Mono-and Tetra-nuclear copper complexes bearing bis(imino)phenoxide derived ligands: catalytic evaluation for benzene oxidation and ROP of ε-caprolactone

Xue Wang, ${ }^{a}$ Qe-King Zhao, ${ }^{a}$ Mark R.J. Elsegood, ${ }^{\text {b }}$ Timothy J. Prior, ${ }^{c}$ Xiaoming Liu, ${ }^{d}$ Li Wu, ${ }^{d}$ Sergio ${ }_{5}$ Sanz, ${ }^{e}$ Euan K. Brechin ${ }^{e}$ and Carl Redshaw ${ }^{* a, c}$

Received (in XXX, XXX) XthXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Abstract

Complexes of the type $\left[\mathrm{Cu}(\mathrm{L})_{2}\right](\mathbf{1})$ and $\left[\mathrm{Cu}_{4} \mathrm{~L}_{2}\left(\mu_{4}-\mathrm{O}\right)(\mathrm{OAc})_{4}\right]$ (2) have been obtained from the reaction of the phenoxydiimine $1,3-\left(2,6-\mathrm{R}^{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OH}-2(\mathrm{LH})$ (where $\mathrm{R}^{1}=\mathrm{Me}$, $\left.{ }_{10} \mathrm{tBu}, \mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{Me}, \mathrm{iPr}\right)$ with copper(II) acetate $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]$; changing the molar ratio of the reactants affords differing amounts of $\mathbf{1}$ or $\mathbf{2}$. Reaction of the parent dialdehyde [1,3-(CHO) $2-5-\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{OH}-2$] with $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ afforded, following work-up, a polymeric chain (3) comprising $\left\{\left[\mathrm{Cu}_{2}(\mathrm{OAc})_{4}\right] \mathrm{OAc}\right\}_{\mathrm{n}}, \mathrm{HNEt}_{3}$ and MeCN. The crystal structures of $\mathbf{1}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{1 a} ; \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\right.$ $i \operatorname{Pr} \mathbf{1 b}), 2\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me} \mathbf{2 a} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 b} ; \mathrm{R}^{1}=t \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me} \mathbf{2 c} ; \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Me} \mathbf{2 d} ; \mathrm{R}^{1}=\right.$ ${ }_{15} \mathrm{Cl}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 e} ; \mathrm{R}^{1}=t \mathrm{Bu}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 f}$) and $\mathbf{3}$ are reported (synchrotron radiation was necessary for $\mathbf{3}$). The magnetic properties of the cluster $\mathbf{2 b}$ are presented. Complexes of type $\mathbf{2}$ and $\mathbf{3}$ were screened for the ring opening polymerization (ROP) of ε-caprolactone, with or without benzyl alcohol present, under a variety of conditions, however only trace polymer was isolated. The electrochemistry of all complexes was also investigated, together with their ability to catalyze benzene oxidation (using hydrogen peroxide); although ${ }_{20}$ low conversions were observed, the tetra-nuclear complexes exhibited excellent selectivity.

Introduction

In recent years, ligand frameworks that are capable of binding two transition metals in close proximity have attracted interest, due primarily to the possibilities of beneficial cooperative effects. ${ }_{25}$ [1] In the field of lactone polymerization, the coordination/insertion mechanism has drawn analogies with biological systems and in-particular the mechanism of hydrolysis of some metalloenzymes, where one of the metal present can coordinate water thereby lowering its pKa (enhanced ${ }_{30}$ nucleophilicity) and generating a hydroxide species. A second metal can then bind the substrate and make it more susceptible to nucleophilic attack. With this in mind, Hillmyer and Tolman probed the potential cooperative influence of the $\mathrm{Zn}-\mathrm{O}-\mathrm{Zn}$ motif in lactide polymerization. [2] We have been interested in the ${ }_{35}$ coordination chemistry of acyclic Schiff base ligands and their potential to hold metals in close proximity by utilizing the phenolic group to form an M-O-M linkage. [3] Furthermore, Sun et al. reported that cobalt and nickel complexes bearing bis(imino)phenolate type ligands are active for the ${ }_{40}$ oligomerization of ethylene. [4] We were also attracted to the potential catalytic ability of copper; complexes bearing $N N O$ tridentate Schiff bases have been shown to act as useful catalysts for the copolymerization of carbon dioxide and cyclohexene
oxide. [5] In terms of a $\mathrm{Cu}_{4} \mathrm{O}$ core, early structural examples 45 utilizing bis(amino)alcohols were reported by Krebbset al, [6] whilst Chaudhuriet al have extended such studies to related ONONO-type ligation and have examined the magnetic susceptibility of the resulting Cu_{2} and Cu_{4} complexes. [7] More recently bis(imino)phenoxy $\mathrm{N}_{2} \mathrm{O}$ type ligation has been utilized ${ }_{50}$ to isolate complexes that can act as catalysts for the oxidation of cyclohexane and toluene, [8] and in catecholase-like activity. [9] We also note that Pandey et al have, by employing β-ketoaminato ligands, isolated both mono and tetranuclear copper complexes, the formation of which was dictated by the use of anhydrous 5 conditions or not. [10] Herein, we explore the chemistry of the ligand set $1,3-\left(2,6-\mathrm{R}^{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OH}-2 \quad$ (LH) (where $\mathrm{R}^{1}=\mathrm{Me}, t \mathrm{Bu}, \mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{Me}, i \mathrm{Pr}$) towards $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]$ and have structurally characterized both tetranuclear and mononuclear complexes (see scheme1), the yield of each product can be ${ }_{60}$ controlled by the reaction stoichiometry. The polymeric product resulting from the interaction of $\left[1,3-(\mathrm{CHO})_{2}-5-\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{OH}-2\right]$ with $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ is also reported. In terms of catalysis, the tetranuclear complexes and the polymeric complex were screened for their ability to ring open polymerize ${ }_{65}$ (ROP) ε-caprolactone, but results were disappointing. We have also investigated the electrochemistry of these complexes and
their ability to catalyze benzene oxidation.

