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A heterotritopic hexahomotrioxacalix[3]arene receptor with the capability of binding two alkali metals 

and a transition metal simultaneously in a cooperative fashion was synthesized. The binding model was 

investigated by using 1H NMR titration experiments in CDCl3-CD3CN (10:1, v/v), and the results 

revealed that the transition metal was bound at the upper rim and the alkali metals at the lower and upper 

rims. Interestingly, the alkali metal ions Li+ and Na+ bind at the lower and upper rim respectively 

depending on the dimension of the alkali metal ions versus the size of the cavities formed by the 

calix[3]arene derivative. The hexahomotrioxacalix[3]arene receptor is acting as a heterotritopic receptor, 

simultaneously binding with the transition metal ion Ag+ and the alkali metals ions Li+ and Na+. These 

findings were not applicable to other different sized alkali metals, such as K+ and Cs+.  

 

Introduction 

Calixarenes and their derivatives are attractive compounds for use 

in host-guest and supramolecular chemistry. In particular, 

hexahomotrioxacalix[3]arene derivatives with C3-symmetry can 

selectively bind ammonium ions which play important roles in both 

chemistry and biology.1,2 Furthermore, the incorporation of two 

types of recognition sites via the introduction of different 

ionophores on the homotrioxacalix[3]arene will create potential 

heteroditopic receptors with the capability of binding cations and 

anions, eg. ammonium ions and halides. 

  Recently, we reported a novel ditopic receptor possessing two 

complexation sites and bearing a thiacalix[4]arene in the 1,3-

alternate conformation. The binding behaviour with Na+, K+ and 

Ag+ ions was examined by 1H NMR titration experiments. 

Although the formation of a heterogeneous di-nuclear complex was 

not clearly observed, the exclusive formation of mononuclear 

complexes of the 1,3-alternate-derivative with metal cations is of 

particular interest with respect to the observation of 

positive/negative allosteric effects within the thiacalix[4]arene 

family.3 

On the other hand, Nabeshima et al. reported a novel 

calix[4]arene derivative bearing two 2,2’-bipyridine moieties and 

two ester groups at the lower rim in the cone conformation to 

construct sophisticated molecular devices and systems.4 Indeed, 

bipyridyl containing calixarenes have been extensively used to 

complex various metal ions.5–12 Di- or polytopic receptors are those 

constructed with two or more binding subunits within the same 

macrocyclic structure.13–15 It is well known that these kinds of 

systems are suitable candidates for the allosteric regulation5–7 of 

host–guest interactions with metal cations which play a major role 

in biological systems. 

Moving from our interest in the synthesis of heteroditopic or 

heteropolytopic receptors that function as multiple types of cation 

binder, we introduced a 2,2/-bipyridyl group linked via a carbonyl 

group at the upper rim and diethylacetamides group at the lower rim 

of the hexahomotrioxacalix[3]arene. Herein, we report the synthesis 

and complexation studies of these cone-

hexahomotrioxacalix[3]arene triamide derivatives that serve as 

tritopic receptors simultaneously for Ag+ , Li+ and Na+ ions. The 

recognition behaviour towards multiple types of cation was 

investigated by 1H NMR experiments in CDCl3-CD3CN solution. 

 

Results and discussion 

Synthesis  

The preparation of cone-7,15,23-triethoxycarbonyl-25,26,27-tris- 

(N,N-diethylaminocarbonylmethoxy)-2,4,10,12,18,20-hexahomo-

3,11,19-trioxacalix[3]arene (cone-4) is shown in Scheme 1. Thus, 

bis(hydroxymethylation) of ethyl 4-hydroxybenzoate (1) with 

formaldehyde in aqueous NaOH for one week afforded ethyl 3,5-

bis(hydroxymethyl)-4-hydroxybenzoate (2)16 in 41 % yield. Heating 

compound (2 )  to  reflux in  p -xylene for  24  h  afforded 

hexahomotrioxacalix[3]arene (3).17 The O-alkylation of compound 

(3) with N,N-diethylchloroacetamide in the presence of NaI/NaH in 

refluxing THF/DMF（v/v = 5/1）gave cone-tris(N,N-diethylamino- 

carbonylmethoxy)hexahomotrioxacalix[3]arene cone-417 in 45 % 

yield. Hydrolysis of the O-alkylated compound, cone-4, was carried 

out with NaOH in a mixture of ethanol/water (4:1) at 50 °C for 2 h to 
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Scheme 1. Synthesis of calixarene cone-5. 
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yield the cone-hexahomotrioxacalix[3]arene tricarboxylic acid cone-
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Scheme 1.  Synthesis of hexahomotrioxacalix[3]arene cone-5. 

