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A novel heteroditopic thiacalix[4]arene receptor L possessing a 1,3-alternate conformation, and which 

contains two pyrene moieties attached to the lower rim via urea linkages together with  a crown ether 

moiety appended at the opposite side of the thiacalix[4]arene cavity, has been synthesized. The 

complexation behaviour of the receptor L was studied by means of fluorescence spectra and 1H NMR 

titration experiments in the presence of K+ ions and a variety of other anions. The results suggested that 

receptor L can complex efficiently via the urea cavity or the crown ether moiety, and a positive/negative 

allosteric effect operating in receptor L was observed. 

Introduction 

A number of excellent receptors based on the use of three–

dimensional calix[n]arenes have been designed,1 and these are 

capable of selectively recognizing cations, anions or neutral 

molecules. In particular, thiacalix[4]arenes2 which contain 

bridging sulfur atoms, have been successfully utilized as 

potential building blocks or molecular scaffolds. It has been 

noted that such thiacalix[4]arene systems can induce favourable 

host-guest interactions with metal cations of biological and 

environmental importance via allosteric regulation.3 Anions 

also exist in various locations everywhere biological systems 

(e.g., DNA and enzyme substrates), and play an important role 

in the fields of medicine and catalysis. It is thus important that 

anion selective sensors4 are developed and fully investigated. 

However, the situation is not as simple as for metal cation 

sensors because anions can possess different types of structures, 

viz spherical (F–, Cl–, Br–, I–), Y-shaped (AcO–, PhCOO–) and 

tetrahedral (H2РO4
–).5 Anion receptors6 based on calixarenes

are relatively new in the area of supramolecular chemistry. 

Furthermore, it is noteworthy that calixarene urea derivatives, 

in which the anion complexes exclusively through hydrogen 

bonding, are quite efficient for anion recognition. 

In 1996, Reinhoudt and co–workers7 reported that 

calix[4]arene based systems could act as bifunctional receptors 

to solubilize NaX salts (X = C1, Br) in chloroform via an 

allosteric effect of calixarene framework. Following this report, 

a number of neutral bifunctional receptors were developed 

which were capable of the simultaneous complexation of 

hydrophilic anions and cations.8 There has also been recent 

interest in the simultaneous binding of cationic and anionic 

guest species by ditopic receptors, and this is a rapidly 

developing field for ion pair recognition in environmental and 

biological systems.9 

It has been known that the 1,3–alternate conformation of 

calix[4]arene can provide the two excellent binding sites for 

guest molecules when the appropriate functionalization has be 

achieved.1h Kumar10 and co–workers have reported a 

heteroditopic receptor bearing a thiacalix[4]arene in the 1,3–

alternate conformation, which possesses two urea linked 

pyrene moieties and a crown–ether moiety at the opposite sides 

of the thiacalix[4]arene cavity. This compound is an interesting 

ratiometric fluorescent chemosensor for the F– ion and the CN– 

ion utilizing different modes via the two urea moieties in THF. 

However, investigations concerning the appearance of an 

allosteric effect in such an individual binding system based on a 

thiacalix[4]arene together with alkali metal cations and anions 

has not yet been reported. 

 On the basis of the above, we independently designed a 

heterodimeric system11 based on a thiacalix[4]arene having two 

different side arms, which were typically two urea linked 

pyrene moieties and a crown ether moiety at the opposite sides 

of thiacalix[4]arene cavity. We hypothesized that such a 

heterodimeric system, whereby complexation control is 

achieved on the opposing side arms with anions and K+ ions, 

can exhibit an effective positive and negative allosteric effect. 

In this article, we report the synthesis and complexation studies 

of a novel heteroditopic receptor based on a thiacalix[4]arene in 

the 1,3–alternate conformation, which contains two urea linked 

pyrene moieties and a crown ether moiety at the opposite sides 

of the thiacalix[4]arene cavity. In our complexation studies, we 

investigated the fluorescent properties of this heteroditopic 

receptor and the selective fluorescent behaviour toward K+ ions 
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and various other anions by using the intensity ratio of the 

monomer to excimer emission (IM/IE) of the pyrene moiety. 