Results and discussion

Synthesis

Bis(imino)phenoxide complexes

${ }_{5}$ Interaction of $\left[2,6-\left(2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2} 4-\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{OH}\right]$ (LH) and $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]$ (two equivalents) in refluxing toluene afforded, following work-up, large green blocks as the major product (ca. 90%) and thin yellow plates as the minor product (ca. 10%), both of which proved to be suitable for single crystal X-ray ${ }_{10}$ diffraction.

$\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}={ }_{i \operatorname{Pr}} \mathbf{1 a}$
$\mathrm{R}^{1}=\mathrm{Cl} ; \mathrm{R}^{2}=i \mathrm{Pr} \mathbf{1 b}$

$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me} \mathbf{2 a} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 b} ;$
$\mathrm{R}^{1}=t \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me} \mathbf{2 c} ; \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Me} \mathbf{2 d}$;
$\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 e} ; \mathrm{R}^{1}=t \mathrm{Bu}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 f}$

Scheme 1. Copper complexes prepared herein.
The minor yellow complex was shown to be the bis-complex [CuL_{2}] (1a), whilst the major green product was found to be the tetranuclear complex $\left[\mathrm{Cu}_{4} \mathrm{~L}_{2}\left(\mu_{4}-\mathrm{O}\right)(\mathrm{OAc})_{4}\right](2 b)$. By varying the reaction stoichiometry ($\mathrm{L}: \mathrm{Cu} 1: 1$ for 1a,b; 1:2 for 2a-f, see experimental), it proved possible to also isolate the monomeric complexes 1b (for $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=i \mathrm{Pr}$) and tetrametallic type complexes for $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me} \mathbf{2 a} ; \mathrm{R}^{1}=t \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me} \mathbf{2 c} ; \mathrm{R}^{1}=\mathrm{Cl}$, $\mathrm{R}^{2}=\mathrm{Me} 2 \mathrm{~d}, \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 e} ; \mathrm{R}^{1}=t \mathrm{Bu}, \mathrm{R}^{2}=i \operatorname{Pr} \mathbf{2 f}$.

For the mononuclear complexes, mass spectra exhibited peaks for $[\mathrm{M}+\mathrm{H}]^{+}$, whilst in the IR spectra bands at 1612/1617 and 1542 (for type 1 complexes) and 1617 and $c a .1550$ (for type 2) cm^{-1} were consistent with the presence of the imine $\mathrm{C}=\mathrm{N}$ linkage. In the IR spectra of the 'free ligands', two strong absorptions are observed in the region $1580-1630 \mathrm{~cm}^{-1}$ for the imine stretching mode. There is
thus a shift to lower frequency upon coordination. In the case of the phenolic C-O band, there is a shift to higher frequency upon coordination (1327-1347 cm^{-1} in the complexes versus $1254-1263$ cm^{-1} in the 'free ligands').

The IR spectra of the tetranuclear complexes exhibited a number of weak to medium $v \mathrm{C}-\mathrm{H}$ bands in the $2860-3020 \mathrm{~cm}^{-1}$ region, together with a weak band at ca $566 \mathrm{~cm}^{-1}$, which is known to be associated with the T_{2} mode of the $\mathrm{Cu}_{4} \mathrm{O}$.[11] In their mass spectra(electrospray), peaks were observed for the fragments resulting from loss of either one or two OAc groups, namely $\left[\mathrm{Cu}_{4}(\mathrm{OAc})_{3}(\mathrm{~L})_{2}\left(\mu_{4}-\mathrm{O}\right)\right]^{+} \quad$ or $\quad\left[\mathrm{Cu}_{4}(\mathrm{OAc})_{2}(\mathrm{~L})_{2}\left(\mu_{4}-\mathrm{O}\right)\right]^{2+}$. ESR spectra, recorded at ambient temperature and 103 K , exhibited features similar to that reported by Jian et al for the complex $\left[\mathrm{Cu}_{4} \mathrm{OCl}_{6}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{4}\right](\mathrm{g} \perp=2.107, \mathrm{~g} \|=2.210)$; [12] $\mathrm{g} \perp$ values herein were found at about $\mathrm{g} \perp=2.42$ (see ESI, Figs. S1 - S3).