 

   cone-Hexahomotrioxacalix[3]arene triamide derivative (cone-7) 

was prepared by a condensation reaction of cone-5 with 6 in the 

presence of dicyclohexylcarbodiimide (DCC) and 4-dimethylamino- 

pryidine (DMAP) at room temperature for 3 days in dichloro- 

methane (Scheme 2).  
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Scheme 2. Synthesis of hexahomotrioxacalix[3]arene cone-7.  

 

Cone-7 immobilised in a 'flattened cone' conformation (in which 

the phenolic rings are tilted to open up the calixarene cavity), was 

obtained in moderate yield. Conformational assignments for cone-7 

were firmly established by the presence of the bridging methylene 

protons with a H separation between Hax and Heq of 0.41 ppm in 

the 1H NMR spectra (CDCl3). For the calix[4]arenes, the H value 

of the ArCH2Ar protons has been correlated with the orientation of 

adjacent aromatic rings.2d-e,18,19 The same findings were observed for 

homotrioxacalix[3]arenes.20 

UV-vis spectroscopy studies 

Cone-7 as a tritopic hexahomotri-oxacalix[3]arene ligand was 

synthesized, which possessed N,N-diethylacetamide group at the 

lower rim and 2,2’-bipyridyl group at the upper rim linked by 

carbonyl group. Consequently, the binding behaviour of cone-7 

towards different metal cations can be investigated by UV-vis 

absorption spectroscopy. As shown in Fig. 1, the UV-vis spectra of 

cone-7 displayed a typical absorption at around 290 nm in CH2Cl2-

CH3CN (10:1, v/v). The effects of the addition of various metal ions 

such as Li+, Na+, K+, Cs+, Ag+, Cu2+, Zn2+, Pb2+ and Hg2+ as their 

perchlorate salts in CH2Cl2-CH3CN solution have been studied. As 

can be seen, an obvious absorption change in the UV-vis spectrum 

occurred upon addition of Li+, Na+ and transition metal ions. The 

electronic absorption spectrum of cone-7 exhibited a red shift in the 

presence of transition metals, whereas only an intensity change was 

observed for alkali metals. For the metals Cu2+, Zn2+ and Hg2+ , it 

was noticed that the absorption band was split into two absorption 

bands at around 310 nm and 320 nm, respectively. No significant 

UV-vis absorption changes were observed upon the addition of K+ 

and Cs+ ions. Thus, it can be explained that the 2,2/-bipyridyl group 

acted as a  

Fig. 1. UV-vis absorption spectra response of cone-7 (1 × 10-6 M) in CH2Cl2-

CH3CN (10:1, v/v) to 1 × 10-5 M various tested metal ions. max = 290 nm,  = 

1.89 × 105 cm-1M-1.  

 

chromophore displaying a red-shift absorption upon binding with 

transition metals. According to this observation, we can demonstrate 

that the transition metals bind with the 2,2/-bipyridyl group at the 

upper rim and the alkali metal binds with the other sites. This finding 

also can be proved by the 1H NMR titration experiments. 

1H NMR titration studies 

To investigate the binding behaviour of cone-7 with Li+, Na+ and 

Ag+ ions, 1H NMR spectroscopic studies were carried out in 

CDCl3/CD3CN (10:1, v/v). The spectral differences are shown in Fig. 

2, In the presence of an equivalent of Li+, for example, the H value 

for Hax and Heq for the ArCH2O methylene protons changed 

from0.39 ppm to 0.27 ppm, The H’ value for the –NCH2CH3 

methylene proton changed from 0.11 ppm to 0.30 ppm. In 

comparison with the complex cone-7  Li+, in the spectra of cone-7 

 Na+ complex, the H value for the ArCH2O methylene protons 

was barely changed, but the signals for the ArCH2O methylene 

protons were both shifted upfield, i.e 0.19 ppm, The H’ value for 

the –NCH2CH3 methylene proton was changed from  0.11 ppm to 

0.25 ppm. In addition, obvious downfield chemical shifts for Ar-H 

(0.33 ppm) and Bipy-CH2 (0.11 ppm) were observed for the 

complex cone-7  Na+.  

The addition of an equiv. of AgClO4 to cone-7 caused instant 

complexation at the upper rim as demonstrated by the downfield 

shifts of the 2,2/-bipyridyl protons (H2’,  = -0.08 ppm, H2,  = -

0.10 ppm, ) and the upfield shifts of the 2,2/-bipyridyl protons (H3’, 

 = +0.10 ppm, H3,  = +0.10 ppm ) for the 1:1 complex of cone-7 

 Ag+ (Ka = 2.24 × 105 M-1) as shown in Fig. 2d, whereas the lower 

rim protons were scarely affected in the presence of Ag+. This results 

strongly suggested that Ag+ can be selectively bound by the nitrogen 

atoms of the 2,2/-bipyridyl group. 