Results and discussions 

Synthesis 

O-Alkylation of distal–1 was carried out with 1.5 equiv. of 

tetraethyleneglycol ditosylate in the presence of an equivalent of 

K2CO3 according to the reported procedure, and afforded the desired 

1,3–alternate–2 in 83 % yield.12 The hydrazinolysis of 1,3–

alternate–2 was carried out with a large excess of hydrazine hydrate, 

and afforded the desired 1,3–alternate–3 in 86 % yield. The 

condensation of 1,3–alternate–3 with 2.2 equivalents of 1–

pyreneisocyanate13 in THF furnished the receptor L in 68 % yield 

(Scheme 1). The 1H NMR spectrum of receptor L in CDCl3–DMSO

(10:1, v/v) exhibits the characteristics of a 1,3-alternate 

canformation such as two singlets (18H each) for the tert-butyl 

protons at  1.29 and 1.40 ppm, one singlet (4H) for OCH2CO 

protons, two singlets (4H each) for aromatic protons and two singlets 

(2H each) for four urea NH protons. Dilution experiments at 

different concentrations of receptor L indicated that the excimer 

emission resulted from the intramolecular excimer, rather than the 

intermolecular excimer (Fig. S7). Moreover, the concentration 

dependence of the 1H NMR chemical shifts of the ureido protons in 

receptor L was not observed (Fig. S8). This result suggests that 

receptor L has a strong intramolecular hydrogen bond between the 

two ureas linking the pyrene moieties. Upon addition of Cl– ion (0–

30 M) to the solution of receptor L (1.0 M), Fig. 1 reveals how 

the excimer emission of the pyrene unit (486 nm) decreased, whilst 

the monomer emission of the pyrene unit (392 nm) increased due to 

the complexation of the Cl– ion by receptor L inducing 

‘conformational unstacking’ of the two pyrene ureas thereby 

quenching any intramolecular π–π  interactions. Meanwhile, a 

discernible isoemissive point was observed at 460 nm. A Job’s plot 

of the binding between receptor L and the Cl– ion revealed a 1:1 

stoichiometry (Fig. S9), whilst the association constant (Ka) for the 

complexation with Cl– ion by receptor L was determined to be 3.54 

× 10
4  M-1 by

Fig. 1 Fluorescence spectral changes of receptor L (1.0 M) upon addition of 
increasing concentrations of Cl– ion as the tetrabutylammonium (TBA) salt in 
CH2Cl2–DMSO (10:1, v/v). λex = 343 nm. 

1H NMR titration experiments in CDCl3–DMSO (10:1, v/v) (Fig. 

S11–S12). The fluorescent titration profile for receptor L with Cl– 

ion demonstrated that the detection limit of Cl– ion was 1.73 × 10
-8

M (Fig. S13). As a result, receptor L can be regarded as being highly 

sensitive to Cl– ion, especially given the large fluorescence dynamic 

range and the low detection limit of 1.73 × 10
-8

 M. Moreover, a

fluorescence titration experiment of receptor L with K+ ions was 

carried out by 1H NMR titration experiments in CDCl3–DMSO (10:1,

v/v). The Job’s plot binding between receptor L and K+ ion revealed 

a 1:1 stoichiometry (Fig. S13), whilst the Ka value for the 

complexation with K+ ion was determined to be 1.48 × 10
4 

M-1 by
1H NMR titration experiments in CDCl3–DMSO (10:1, v/v) (Fig. 

S15–S17). Interestingly, upon addition of K+ ions (0–10 M) to a 

solution of the receptor L, it was observed, see Fig. S14, that the 

excimer emission of the pyrene unit (486 nm) decreased and the 

monomer emission of the pyrene unit (392 nm) increased.  These 

changes were thought to arise because of the conformational change 

upon complexation of the K+ ion with the crown-5 ring. Fig. 2 shows 

the fluorescence intensity changes of the monomer emission for 

receptor L in the presence of 

Fig. 2 Fluorescence spectral changes of receptor L (1.0 M) upon addition of 
various tested anions (100 μM)  in CH2Cl2–DMSO (10:1, v/v). λex = 343 nm. 
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Journal Name ARTICLE 

J. Name., 2012, 00, 1-3 | 3  

Fig. 3 Fluorescence spectral changes of receptor L • K+ ([L] / [K+] = 1:30, 
[L] = 1.0 μM) upon addition of various tested anions (100 μM) in CH2Cl2–

DMSO (10:1, v/v). λex = 343 nm.  