Solid state structures

General: There are two basic modes of coordination of the ligand observed: (1) bidentate coordination by the ligand through phenoxide and nitrogen; (2) bis-bidentate coordination through μ phenoxide and both imine nitrogen atoms to two copper ions. Bidentate coordination leads to discrete monomeric complexes that feature centrosymmetric binding of the copper ion in a square planar geometry. The bis-bidentate arrangement is found in tetrahedral $\mathrm{Cu}_{4} \mathrm{O}$ clusters that contain a central oxoanion. A third structure type has been observed in the case of $\left[E t_{3} \mathrm{NH}\right]$ $\left.\left[\mathrm{Cu}_{2}(\mathrm{OAc})_{4}\right](\mathrm{OAc})\right] \cdot \mathrm{MeCN}$ and this does not contain the Schiff base ligand. [$\mathrm{Cu}_{2}(\mathrm{OAc})_{4}$] paddlewheels are linked by bridging bidentate acetate into a 1-D chain.

Monomeric complexes: The compounds 1a and 1b display very similar ligands, differing in the replacement of a methyl group by chloride. As has been noted before, the structural demand of a methyl group and chloride are roughly similar and these two compounds are isomorphous, crystallising in the space group $P 2_{1} / c$ with similar unit cell parameters. The complex is centrosymmetric with the 4 -coordinate square planar Cu^{2+} ion residing on the inversion centre. For 1a (collected at 160 K) the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ distances are $1.917(2)$ and $1.971(2) \AA$ and the $\mathrm{N}-\mathrm{Cu}-\mathrm{O}$ bite angle is 91.73(9) ${ }^{\circ}$. For 1b (collected at 293 K), the analogous values are 1.9129(15) \AA, $1.9841(17) ~ \AA$, and 91.36(7) ${ }^{\circ}$. These geometrical parameters are similar to those reported for related $\left[\mathrm{Cu}(\mathrm{N}-\mathrm{O})_{2}\right]$ type systems; $\mathrm{Cu}-\mathrm{O}$ 1.889(4) [1.880(5)]* $-1.938(5) \AA$ and $\mathrm{Cu}-\mathrm{N}$ 1.989(7) [1.901(7)]* - 2.021(5) Å. [13] There are no intermolecular contacts of note for either structure. Crystal data for these are contained in Table 2.

Figure 1.ORTEP representation of the coordination about Cu^{2+} in $\mathbf{1 a}$, with thermal ellipsoids at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Cu}(1)-\mathrm{O}(1) 1.917(2), \mathrm{Cu}(1)$ $-\mathrm{N}(1) 1.971(2), \mathrm{N}(1)-\mathrm{C}(13) 1.293(4), \mathrm{N}(2)-\mathrm{C}(22) 1.442(4) ; \mathrm{O}(1)-\mathrm{Cu}(1)-$ $\mathrm{N}(2)$ 91.73(9).

Figure 2. ORTEP representation of the coordination about Cu^{2+} in $\mathbf{1 b}$, with thermal ellipsoids at 50\% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Cu}(1)-\mathrm{O}(1) 1.9129(15)$, $\mathrm{Cu}(1)-\mathrm{N}(1) 1.9841(17), \mathrm{N}(1)-\mathrm{C}(13) 1.282(3), \mathrm{N}(2)-\mathrm{C}(22) 1.449(3) ; \mathrm{O}(1)-$ $\mathrm{Cu}(1) \mathrm{N}(2)$ 91.36(7).
$\mathrm{Cu}_{4} \mathrm{O}$ oxo-clusters: Each of the remaining five ligands (L) forms a similar cluster with formula $\mathrm{Cu}_{4} \mathrm{OL}_{2}(\mathrm{OAc})_{4}$ in which each of the copper ions is five coordinated in a square pyramidal geometry. The cluster contains two ligands, each of which binds two copper ions. The ligands are approximately orthogonal and lie on opposite sides of the cluster. Coordination about the copper is completed by bridging bidentate acetate as shown below. Crystal data for these are contained in Table 3. The central μ_{4}-oxo is thought to arise due the presence of adventitious oxygen.