 
Fig. 2. Partial 1H NMR titration of cone-7/guest complex (H/G = 1:1); a) free 

cone-7; b) cone-7  Li
+
; c) cone-7  Na+; d) cone-7  Ag+; Solvent: 

CDCl3/CD3CN (10:1, v/v). 
 

The Li+ formed a complex with the N,N-

diethylmethoxycarbonylmethoxy group of cone-7 and adopted the 

more-upright C3-symmetric form. It is known that the introduction 

of bulky substituents onto the OH groups forces the phenol units to 

stand upright from the calixarene ring plane.1 This inclination was 

reflected by the chemical-shift difference (H) between the axial 

and equatorial ArCH2 protons, the small H value for Hax and Heq 

indicated that the phenol groups in the complex are positioned in a 

more-upright orientation. We have already reported that when a Li+ 

cation was bound to the ionophoric group at the lower rim, the calix 
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cavity changed from a “flattened cone” to a more-upright form.21 

The Na+ ion was bound in the cavity formed by the three phenoxy 

rings, as evidenced by the upfield chemical shift of the axial and 

equatorial ArCH2 protons (i.e.0.19 ppm), the downfield chemical 

shifts for the Ar-H (0.33 ppm) and bipy-CH2 (0.11 ppm ). When 

Na+ ion is bound in the cavity formed by the three benzene rings 

with oxygen atoms framework, had intermolecular electron transfer 

from the upper rim to binding sites and caused the corresponding 

chemical shifts – cannot understand the English here. 

We also carried out 1H NMR titration experiments for cone-7 

with K+ and Cs+ ions (Figures S4 and S5). An equivalent of KClO4 

and CsClO4 were added to the solution of cone-7, and no obvious 

chemical shift change was observed. Because of the size of K+ and 

Cs+ ions, they are not suitable for binding with the lower rim or 

upper rim cavities. 

   The complexation modes of receptor cone-7 with Ag+ and Li+ 

were investigated by 1H NMR spectroscopy. The addition of an 

equiv. of AgClO4 to cone-7 caused instant complexation at the upper 

rim as demonstrated in Fig. 3b. 

Fig. 3. Partial 1H NMR titration of cone-7/guest complex (H/G = 1:1); a) free 

cone-7; b) cone-7  AgClO4; c) LiClO4  [cone-7  Ag+]; Solvent: 
CDCl3/CD3CN (10:1, v/v). 
 

Fig. 3c showed the 1H NMR spectrum after the addition of Li+ 

ion to the cone-7  Ag+ complex. When an equivalent of LiClO4 

was added, the H value for Hax and Heq for the ArCH2O methylene 

protons changed, the H value (from peaks around 4.42–4.69 

ppm) for the LiClO4  [cone-7  Ag+] ( 0.27 ppm) was smaller 

than that of the cone-7  Ag+ (from peaks around  4.42–4.80 ppm) 

( 0.38 ppm). The H’ value for the –NCH2CH3 methylene protons 

( 0.29 ppm) of LiClO4  [cone-7  Ag+] was larger than that of the 

cone-7  Ag+ ( 0.12 ppm). This result implied that Li+ formed a 

complex with the N,N-diethylmethoxycarbonylmethoxy group after 

cone-7 complexed with Ag+ and adopted the more-upright C3-

symmetric form. This result was also observed after changing the 

binding sequence of metal ions, first to form the complex cone-7  

Li+ and then to form the complex AgClO4  [cone-7  Li+] (Figure 

S6). Thus, the cone-hexahomotrioxacalix[3]arene triamide derivative 

cone-7 can serve as a receptor for Ag+ and Li+ simultaneously. 

Similar findings were observed for the NaClO4  [cone-7  Ag+] 

complex. 

1H NMR titration experiments were also carried out with the Na+ 

ion and solutions of cone-7  Ag+ as shown in Fig. 4c and 4d. 

When 0.4 equivalents of NaClO4 was added, the complex 

NaClO4  [cone-7  Ag+] and the uncomplexed species [cone-

7  Ag+] both existed in the system. However, when 1 

equivalent of NaClO4 was added to the solution of cone-7  

Ag+, the uncomplex species [cone-7  Ag+] gradually 

disappeared and only the complex Na+  [cone-7  Ag+], as 

shown in Fig. 4d, was observed The corresponding protons 

shifts were given by 1H NMR complexation experiments. Thus, 

cone-7 first bound with Ag+ at the upper rim, then bound with 

Na+ ion in the cavity formed by the three phenoxy rings of the 

oxacalix[3]arene. H value for Hax and Heq for ArCH2O  
Fig. 4. Partial 1H NMR titration of cone-7/guest complex (H/G = 1:1); a) free 

cone-7; b) cone-7  AgClO4; c) NaClO4 ( 0.4 equiv )   [cone-7  Ag+]; d) 

NaClO4 (1 equiv )  [cone-7  Ag+]; Solvent: CDCl3/CD3CN (10:1, v/v). 

