperformed signif-
icantly by more sophisticated
neural architectures like trans-
formers

Meng et al.
(2019) [203]
and Chatterjee
and Dethlefs
(2020) [23]

Transformers for Ex-
plainable AI

Applications include short-term
load forecasting and prediction
of alarm messages and main-
tenance actions during O&M;
Demonstrates that the model
significantly outperforms con-
ventional baselines such as
Seq2Seq; Can help provide
human-intelligible decisions
during NLG

More complex to model and
requires significantly greater
training time compared to
vanilla Seq2Seq architectures

Zhang et al.
(2018) [205],
Chatterjee and
Dethlefs (2020)
[3, 94], Wu
et al. (2020)
[206], Yuan et
al. (2019) [208]
and Browell
et al. (2017)
[207]

XGBoost for Explain-
able AI

Multiple applications spanning
detection of faults in multiple
turbine sub-components, wind
power forecasting etc.; Can pro-
vide feature importances for
predictions made by AI mod-
els; Computationally e�cient
and scalable model in compar-
ison to conventional ML tech-
niques

Often outperformed in perfor-
mance (e.g. accuracy) by more
sophisticated architectures (es-
pecially deep learners)
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