Figure 3. ORTEP representation of the cluster in 2a, with thermal ellipsoids at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (A) and angles (${ }^{\circ}$: $\mathrm{Cu}(1)-\mathrm{O}(1) 1.9246(17), \mathrm{Cu}(1)-\mathrm{O}(2)$ 1.968(3), $\mathrm{Cu}(1)-\mathrm{O}(5) 2.308(4), \mathrm{Cu}(1)-\mathrm{O}(7) 1.922(4), \mathrm{Cu}(1)-\mathrm{N}(2) 1.933(4)$, $\mathrm{Cu}(1)-\mathrm{Cu}(2) 2.9907(10) ; \mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2) 79.21(14), \mathrm{Cu}(1)-\mathrm{O}(2)-$
$C(13) 131.8(2), C u(1)-O(2)-C u(2) 79.30(14)$.
The complex 2c is representative of the others. $\mathrm{Cu}-\mathrm{O} 1$ distances within the oxo-cluster lie in the range $1.910(3)$ to $1.928(3) \AA$. Coordination by the ligand through O 2 and O 3 (i.e. $\mathrm{Cu}-\mathrm{O} 2$ and $\mathrm{Cu}-$ O3) distances lie in the range $1.968(3)$ to $1.995(3) \AA$. Coppernitrogen distances (ligand) lie in the range 1.988(4) to 2.008(4) Å. Each of these copper ions display square-based pyramidal geometry where the apical $\mathrm{Cu}-\mathrm{O}$ bond is much longer those bonds in the square plane. For example, for $\mathrm{Cu} 1, \mathrm{Cu}-\mathrm{L}$ distances in the plane are 1.928(3), 1.922(4), 1.968(3), 1.993(4) \AA, but the apical $\mathrm{Cu}-\mathrm{O}$ distance is $2.308(4) \AA$. Each of the structures 2a, 2b, 2c, $\mathbf{2 c} \cdot \mathbf{M e C N}$, $\mathbf{2 d}, 2 \mathbf{e}$ and 2 f display a very similar cluster and orientation of the pair of ligands. Shown above and below are representations of the cluster in 2a, 2c and $\mathbf{2 e}$.

Figure 4. ORTEP representation of the $\left[\mathrm{Cu}_{4} \mathrm{O}\right]^{6+}$ cluster in $\mathbf{2 c}$, with thermal ellipsoids at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Cu}(1)-\mathrm{O}(1) 1.9142(19), \mathrm{Cu}(1)-$ $\mathrm{O}(2) 1.963(2), \mathrm{Cu}(1)-\mathrm{O}(6) 1.930(3), \mathrm{Cu}(1)-\mathrm{N}(1) 1.991(3), \mathrm{Cu}(1)-\mathrm{Cu}(2)$ 2.9640(6); $\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2) 101.15(2), \mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{C}(14)$ 131.4(2), $\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{Cu}(2)$ 97.22(11).

Figure 5. ORTEP representation of the cluster in $\mathbf{2 e}$, with thermal ellipsoids at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Cu}(1)-\mathrm{O}(1) 1.914(3), \mathrm{Cu}(1)-\mathrm{O}(2) 1.992(3)$, $\mathrm{Cu}(1)-\mathrm{O}(4) 2,235(5), \mathrm{Cu}(1)-\mathrm{O}(8) 1.908(4), \mathrm{Cu}(1)-\mathrm{N}(1) 2.014(4) ; \mathrm{Cu}(1)-$ $\mathrm{O}(1)-\mathrm{Cu}(2) 103.14(14), \mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{Cu}(2)$ 98.23(14).

The arrangement of these clusters is unremarkable. There are no hydrogen bonds between the clusters in any case. For some examples, solvent molecules are included in the crystal structure. Full details of stoichiometry and crystal data are found in Table 3.

A search of the Cambridge Crystallographic Database (CSD) for the motif 1,3-(C(R)N $)_{2}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}-2$ bound to copper found 16 hits for $\mathrm{R}=$ Me. Of the non-macrocyclic examples, there was a preference for dinuclear coordination of the bis(imino)phenoxy ligand set as opposed to the mononuclear coordination observed herein for 1a and $\mathbf{1 b}$; representative examples are given in reference [14]. We note that $1: 1$ complexes have been isolated from reactions involving $\mathrm{CuCl}_{2} . \mathrm{H}_{2} \mathrm{O}$ and 2,6-bis(imino)phenols. [15] In the case of $\mathrm{R}=\mathrm{H}$, there were far more hits (356), of which approximately half (48 \%) were macrocyclic, whilst of the remainder, there were 26 hits involving four copper centres bound to a central μ_{4}-oxo group, 23 of which also involved acetate-type bridging. [7, 8, 14c, 16]

Copper acetate coordination polymer:

Treatment of copper acetate with the dialdehyde $1,3-(\mathrm{CHO})_{2}-5-$ $\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{OH}-2$ in acetonitrile yielded well-formed blue blocks that were found to have the composition ${ }_{5}\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}\left[\mathrm{Cu}_{2}(\mathrm{OAc})_{4}(\mathrm{OAc})\right]^{-} \cdot \mathrm{CH}_{3} \mathrm{CN}$, which contain copper acetate paddlewheels, $\left[\mathrm{Cu}_{2}(\mathrm{OAc})_{4}\right]$, which are linked into undulating 1-D chains by bridging acetate that binds in the terminal site at each end of the paddlewheel. The asymmetric unit is shown below. The bridging acetate assembles the paddlewheels ${ }_{10}$ into chains that run parallel to the crystallographic c direction (see below).