 

methylene protons mostly did not change, however the signals for 

the ArCH2O methylene protons were both shifted upfield, i.e.  0.20 

ppm (Heq,  

 4.45 ppm to  4.23 ppm and Hax,  4.84 ppm to  4.64 ppm,  

respectively). The H’ value for the –NCH2CH3 methylene protons 

( 0.24 ppm) for NaClO4  [cone-7  Ag+] was larger than that of 

the cone-7  Ag+ ( 0.11 ppm). The Ar-H proton was downfield 

chemical shift ( 0.32 ppm) and the bipy-CH2 proton was shifted 

downfield (0.20 ppm). 

When 0.4 equivalents of NaClO4 was added to the complex cone-

7  Ag+, the complex NaClO4  [cone-7  Ag+] and the 

uncomplexed species [cone-7  Ag+] both existed in the system. It 

was necessary to consider whether the negative allosteric effect 

caused by the binding of Ag+ existed or not, so the sequence of metal 

ions addition was changed, viz initially bind with Na+ ion, then to the 

Ag+ ion. However, when 0.4 equivalents of NaClO4 was added to 

cone-7, the complex cone-7  Na+ and the uncomplexed species 

cone-7 were both observed. On further addition of the metal ion Na+ 

(1 equiv.), the uncomplexed species disappeared and only the 

complex cone-7  Na+ existed. In most other work, a 

passive/negative allosteric effect was caused by the binding with 

Ag+, but here, there was no observation of the allosteric effect. 
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Fig. 5. Partial 1H NMR titration of cone-7 /guest complex (H/G = 1:1); a) 

free cone-7; b) cone-7  NaClO4; c) AgClO4  [cone-7  Na+]; Solvent: 

CDCl3/CD3CN (10:1, v/v). 

 

Until now, the ability of the cone-7 to serve as a heteroditopic 

receptor has been demonstrated, but now, to illustrate that cone-7 

can serve as a heterotritopic  
Fig. 6. Partial 1H NMR titration of cone-7 /guest complex (H/G = 1:1); a) 

free cone-7; b) cone-7  LiClO4; c) NaClO4  [cone-7  Li+]; d) Ag+  {Na+ 

 [cone-7  Li+]}; Solvent: CDCl3/CD3CN (10:1, v/v). 

 

 
Fig. 7. Plaussible complexation mode of  host cone-7 with Li+, Na+ and Ag+ 

ions.  
 

receptor, cone-7 was to complex with Li+, Na+ and Ag+ metal ions 

simultaneously, 1H NMR spectroscopic titration experiments were 

carried out by addition of Li+ ions to the solution of cone-7, by Na+ 

ions to the solution of cone-7  Li+ and by Ag+ ions to the solution 

of Na+  [cone-7  Li+] as shown in Fig. 6. In the presence of an 

equivalent of Li+, the H values for Hax and Heq for the ArCH2O 

methylene protons changed from0.40 ppm to 0.24 ppm, and the 

H’ value for –NCH2CH3 methylene protons changed from 0.11 

ppm to 0.28 ppm. When 1 equiv. of NaClO4 was added to the 

solution of cone-7  Li+, the H value for Hax and Heq of the 

ArCH2O methylene protons changed from0.24 ppm to 0.34 

ppm, and the signals for the ArCH2O methylene protons were both 

shifted upfield, i.e  0.18 ppm ( Heq,  4.48 ppm to  4.30 ppm and 

Hax,  4.72 ppm to  4.64 ppm, respectively), indicating that binding 

was occurring between the cone-7  Li+ and Na+, corresponding 

chemical shifts were the coefficient effects? by the Li+ and Na+ ions. 

The Ar-H proton was downfield chemical shift ( 0.15 ppm) and the 

bipy-CH2 proton was shifted downfield (0.06 ppm). After addition 

of Ag+ ion to the solution of Na+  [cone-7  Li+], we also observed 

the same downfield shifts for the 2,2/-bipyridyl protons (H2’,  = -

0.08 ppm, H2,  = -0.10 ppm, ). Thus, the cone-7 can serve as a 

heterotritopic receptor. This result was also observed after changing 

the binding sequence of the metal ions. Firstly, the complex of cone-

7  Ag+ was formed, then the complex  
 

Table 1 Chemical shift of pyridine protons in cone-7. 
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Table 1.  Chemical shift of pyridine protons in cone-7. 

 

 

Table 1

Chemical shift of pyridine protons in cone-7.