Fig. 4 Ratiometric signal changes of IM392/IE486: upon addition of 100 μM of 
various anions in receptor L (1.0 μM) (blue bar) and receptor L • K+ ([L] / 
[K+] = 1:30, [L] = 1.0 μM) (red bar) solution in CH2Cl2–DMSO (10:1, v/v) at 
298 K. λex = 343 nm. 

various anions. Upon the addition of Cl– ion, the fluorescence 

intensity change was very large. However, no significant 

fluorescent intensity changes were observed upon the addition 

of either Br– or I– ions. On the other hand, upon addition of F–

ions, the monomer and excimer emission exhibited quenching 

due to the photoinduced electron transfer (PET) from F– to the 

pyrene moieties.14  Also, upon the addition of AcO–, PhCOO– 

or H2РO4
– ions, relatively little quenching was observed (Fig.

S18). In comparison with the Cl– ion, a much weaker response 

was given at the same concentration for the F–, Br–, I–, AcO–, 

PhCOO– or H2РO4
– ions. The much larger responce (and

different) fluorescence intensities caused by the presence of the 

Cl– ion for receptor L, suggests that receptor L has a much 

higher affinity and selectivity toward the Cl– ion. Moreover, it 

was found that receptor L was capable of binding all of the 

anions tested, irrespective of their shape. The quantum yield of 

the free receptor L was found to be Φ = 0.23, for both the 

monomer and excimer emission (392 and 486 nm). The 

quantum yield of the receptor L•Cl- complex was Φ = 0.13, as a 

result of increased monomer emission. While, the quantum 

yields of the receptors L•Br- and L•I- (Φ = 0.20 and 0.22, 

respectively) are almost unchanged in comparison with the 

quantum yield of the free receptor L. In contrast, the quantum 

yields of the receptor L with F–, AcO–, PhCOO– or H2РO4
– ions

could not be measured due to quenching. Furthermore, the 

result of the fluorescence responses of the receptor L•K+ to the 

various tested anions exhibited the appearance of an effective 

positive and negative allosteric effect between the receptor 

L•K+ and the various anions. As shown in Fig. 3, upon addition 

of Br– ions, the fluorescence response was enhanced because of 

a positive allosteric effect via an ion-pair electrostatic 

interaction and a conformational change. However, upon the 

addition of Cl– ions, the fluorescence response was almost the 

same in comparison to the case in the absence of K+ ions. This 

was attributed to the two ureas linked pyrene moieties of 

receptor L •K+ binding to the Cl– ion by an ion-pair electrostatic 

interaction which induces the decomplexation of the K+ ion 

from the crown-5 ring of receptor L via a conformational 

change of the thiacalix[4]crown-5. The quantum yield of the 

receptor L with K+ ion was found to be Φ = 0.18. The quantum 

yield of receptor L with Cl- and K+ ions was Φ = 0.12, as a 

result of the increased monomer emission. The quantum yield 

of receptor L with Br- and K+ ions was Φ = 0.16, caused by 

increasing the monomer emission. These results suggested that 

the monomer emission was increased. Indeed, Fig. 4 shows the 

intensity ratio of the monomer to excimer emission (IM/IE) of 

receptor L which is 0.79. It can be seen that amongst all the 

anions tested, there are some different trends for IM/IE
 exhibited 

both in the absence or presence of K+ ions. In the absence of K+ 

ions, IM/IE on addition of F–, AcO– or PhCOO– ions revealed a

dramatic increase of the order of 6.1~7.2-fold to 4.8~5.7. This 

is because receptor L complexes strongly with each anion via 

two ureas linked pyrene moieties, resulting in a quenching of 

the excimer emission by PET from each anion to the pyrene 

moieties. On the other hand, in the presence of K+ ions, IM/IE on

addition of Cl– ions was enhanced somewhat by ca 3.3 to 3.6 

fold (IM/IE of receptor L •K+ is 1.1), which was attributed to

receptor L complexing strongly with the Cl– ion via the two 

ureas linked pyrene moieties. Moreover, it found that IM/IE on 

addition of Br– ions increased in intensity by 1.7 – 1.8 fold in 

the presence of K+ ions (versus the absence of K+ ion) because 

the two ureas linked pyrene moieties of receptor L•K+ bind Br– 

ion by an effective positive allosteric effect (an ion-pairing 

electrostatic interaction and a conformational change). 