Between the chains lie $\mathrm{Et}_{3} \mathrm{NH}^{+}$cations and acetonitrile. The $\mathrm{Et}_{3} \mathrm{NH}^{+}$cations form a hydrogen bond to acetate through N1. For the hydrogen bond $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 10, \mathrm{~N}-\mathrm{H}$ distance $=0.91(2) \AA$, ${ }_{15} \mathrm{~N} \cdots \mathrm{O}$ distance $=2.806(3) \AA$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle $=172(2) \AA$. Crystal data for 3 are contained in Table 2.

Figure 6. ORTEP representation of a portion of one infinite chain running parallel to c in $\mathbf{3}$, with thermal ellipsoids at 50% probability level. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Cu}(1)-\mathrm{O}(1) 1.9832(17), \mathrm{Cu}(1)-$ ${ }_{20} \mathrm{O}(3) 1.9648(18), \mathrm{Cu}(1)-\mathrm{O}(9) 2.1166(15) ; \mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(3) 88.72(8)$.

In the IR spectrum of the polymeric chain $\left\{\left[\mathrm{Cu}_{2}(\mathrm{OAc})_{4}\right] \mathrm{OAc}\right\}_{\mathrm{n}}$ (3), it was not possible to distinguish between the two different
types of bridging acetate groups; only a strong broad carbonyl stretch at $1603 \mathrm{~cm}^{-1}$ together with a stretch at $1422 \mathrm{~cm}^{-1}$ were observable.

Figure 7. Cyclic voltammograms of complex 1a ($3.2 \mathrm{mmol} \mathrm{L}^{-1}$) in 0.1 mol $\mathrm{L}^{-1}\left[\mathrm{NBut}_{4}\right] \mathrm{BF}_{4}-\mathrm{CH}_{3} \mathrm{CN}$ under Ar atmosphere (298 K , scanning rate $=100$ $30 \mathrm{mV} \mathrm{s}^{-1}$, red dot-line: reduction process; blue dot- and red solid-lines: oxidation).

Figure 8. Cyclic voltammograms of complex 2a ($3.2 \mathrm{mmol} \mathrm{L}^{-1}$) in 0.1 mol $\mathrm{L}^{-1}\left[{\left.\mathrm{~N} t B u_{4}\right]} \mathrm{BF}_{4}-\mathrm{CH}_{3} \mathrm{CN}\right.$ under Ar atmosphere (298 K , scanning rate $=100$ 35 mV s -1 , red solid-, blue dash- and purple dot-lines: reduction process; turquoise dot-dash-line: oxidation).

Electrochemistry

The electrochemistry of selected complexes is shown in Figs. 7-9. In the reduction, the first process is attributed to the reduction of ${ }_{40} \mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$ which can be further reduced to $\mathrm{Cu}(0)$. The latter reduction is confirmed by the characteristic anodic stripping process, a sharp peak in the returning wave (Figs. 8 and 9). In the cyclic voltammogram of complex $\mathbf{2 a}$, there are three reduction processes observed between -0.5 and -1.5 V , which is in ${ }_{45}$ agreement with its tetra-nuclear core (Fig. 8). For the polymer 3, further scanning could reveal more reduction processes from $\mathrm{Cu}(\mathrm{I})$
to $\mathrm{Cu}(0)$. The reduction potentials of the process, $\mathrm{Cu}(\mathrm{II}) \rightarrow \mathrm{Cu}(\mathrm{I})$, correlate clearly to the coordinating environment. For the mononuclear complex (1a), it possesses two phenolates, whereas the tetra-nuclear cluster (2a) possesses on average half a phenolate per metal ion. Due to the strong electron-donating capability of the phenolate, more negative reduction potential is expected for complex 1a versus complex $2 \mathbf{2 a}$.

Figure 9. Cyclic voltammograms of complex $\mathbf{3}\left(3.2 \mathrm{mmol} \mathrm{L}^{-1}\right)$ in 0.1 mol $10 \mathrm{~L}^{-1}\left[\mathrm{NBut}_{4}\right] \mathrm{BF}_{4}-\mathrm{CH}_{3} \mathrm{CN}$ under Ar atmosphere (298 K , scanning rate $=100$ $\mathrm{mV} \mathrm{s}{ }^{-1}$ red dot- and blue solid-lines: reduction process; purple dot-dashline: anodic region).

Magnetic studies

Dc magnetic susceptibility studies on a powdered sample of $\mathbf{2 b}$ ($\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=i \mathrm{Pr}$) were performed in the $300-5 \mathrm{~K}$ temperature range in an applied field of 0.1 T , and are plotted as the $\chi_{\mathrm{M}} T$ product versus T in Figure 7.