Compd. Chemical shift,dppm
a,b

H1          H2          H3           H1'         H2'        H3'

cone-7

cone-7É Ag+

Dd

7.50c

7.58

7.67c

7.77

-0.10 -0.08

8.14c

8.04

+0.10

8.21c

8.11

+0.10

8.55

8.51

+0.04

8.37

8.36

+0.01

a Dd values are the difference of the chemical shift between cone-7 in CDCl3-CD3CN at 27°C.

b A minus sign (-) denotes a shift to lower magnetic field, a plus sign (+) denotes a shift 

  to higher magnetic

c The midpoint values of multiplet are indicated.

 
 

a values are the difference of the chemical shift between cone-7 in CDCl3-

CD3CN at 27°C. bA minus sign (–) denotes a shift to lower magnetic field, a 

plus sign (+) denotes a shift to higher magnetic. cThe midpoint values of 

multiplet are indicated. 

 

LiClO4  [cone-7  Ag+], Na+  {Li+  [cone-7  Ag+]} (Figure 

S7) was formed. We observed the same 1H NMR spectrum as shown 

in Figure 6d and Figure S7d, and thus it was proved that cone-7 can 

serve as a heterotritopic receptor for the Ag+, Li+ and Na+ ions 

simultaneously (Fig. 7). 

As shown in Table 1, the nitrogen atom N1 in the bipyridine ring 

pointed away from the calix cavity in free cone-7 because of the 

electron repulsion between the nitrogens. After complexation, the 

nitrogen turned inwards towards the cavity to complex with the Ag+ 

and thus affected the 2,2/-bipyridyl protons with downfield shifts for 

H2’ ( = -0.08 ppm) and H2 ( = -0.10 ppm), upfield shifts for H3’ 

( = +0.10 ppm), H3 ( = +0.10 ppm) and H1 ( = +0.04 ppm) 

(Table 1) due to the tetrahedral interaction of the N—Ag+ motif. 

Furthermore, after complexation, H3’ and H3, H2’ and H2 have similar 

magnetic environments, and therefore the downfield/upfield shifts 

were similar. 

Complexation studies 

The stoichiometries of the cone-7 complexes with Ag+ and Li+ were 

determined by UV-vis absorption spectra [CH2Cl2/CH3CN (10:1, 

v/v)], using the continuous variation method, the absorption reached 

a maximum at around 0.5 mol fraction for this cation (Fig. 8), which 
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Fig. 6. Partial 
1
H NMR titration of cone-7 /guest complex (H/G = 1:1); a) free cone-7; 

b) cone-7 É LiClO4; c) NaClO4 Ì [cone-7 É Li
+
]; d) Ag

+
 Ì {Na

+
 Ì [cone-7 É Li

+
]}; 

Solvent: CDCl3/CD3CN (10:1, v/v). 
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clearly indicated that the Ag+ formed a 1:1 complex with cone-7. 

Thus, Ag+ was completely bound by the soft bipyridine cavity of 

cone-7 and the homotrioxacalix[3]arene cavity did not participate in 

the complexation. The stoichiometry of the cone-7 complexes with 

Li+ was also determined by UV-vis absorption spectra 

[CH2Cl2/CH3CN (10:1, v/v)] (Figure S8), using the continuous 

variation method. The absorption also reached a maximum at 0.5 

mol fraction for this cation, indicating that the Li+  ion formed  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Job plots of the extractions of Ag+ with host cone-7. 

 

a 1:1 complex with cone-7, and the Li+ ion was completely bound by 

the N,N-diethylaminocarbonylmeth-oxy groups. The molar ratio 

method was used to determine the stoichiometry of cone-7 

complexed with Na+ by UV-vis absorption spectra [CH2Cl2/CH3CN 

(10:1, v/v)] (Figure S9), which also indicated that the Na+ ion formed 

a 1:1 complex with cone-7. 

 UV-vis spectrophotometric analysis was employed to detemine 

the association constant of the inclusion complex of cone-7 and Ag+. 

The decrease in absorbance at 290 nm versus the increase in 

concentration of Ag+ was fitted to a 1:1 binding model to determine 

the association constant, which was found to be 2.24 × 105 M-1. The 

association constant for cone-7 and Li+ was 2.58 ×105 M-1 and for 

cone-7 and Na+, which was found to be 1.55 ×105 M-1 (Figures 

S1012). 