To obtain more detailed information about the presence of a 

positive or negative allosteric effect between the receptor L 

•K+ and Br– or Cl– ions, 1H NMR titration experiments in 

CDCl3–DMSO (10:1, v/v) were conducted. When only K+ ions

was added, we observed a large downfield shift of not only the 

crown–ether bridge protons, but also all the NH protons, which 

is due to the conformational change on complexation of the K+ 

ion by the crown-5 ring (Figures 5a and 5b). Figure 5 shows 

that when Br– ions were added to the solution of [L ⊃

KSO3CF3] (Fig. 5c), resultant upper field shifts were induced of 

0.09 ppm (δ = 9.40 to 9.31 ppm) for the NHa protons and 0.04 

Scheme 1 Synthesis of receptor L 
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ppm (δ = 8.89 to 8.85 ppm) for the NHb protons, whilst the 

chemical shifts of the crown-ether bridge protons did not 

change. These results  

Fig. 5 Proposed positive allosteric behaviour of receptor L with Br– and K+ 
ions. Partial 1H NMR spectra of L/guest (H/G = 1:1); a) free L; b) 
LKSO3CF3; c) Bu4NBr [LK+]; d) LBu4NBr. Solvent: CDCl3–DMSO 

(10:1, v/v). 300 MHz at 298 K. *Denotes the solvent peak. 

Fig. 6 Proposed negative allosteric behaviour of L with Cl– and K+ ions. 
Partial 1H NMR spectra of L/guest (H/G = 1:1); a) free L ; b) LKSO3CF3 ; 
c) Bu4NCl[LK+]; d) LBu4NCl. Solvent: CDCl3–DMSO (10:1, v/v). 300 
MHz at 298 K. *Denotes the solvent peak. 

suggested that the formation of a heterogeneous dinuclear 

complex Br–⊂ [L⊃ K+] had occurred, and we propose a 

positive allosteric effect of receptor L toward Br– ions in the 

presence of K+ ions as shown in Figure 4. On the other hand, 

Figure 6 reveals that when Cl– ions were added to a solution of 

[L⊃KSO3CF3] (Fig. 6c), the addition induced upper field shifts

of 0.22 ppm (δ = 8.89 to 8.67 ppm) for the NHb protons and 

0.55 ppm (δ = 8.80 to 8.25 ppm) for the NHc protons, whilst 

upper field shifts for crown-ether bridge protons were observed. 

Interestingly, when Cl– ions were added to a solution of [L⊃

KSO3CF3] (Figure 6c), the chemical shifts of the crown-ether 

bridge protons most closely matched the chemical shifts for the 

free crown-ether bridge protons (Figures 6c and 6d). These 

results suggested that the two ureas linked pyrene moieties of 

receptor L • K+ bind Cl– ions by an ion-pair electrostatic 

interaction, which induces the decomplexation of the K+ ion 

from the crown-5 ring of receptor L by a conformational 

change of the thiacalix[4]crown-5. A negative allosteric effect 

of receptor L towards Cl– ions in the presence of K+ ions, as 

shown in Figure 6, is proposed. 

Conclusion 

In summary, a novel heteroditopic receptor L based on a 

thiacalix[4]arene in the 1,3-alternate conformation,  which contains 

two ureas linked pyrene moieties and a crown ether moiety at the 

opposite sides of a thiacalix[4]arene cavity, has been synthesized. 

The binding of K+ ions and various anions at the crown-5 ring 

moiety and the two ureas linked pyrene moieties, respectively, was 

investigated by using fluorescence and 1H NMR titration 

experiments. It found that receptor L was able to bind all of the 

anions tested, irrespective of their shape. The appearance of positive 

and negative allosteric effects in receptor L was also investigated by 
1H NMR and fluorescence titration experiments. Interestingly, the 

formation of a heterogeneous dinuclear complex of receptor L with 

Br- and K+ ions by a positive allosteric effect could be observed. On 

the other hand, when the two ureas linked pyrene moieties of 

receptor L •K+ bind Cl– ion, this induces the decomplexation of the 

K+ ion from the crown-5 ring by a negative allosteric effect. 