The room temperature value of $0.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ is well below that expected for four non-interacting $s=1 / 2$ ions with $g=2.0\left(1.5 \mathrm{~cm}^{3}\right.$ ${ }_{20} \mathrm{~K} \mathrm{~mol}^{-1}$). As the temperature is decreased the value of $\chi_{\mathrm{M}} T$ decreases rapidly to a value of $0.1 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ at $T=100 \mathrm{~K}$, before decreasing more slowly to a value of zero at the lowest temperature measured. This behaviour is indicative of the presence of strong antiferromagnetic interactions between the
${ }_{25} \mathrm{Cu}(\mathrm{II})$ ions. The experimental susceptibility data can be fitted to the simple $2 J$ model shown in the inset of Figure 10 and expressed in isotropic spin-Hamiltonian (1) in which J_{1} corresponds to the $\mathrm{Cu} \cdots \mathrm{Cu}$ interaction mediated through one oxo and one carboxylate bridge, and J_{2} that mediated via one oxo and
${ }_{30}$ one alkoxo bridge. The best fit afforded $J_{1}=-192 \mathrm{~cm}^{-1}, J_{2}=-61$ cm^{-1} with $g=2.2$, values consistent with those previously seen for similar species. [6b, 7, 10] This results in a spin singlet ground state ($S=0$) with the first excited ($S=1$) triplet state some $384 \mathrm{~cm}^{-1}$ higher in energy.
${ }_{35} \quad \hat{\mathcal{H}}_{e x}=-2 J_{1}\left(\hat{S}_{1} \cdot \hat{S}_{3}+\hat{S}_{1} \cdot \hat{S}_{4}+\hat{S}_{2} \cdot \hat{S}_{3}+\hat{S}_{2} \cdot \hat{S}_{4}\right)-2 J_{2}\left(\hat{S}_{1} \cdot \hat{S}_{2}+\hat{S}_{3} \cdot \hat{S}_{4}\right)$

Figure 10. Plot of the $\chi_{M} T$ product versus T for complex $\mathbf{2 b}$ in the $T=300$ -5 K range in an applied field of 0.1 T . The solid red line is a fit of the 40 experimental data to the isotropic model shown schematically in the inset, and spin-Hamiltonian (1).

ε-Caprolactone polymerization

Metal alkoxides are known to initiate the ring opening polymerization (ROP) of lactones. [17] Given this, we attempted ${ }_{45}$ to initiate the ROP of ε-caprolactone by addition of benzyl alcohol to the tetranuclear cores, generating metal alkoxides via alkoxy/carboxylate exchange. The complexes were screened in toluene over the temperature range 20 to $120^{\circ} \mathrm{C}$ and for various ratios of Cu to BnOH over either 12 or 24 h and the results are presented in Table 1. In all cases however, activities were either nil or very low and in the best runs, only trace polymer was isolated. Although the PDI values were low, a plot of M_{n} versus $[\mathrm{CL}] /[\mathrm{Cu}]$ molar ratio was not linear and so living behavior cannot be inferred. In the MALDI-TOF spectra, only one major ${ }_{5}$ population of peaks, which possesses the spacing 114 Da (the molecular weight of the monomer), was detected. The peaks are assigned to the sodium adducts of the polymer chains with benzyloxy end groups. A smaller series of peaks is associated with the use of protonated/sodiated (from the matrix) species. [18] Representative MALDI-TOF spectra are given in the ESI for runs 5 (2a) and 7 (2b) in Table 1, - see figures S4 and S5. A representative ${ }^{1} \mathrm{H}$ NMR spectrum (for $\mathbf{2 b}$, run 7, Table 1) of the PCL is shown in the ESI (Fig. S6), and the peaks in a 5:2 ratio at 7.35 and 5.10 ppm suggested that there was a benzyl ester cap ${ }_{65}$ present.

Due to these disappointing results, no further investigation of the potential of these complexes for ring opening polymerization was conducted.

Benzene oxidation

70 All the complexes catalyzed the direct oxidation of benzene by hydrogen peroxide. Although the mononuclear complex 1a showed comparable conversion to that we reported recently, its selectivity was rather poor due to over-oxidation of the product phenol. [19] Previously, we observed that in the oxidation of
75 benzene catalysed by copper (II) complexes, the more negative the reduction potential, the higher the conversion of benzene. As
shown in Table 2, the copper (II) clusters exhibited more positive reduction potentials, which may explain their low conversion. What is surprising is that they showed much improved selectivity compared to the monocopper (II) complex. For the clusters, 2c 5 and $\mathbf{2 e}$, the selectivity is almost quantitative. The exact reason for this drastic improvement in selectivity is not understood at this stage.