Conclusions 

A cone-hexahomotrioxacalix[3]arene receptor cone-7 bearing 2,2/-

bipyridyl linked via a carbonyl group at the upper rim and N,N-

diethylacetamide chains at the lower rim, respectively, has been 

synthesized. The receptor cone-7 can serve as a heterotritopic 

hexahomotrioxacalix[3]arene receptor with capability for binding 

two types of cation simultaneously in a cooperative fashion. The 

binding of the alkali metal ion Li+ took place at the lower rim, and 

the alkali metal ion Na+ and transition metal ion Ag+ at the upper rim, 

respectively. In addition, given the Na+ ion is larger than the Li+ ion, 

the Li+ ion bound with the lower rim cavity through the oxygens, 

whereas the Na+ ion chose to bind with the larger cavity formed by 

the three phenoxy rings of the oxacalix[3]arene, which was verified 

by 1H NMR titration experiments. 

 The nitrogen atom in the bipyridine ring pointed away from the 

calix cavity in the cone-7 because of the electronic repulsion 

between the nitrogens. After complexation, the nitrogen atom in the 

bipyridine ring turned inwards towards the cavity to complex with 

Ag+ to allow for the tetrahedral disposition of the N---Ag+ motif. 

Further studies on the synthesis of tritopic receptors based on the 

hexahomotrioxacalix[3]arene are also underway in our laboratory. 

Experimental 

General: All melting points (Yanagimoto MP-S1) are uncorrected. 
1H NMR and 13C NMR spectra were recorded on a Nippon Denshi 

JEOL FT-300 NMR spectrometer and Varian-400MR-vnmrs400 

with SiMe4 as an internal reference: J-values are given in Hz. IR 

spectra were measured for samples as KBr pellets on a Nippon 

Denshi JIR-AQ2OM spectrophotometer. Mass spectra were obtained 

with a Nippon Denshi JMS-HX110A Ultrahigh Performance mass 

spectrometer at 75 eV by using a direct-inlet system. UV-vis spectra 

were recorded using a Shimadzu UV-3150UV-vis-NIR 

spectrophotometer. Elemental analyses were performed by a Yanaco 

MT-5. 

Materials: cone-7,15,23-Tris(hydroxycarbonyl)-25,26,27-tris(N,N-

diethylaminocarbonylmethoxy)-3,11,19-trioxacalix[3]arene triacid 

(cone-5) was synthesized from cone-7,15,23-tris(ethoxycarbonyl)-

25,26,27-trihydroxy-2,4,10,12,18,20-hexahomo-3,11,19-trioxacalix- 

[3]arene cone-3 as following the reported procedure.21 5’-Methyl-

2,2’-bipyridyl-5-ylmethanol 6 was prepared according to the 

reported procedure.22 

 

Synthesis of 7,15,23-tris(5/-methyl-2,2’-bipyridyl-5-yl-methyl- 

oxycarbonyl)-25,26,27-tris(N,N-diethylaminocarbonyl- 

methoxy)-3,11,19-trioxacalix[3]arene (cone-7) 

To a solution of cone-5 (100 mg, 0.11 mmol), 5’-methyl-2,2/-

bipyridyl-5-ylmethanol 6 (110 mg, 0.55 mmol) and 1-

hydroxybenzotriazole (DMAP) (67.2 mg, 0.55 mmol) in CH2Cl2 (10 

mL), was added dropwise a solution of dicyclohexylcarbodiimide 

(DCC) (190 mg, 0.92 mmol) in CH2Cl2 (10 mL) at 0 °C. The 

reaction mixture was stirred for 3 days at room temperature then 

condensed under reduced pressure. The residue was extracted with 

ethyl acetate (2 × 30 mL). The combined extracts were washed with 

10 % citric acid (2 × 20 mL), 5 % sodium bicarbonate (20 mL), 

water (20 mL) and saturated brine (20 mL); the solution was dried 

(MgSO4) and condensed under reduced pressure. The cone-7 was 

obtained from column chromatography [(CHCl3-MeOH (5:1, v/v)) 

(88 mg, 56 %) as colorless prisms. M.p. 84.5–85 °C. 1H NMR  

(CDCl3) 1.11–1.12 (18H, m, -CH2CH3), 2.40 (9H, s, Bipy-CH3), 

3.30–3.41 (12H, m, -NCH2), 4.50 (6H, d, J = 13.2 Hz, Ar-CH2), 4.67 

(6H, s, Ar-OCH2), 4.92 (6H, d, J = 12.6 Hz, Ar-CH2), 5.21 (6H, s, 

Bipy-CH2), 7.57 (3H, dd, J = 6.7 Hz, J =1.2 Hz, Bipy-H), 7.58 (6H, 

s, Ar-H), 7.74 (3H, dd, J = 10.2, J = 2.0 Hz, Bipy-H), 8.21 (3H, d, J 

= 8.1 Hz, Bipy-H), 8.28 (3H, d, J = 8.1 Hz, Bipy-H), 8.45 (3H, s, 

Bipy-H) and 8.62 (3H, s, Bipy-H) ppm. IR: max(KBr)/cm−1= 1723 

(COOR) and 1650 (CONRR’). 13C NMR δ (CDCl3) 13.5 (CH3), 18.5 

(CH3), 40.5 (CH2), 63.5 (CH2), 67.0 (CH2), 72.5 (CH2), 120.7–160.1 

(Ar-C, Bipy-C), 165.0 (C=O) and 167.0 (C=O) ppm. FABMS: m/z: 
1426.78 (M+). C81H87O15N9 (1426.61): calcd C 68.19, H 6.15; N 