Experimental Section 

General： Unless otherwise stated, all reagents used were 

purchased from commercial sources and used without further 

purification. Compounds 117 and 214 were prepared following 

the reported procedures. All solvents used were dried and 

distilled by the usual procedures prior to use. Melting points 

were taken with a micro melting point apparatus and are 

uncorrected. 1H and 13C NMR spectra were measured with 

tetramethylsilane as an internal standard and CDCl3 as a 

solvent. The elemental analysis, MS, and emission spectra were 

measured on/by XXX – need to add something here! 
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Synthesis of compound 3 

Compound 2 (1.0g, 0.95mmol) was put into a round-bottom 

flask and ethanol (120 mL), THF (120 mL) and hydrazine 

hydrate (14 mL, large excess) were added and the system was 

refluxed for 48 h. After cooling, the solvents and excess 

hydrazine were removed under reduced pressure to give the 

crude product as a white solid. The residue was triturated 

sequentially with water and methanol and the product collected 

by filtration. Compound 3 was obtained 0.84g (86 %) as a 

white solid. M.p. 216–218 ℃. IR: max (KBr)/cm-1: 3421, 2961,

1670, 1438, 1263, 1091, 1019 and 801. 1H NMR (300 MHz, 

CDCl3): δ= 1.25 (18H, s, tBu× 2), 1.37 (18H, s, tBu × 2), 3.00

(4H, t, Ј = 9.1 Hz, OCH2 × 2), 3.39 (4H, br, OCH2 × 2), 3.48 

(4H, broad s, NH2 × 2), 3.60 (4H, broad s, OCH2 × 2), 3.96 (4H, 

t, Ј = 9.1 Hz, OCH2 × 2), 4.55 (4H, s, OCH2CO × 2), 7.35 (4H, 

s, Ar–H × 2), 7.41 (4H, s, Ar–H × 2) and 7.54 (2H, s, NH × 2) 

ppm. 13C NMR (100 MHz, CDCl3): δ= 30.5 (CH3), 33.5

(C(CH3)3), 64.9 (OCH2), 67.4 (OCH2), 69.2 (OCH2), 70.5 

(OCH2), 72.6 (OCH2), 126.2 (ArC), 126.4 (ArC), 126.5 (ArC), 

126.7 (ArC), 146.5 (ArC), 146.7 (ArC), 153.6 (ArC), 155.4 

(ArC) and 167.6 (CO) ppm. FABMS: m/z: 1023.38 (M+). 

C52H70N4O9S4 (1023.39): calcd C 61.03, H 6.89, N 5.47. 

Found: C 61.11, H 6.98, N 5.34. 

Synthesis of receptor L 

To compound 3 (150 mg, 0.195 mmol) in THF (10 mL), was 

added pyrenyl isocyanate (104 mg, 0.429 mmol) and the 

mixture was stirred at room temperature for 24 h under argon. 

The resulting precipitate was collected by filtration, washed 

with CH3CN to give receptor L as a white solid. 

Recrystallization from CHCl3–CH3CN (1:1) gave receptor L 

(200 mg, 68 %) as pale-green solid. M.p. 221–223 ℃. IR: max

(KBr)/cm-1: 3309, 2954, 2903, 1666, 1531, 1439, 1268, 1211, 

1151, 1091, 842 and 755. 1H NMR (300 MHz, CDCl3–DMSO,

10:1): δ= 1.29 (18H, s, tBu × 2), 1.40 (18H, s, tBu × 2), 3.00 

(4H, t, Ј = 9.1 Hz, OCH2 × 2), 3.44 (4H, broad s, OCH2 × 2), 

3.66 (4H, s, OCH2 × 2), 3.89 (4H, t, Ј = 9.1 Hz, OCH2 × 2), 

4.68 (4H, s, OCH2CO × 2), 7.20 (2H, d, Ј = 8.1 Hz, pyrene-H × 

2), 7.44 (4H, s, Ar–H × 2), 7.52 (4H, s, Ar–H × 2), 7.65–7.72. 

(10H, m, pyrene-H × 2), 7.79 (2H, d, Ј = 8.1 Hz, pyrene-H × 2), 

7.90 (2H, t, Ј = 8.1 Hz, pyrene-H × 2), 8.15 (2H, s, NH × 2), 

8.26 (2H, s, NH × 2), 8.39 (2H, d, Ј = 8.1 Hz, pyrene-H × 2) 

and 8.79 (2H, s, NH × 2) ppm. 13C NMR (100 MHz, CDCl3): δ

= 30.9 (CH3), 31.2 (CH3), 34.3 (C(CH3)3), 34.4 (C(CH3)3), 66.0 

(OCH2), 68.7 (OCH2), 68.8 (OCH2), 71.4 (OCH2), 73.4 

(OCH2), 120.4 (ArC), 120.8 (ArC), 122.3 (ArC), 123.9 (ArC), 

124.1 (ArC), 124.3 (ArC), 124.5 (ArC), 125.3 (ArC), 125.5 

(ArC), 126.4 (ArC), 126.5 (ArC), 126.7 (ArC), 127.0 (ArC), 

127.3 (ArC), 128.0 (ArC), 130.2 (ArC), 130.8 (ArC), 131.5 

(ArC), 142.3 (ArC), 147.2 (ArC), 148.2 (ArC), 151.6 (ArC), 

154.9 (ArC), 155.5 (ArC), 155.9 (CO) and 167.5 (CO) ppm. 