Table 1. ROP of ε-caprolactone using compounds of type $\mathbf{2}^{\dagger}$

Run	Pre- Cat	T (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{CL}: \\ \mathrm{BnOH} \end{gathered}$	Time (h)	Conv ${ }^{\text {a }}$ (\%)	$M_{n, G P C}{ }^{\text {b }}$	$M_{n, \mathrm{Cal}}{ }^{\text {c }}$	PDI
1	2a	40	250: 1	24	--	--	--	--
2	2a	60	250 : 1	24	--	--	--	--
3	2a	80	250 : 1	24	--	--	--	--
4	2 a	100	250 : 1	24	3	--	--	--
5	2a	110	250 : 1	24	3	374	885	1.01
6	2a	120	250: 1	12	10	--	--	--
7	2b	100	$800: 1$	12	2.2	389	2006	1.01
8	2b	120	250 : 1	24	25	2936	7125	1.08
9	2c	110	250 : 1	24	22	1644	6270	1.10
10	2c	120	250 : 1	12	--	--	--	--
11	2d	20	$250: 1$	24	20	676	5700	1.02
12	2 e	110	250 : 1	24	3.5	412	998	1.01
13	$2 f$	80	250 : 1	24	--	--	--	--
14	$2 f$	100	250 : 1	12	--	--	--	--
15	$2 f$	120	$400: 1$	12	--	--	--	--
16	$2 f$	120	600 : 1	12	--	--	--	--
17	$2 f$	120	$800: 1$	12	--	--	--	--
18	$2 f$	120	1000 : 1	12	--	--	--	--
19	3	25	250 : 1	24	--	--	--	--
20	3							

${ }^{\dagger}$ Runs conducted in toluene using 0.04 mmol of catalyst; $\mathrm{CL}=\varepsilon$-caprolactone.
$10{ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, ${ }^{\mathrm{b}}$ GPC data in THF versus polystyrene standard using a correction factor of 0.56^{c} Calculated from ($[\mathrm{CL}]_{0} /[\mathrm{BnOH}]_{0}$) x conv.(\%) x Monomer molecular weight.

Table 2. Catalysis of the complexes on direct oxidation of benzene into phenol. ${ }^{\text {a }}$

Sample	Conversion $(\%)$	Yield $(\%)$	Selectivity $(\%)$	Reduction potential $\mathrm{E}_{\mathrm{p}}(\mathrm{V})$
1a	31.5	12.2	39	-1.32
2a	7.2	5.5	76	$-0.719,-1.019$, -1.535
2b	7.6	5.7	75	
2c	7.3	7.6	>99	
2d	6.9	3.9	57	
2e	7.7	8.7	>99	84
2f	13.4	11.3	84	
3	8.5	7.0	82	$-0.963,-1.598$

$15{ }^{\text {a }}$ The substrate (benzene) is 10 mmol ; the copper complex (0.02 mmol); conducted in 2.5 ml MeCN .

Conclusion

In conclusion, both mononuclear and tetranuclear complexes are accessible form the reaction of $2,6-\left(2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-4-$ $\left.{ }_{20} \mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{OH}\right](\mathrm{LH})$ and $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]$, the yields of which can be controlled by variation of the reaction stoichiometry. Changing the substituents at the ortho position of the aryl (imino) ring leads to slight variations in the tetrametallic core. The tetrametallic complexes were found to be virtually inactive for the ring ${ }_{5}$ opening polymerization of ε-caprolactone in the presence of benzyl alcohol. Magnetic susceptibility studies on the tetrametallic complex with $\mathrm{R}^{1}=\mathrm{Me}$ and $\mathrm{R}^{2}=i \mathrm{Pr}$ indicated the presence of strong antiferromagnetic interactions between the $\mathrm{Cu}(\mathrm{II})$ ions. The complexes catalyze the hydroxylation of ${ }_{30}$ benzene into phenol by hydrogen peroxide. The yields were not superior to others recently reported, however the tetra-nuclear complexes exhibited excellent (near quantitative) selectivities.

Experimental

General

35 All manipulations were carried out under an atmosphere of dry nitrogen using conventional Schlenk and cannula techniques or in a conventional nitrogen-filled glove box. Diethyl ether and tetrahydrofuran were refluxed over sodium and benzophenone. Toluene was refluxed over sodium. Dichloromethane and 40 acetonitrile were refluxed over calcium hydride. All solvents were distilled and degassed prior to use. IR spectra (nujol mulls, KBr or NaCl windows) were recorded on a Nicolet Avatar 360 FT IR spectrometer; Elemental analyses were performed by the elemental analysis service at Sichuan Normal University. Ligands 45 of type LH were prepared as described in the literature. [7] All other chemicals were purchased from commercial sources and were used as received.