8.84. Found: C 68.31, H 6.24, N 8.93. 

1H NMR complexation experiments  

To a CDCl3 solution (500 L, 5  10-3 M) of cone-7 in an NMR tube 

was added a CD3CN solution (50 L, 5  10-3 M) of LiClO4, 

NaClO4, KClO4, CsClO4 and AgClO4. The spectrum for each was 

recorded after the addition metal ions. The temperature of the 1H 

NMR probe was kept constant at 27 °C. The 1H NMR data of the 

most representative complexes are given below. 

 The 1H NMR data of the most representative complexes was given 

below: 
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Fig. 7. Job plots of the extractions of Ag
+
 with host cone-7. 
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 cone-7  Li+ (1:1): H (CDCl3/CD3CN, 10:1, v/v): 3.12–3.42 (12H, 

m, -NCH2), 4.46 (6H, d, J = 13.2 Hz, Ar-CH2), 4.59 (6H, s, Ar-

OCH2), 4.73 (6H, d, J = 12.6 Hz, Ar-CH2), 5.12 (6H, s, Bipy-CH2), 

7.54 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H), 7.56 (6H, s, Ar-H), 

7.66 (3H, dd, J = 10.2 Hz, J = 1.2 Hz, Bipy-H), 8.08 (3H, d, J = 8.1 

Hz, Bipy-H), 8.15 (3H, d, J = 8.1 Hz, Bipy-H), 8.35 (3H, s, Bipy-H) 

and 8.45 (3H, s, Bipy-H) ppm. 

 cone-7  Na+ (1:1): H (CDCl3/CD3CN, 10:1, v/v): 3.10–3.35 (12H, 

m, -NCH2), 4.26 (6H, d, J = 13.2 Hz, Ar-CH2), 4.64 (6H, s, Ar-

OCH2), 4.66 (6H, d, J = 12.6 Hz, Ar-CH2), 5.26 (6H, s, Bipy-CH2), 

7.56 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H), 7.85 (6H, s, Ar-H), 

7.75 (3H, dd, J = 10.2 Hz, J = 1.2 Hz, Bipy-H), 8.16 (3H, d, J = 8.1 

Hz, Bipy-H), 8.25 (3H, d, J = 8.1 Hz, Bipy-H), 8.40 (3H, s, Bipy-H) 

and 8.63 (3H, s, Bipy-H) ppm. 

cone-7  Ag+ (1:1): H (CDCl3/CD3CN, 10:1, v/v): 3.21–3.32 (12H, 

m, -NCH2), 4.45 (6H, d, J = 13.2 Hz, Ar-CH2), 4.62 (6H, s, Ar-

OCH2), 4.84 (6H, d, J = 12.6 Hz, Ar-CH2), 5.10 (6H, s, Bipy-CH2), 

7.58 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H), 7.47 (6H, s, Ar-H), 

7.77 (3H, dd, J = 10.2 Hz, J = 2.0 Hz, Bipy-H), 8.04 (3H, d, J = 8.1 

Hz, Bipy-H), 8.11 (3H, d, J = 8.1 Hz, Bipy-H), 8.36 (3H, s, Bipy-H) 

and 8.51 (3H, s, Bipy-H) ppm. 

[cone-7  Ag+]  Li+ (1:1): H (CDCl3/CD3CN, 10:1, v/v): 3.08–

3.37 (12H, m, -NCH2), 4.42 (6H, d, J = 13.2 Hz, Ar-CH2), 4.54 (6H, 

s, Ar-OCH2), 4.69 (6H, d, J = 12.6 Hz, Ar-CH2), 5.08 (6H, s, Bipy-

CH2), 7.62 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H), 7.51 (6H, s, Ar-

H), 7.78 (3H, dd, J = 10.2 Hz, J = 2.0 Hz, Bipy-H), 8.01 (3H, d, J = 

8.1 Hz, Bipy-H), 8.08 (3H, d, J = 8.1 Hz, Bipy-H), 8.33 (3H, s, 

Bipy-H) and 8.43 (3H, s, Bipy-H) ppm. 