FABMS: m/z: 1509.61 (M+). C86H88N6O11S4 (1508.54): calcd C

68.41, H 5.87, N 5.57. Found: C 68.61, H 5.78, N 5.45. 

Determination of the Association Constants 

The association constants were determined by using 1H NMR 

titration experiments in a constant concentration of host 

receptor (4 × 10-3 M) and by varying the guest concentration 

(0–8.0 × 10-3 M). The 1H NMR chemical shift of the urea 

protons (NH) signal was used as a probe. The association 

constant (Ka) for the complexes of receptor L were calculated 

by nonlinear curve–fitting analysis of the observed chemical 

shifts of the NH protons according to the literature procedure.18 

1H NMR Titration Experiments 

A solution of Bu4NX (X = F, Cl, Br, I, AcO, PhCOO, H2PO4) 

in CD3CN (4 × 10-3 M) was added to a CDCl3–DMSO (10:1,

v/v) solution of receptor L in the absence or presence of 

KSO3CF3 in an NMR tube. 1H NMR spectra were recorded 

after addition of the reactants and the temperature of the NMR 

probe was kept constant at 27 °C. The 1H NMR data of the 

most-representative complexes are given below: 

receptor LK+: 1H NMR (300 MHz, CHCl3–DMSO–CH3CN,

10:1:1, v/v): δ= 3.55 (4H, br, OCH2 × 2), 3.61 (4H, br, OCH2

× 2), 3.96 (4H, br, OCH2 × 2), 4.28 (4H, br, OCH2 × 2), 4.68  

(4H, s, OCH2O × 2), 8.80 (2H, br, NHc × 2), 8.89 (2H, br, NHb

× 2) and 9.40 (2H, br, NHa × 2) ppm. 

receptor LCl–: 1H NMR (300 MHz, CHCl3–DMSO–CH3CN,

10:1:1, v/v): δ= 3.00 (4H, br, OCH2 × 2), 3.44 (4H, br, OCH2

× 2), 3.66 (4H, br, OCH2 × 2), 3.89 (4H, br, OCH2 × 2), 4.68  

(4H, s, OCH2O × 2), 8.25 (2H, br, NHc × 2), 8.65 (2H, br, NHb

× 2) and 9.38 (2H, br, NHa × 2) ppm. 

Cl–[receptor LK+]: 1H NMR (300 MHz, CHCl3–DMSO–

CH3CN, 10:1:1, v/v): δ= 3.00 (4H, br, OCH2 × 2), 3.44 (4H, br,

OCH2 × 2), 3.66 (4H, br, OCH2 × 2), 3.89 (4H, br, OCH2 × 2), 

4.68  (4H, s, OCH2O × 2), 8.25 (2H, br, NHc × 2), 8.67 (2H, br, 

NHb × 2) and 9.40 (2H, br, NHa × 2) ppm. 

receptor LBr–: 1H NMR (300 MHz, CHCl3–DMSO–CH3CN,

10:1:1, v/v): δ= 3.00 (4H, br, OCH2 × 2), 3.44 (4H, br, OCH2

× 2), 3.66 (4H, br, OCH2 × 2), 3.89 (4H, br, OCH2 × 2), 4.68  

(4H, s, OCH2O × 2), 8.23 (2H, br, NHc × 2), 8.29 (2H, br, NHb

× 2) and 8.90 (2H, br, NHa × 2) 

Br–[receptor LK+]: 1H NMR (300 MHz, CHCl3–DMSO–

CH3CN, 10:1:1, v/v): δ= 3.00 (4H, br, OCH2 × 2), 3.44 (4H,

br, OCH2 × 2), 3.66 (4H, br, OCH2 × 2), 3.89 (4H, br, OCH2 × 

2), 4.68  (4H, s, OCH2O × 2), 8.80 (2H, br, NHc × 2), 8.85 (2H, 

br, NHb × 2) and 9.31 (2H, br, NHa × 2) 
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