[cone-7  Ag+]  Na+ (1:0.4): 3.13–3.35 (12H, m, -NCH2), 4.23 

(6H, d, J = 13.2 Hz, Ar-CH2) complex, 4.45 (6H, d, J = 13.2 Hz, Ar-

CH2) uncomplex, 4.64 (6H, s, Ar-OCH2), 4.64 (6H, d, J = 12.6 Hz, 

Ar-CH2) complex, 4.84 (6H, d, J = 12.6 Hz, Ar-CH2) uncomplex, 

5.29 (6H, s, Bipy-CH2) complex, 5.09 (6H, s, Bipy-CH2) uncomplex, 

7.64 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H) uncomplex, 7.72 (3H, 

dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H) complex, 7.81 (6H, s, Ar-H) 

complex, 7.48 (6H, s, Ar-H) uncomplex, 7.99 (3H, dd, J = 10.2 Hz, 

J = 2.0 Hz, Bipy-H), 8.15 (3H, d, J = 8.1 Hz, Bipy-H), 8.23 (3H, d, J 

= 8.1 Hz, Bipy-H) complex, 8.09 (3H, d, J = 8.1 Hz, Bipy-H) 

uncomplex, 8.37 (3H, s, Bipy-H) and 8.59 (3H, s, Bipy-H) complex 

and 8.53 (3H, s, Bipy-H) uncomplex ppm. 

[cone-7  Ag+]  Na+ (1:1): H (CDCl3/CD3CN, 10:1, v/v): 3.11–

3.35 (12H, m, -NCH2), 4.23 (6H, d, J = 13.2 Hz, Ar-CH2), 4.65 (6H, 

s, Ar-OCH2), 4.64 (6H, d, J = 12.6 Hz, Ar-CH2), 5.29 (6H, s, Bipy-

CH2), 7.72 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H), 7.80 (6H, s, Ar-

H), 7.97 (3H, dd, J = 10.2 Hz, J = 2.0 Hz, Bipy-H), 8.15 (3H, d, J = 

8.1 Hz, Bipy-H), 8.23 (3H, d, J = 8.1 Hz, Bipy-H), 8.35 (3H, s, 

Bipy-H) and 8.59 (3H, s, Bipy-H) ppm. 

cone-7  Na+ (1:0.4): H (CDCl3/CD3CN, 10:1, v/v): 3.15–3.31 

(12H, m, -NCH2), 4.25 (6H, d, J = 13.2 Hz, Ar-CH2) complex, 4.40 

(6H, d, J = 13.2 Hz, Ar-CH2) uncomplex, 4.62 (6H, s, Ar-OCH2), 

4.62 (6H, d, J = 12.6 Hz, Ar-CH2) complex, 4.79 (6H, d, J = 12.6 

Hz, Ar-CH2) uncomplex, 5.24 (6H, s, Bipy-CH2) complex, 5.14 (6H, 

s, Bipy-CH2) uncomplex, 7.50 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-

H), 7.83 (6H, s, Ar-H) complex, 7.50 (6H, s, Ar-H) uncomplex, 7.68 

(3H, dd, J = 10.2 Hz, J = 1.2 Hz, Bipy-H), 8.14 (3H, d, J = 8.1 Hz, 

Bipy-H), 8.20 (3H, d, J = 8.1 Hz, Bipy-H), 8.39 (3H, s, Bipy-H) and 

8.56 (3H, s, Bipy-H) ppm. 

[cone-7  Na+]  Ag+ (1:1): H (CDCl3/CD3CN, 10:1, v/v): 3.06–

3.31 (12H, m, -NCH2), 4.19 (6H, d, J = 13.2 Hz, Ar-CH2), 4.62 (6H, 

s, Ar-OCH2), 4.60 (6H, d, J = 12.6 Hz, Ar-CH2), 5.26 (6H, s, Bipy-

CH2), 7.65 (3H, dd, J = 6.7 Hz, J = 1.2 Hz, Bipy-H), 7.78 (6H, s, Ar-

H), 7.90 (3H, dd, J = 10.2 Hz, J = 1.2 Hz, Bipy-H), 8.13 (3H, d, J = 

8.1 Hz, Bipy-H), 8.21 (3H, d, J = 8.1 Hz, Bipy-H), 8.32 (3H, s, 

Bipy-H) and 8.56 (3H, s, Bipy-H) ppm. 

Stoichiometry of metal complexation and determination of 

association constants 

Job plot experiment was carried out using the absorption spectrum, 

make the volume fixed and the concentration of [Host]+[Guest] = 

1.25  10-5 M, [Guest]/([Host]+[Guest]) changed from 0.1 to 0.9, 

and the association constants also determined by the absorption 

spectrum in a varying guest concentration of 01.25 M and a 

constant concentration of host receptors with 1 M. As a probe the 

absorption intensity signal was used. The association constant 

values were calculated by the intensity changes in the complex and 

the free host molecules. 
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