2,6-Diformyl-4-methyl-phenoxy(2,6-diisopropylaniline) (0.49 g , 1.0 mmol) and copper diacetate $(0.18 \mathrm{~g}, 1.0 \mathrm{mmol})$ in toluene (30 $\mathrm{ml})$ were refluxed under an argon atmosphere for 12 h . The ${ }_{5}$ solvent was then removed in-vacuo and the residue was extracted into either hot acetonitrile (25 ml) or ethanol (25 ml). Prolonged standing at ambient temperature afforded 1a as green/yellow crystals. Yield: $0.18 \mathrm{~g}, 35$ \%; elemental analysis calculated for $\mathrm{C}_{66} \mathrm{H}_{82} \mathrm{CuN}_{4} \mathrm{O}_{2}$: C, 77.19; H, 8.05; N, 5.46. Found: C, 76.68; ${ }_{10} \mathrm{H}, 8.15$; N, 5.22 \%. IR (nujol null, KBr): 3059(w), 3005(w), 2959(s), 2926(s), 2867(s), 2357(w), 1923(w), 1617)s), 1601(w), 1587(w), 1542(s), 1443(s), 1381(s), 1364(s), 1342(m), 1326(m), 1294(m), 1258(s), 1228(s), 1180(s), 1165(m), 1108(w), 1097(w), 1043(w), 978(w), 934(w), 820(m), 798(m), 775(s), 761(w), 702(w), 638(w), 561(w), 520(s), 474(w); MS (ESI): ${ }^{\mathrm{m} / \mathrm{z}} 1026 \mathrm{M}^{+}$.

Synthesis of $\left.\left.\left[1,3-\left(2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\mathrm{ClC}_{6} \mathrm{H}_{2} \mathrm{O}\right)-2\right)\right]_{2} \mathrm{Cu}(\mathbf{1 b})$

As for 1a, but using 2,6-diformyl-4-chloro-phenoxy(2,6diisopropylaniline) ($0.51 \mathrm{~g}, 1.0 \mathrm{mmol}$) and copper diacetate (0.18 $\mathrm{g}, 1.0 \mathrm{mmol}$) affording $\mathbf{1 b}$ as green/yellow crystals. Yield: 0.22 g , ${ }_{20} 41 \%$. elemental analysis calculated for $\mathrm{C}_{64} \mathrm{H}_{76} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{2}$: C, 71.99; H, 7.17; N, 5.25. Found: C, 72.16; H, 7.32; N, 5.13 \%.IR (nujol null, KBr): 3066(s), 2961(s), 2095(s), 2866(m), 2356(w), 1737(w), 1612(s), 1588(w), 1542(s), 1436(s), 1385(m), 1367(s), 1332(s), 1292(w),1256(m), 1215(s), 1172(s), 1097(m), 1059(w), 1044(w), 1023(s), 932(s), 871(w), 862(w), 797(s), 771(m), 756(s), 728(s), 697(w), 660(w), 638(w), 562(w), 533(m), 510(m), 481(w). MS (ESI): m/z $1068[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of $\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{4}\left[1,3-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\right.\right.$
$\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}(\mathbf{2 a})$
${ }_{30}$ A toluene solution (30ml) of 2,6-diformyl-4-methyl-phenoxy(2,6dimethylaniline) ($0.37 \mathrm{~g}, 1.0 \mathrm{mmol}$), copper diacetate ($0.37 \mathrm{~g}, 2.0$ mmol) was refluxed under an argon atmosphere for 12 h . The solvent was then removed in-vacuo and the residue extracted in hot acetonitrile (30 ml) or ethanol (30 ml). Prolonged standing (2 ${ }_{35}-3$ days) afforded 2a as green crystals. Yield: $0.36 \mathrm{~g}, 57 \%$; elemental analysis calculated for $\mathrm{C}_{58} \mathrm{H}_{62} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{11}$: C, 55.94 ; H , 5.02; N, 4.50. Found: C, 55.63; H, 5.25; N, 4.31 \%. IR (nujol null, KBr): 3447(s), 2924(m), 2856(w), 2362(s), 2337(s), 1612(s), 1549(m), 1452(m), 1394(s), 1341(w), 1262(w), 1181(m), 1074(s), ${ }_{40} 830(\mathrm{w}), 769(\mathrm{w}), 719(\mathrm{w}), 669(\mathrm{w}), 566(\mathrm{w}), 517(\mathrm{w}), 489(\mathrm{w}) . \mathrm{MS}$ (ESI): m/z $1312 \quad\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{2}\left[1,3-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\right.\right.$ $\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}^{2+}$

Synthesis of $\mathrm{Cu}_{4}(\mathrm{OAc})_{4}\left[1,3-\left(2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\right.$ $\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}$ (2b)
${ }_{45}$ As for 2a, but using 2,6-diformyl-4-methyl-phenoxy(2,6diisopropylaniline) ($0.49 \mathrm{~g}, 1.0 \mathrm{mmol}$) and copper diacetate (0.37 $\mathrm{g}, 2.0 \mathrm{mmol}$) afforded $\mathbf{2 b}$ as green crystals. Yield: $0.44 \mathrm{~g}, 60 \%$; elemental analysis calculated for $\mathrm{C}_{74} \mathrm{H}_{94} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{11}$: C, 60.47 ; H ,
6.45; N, 3.81. Found: C, 60.53; H, 6.93; N, 4.01 \%. IR (nujol null,KBr): 3064(w), 2962(s), 2925(s), 2867(s), 2357(w), 1923(w), 1784(w), 1612(s), 1587(s), 1550(s), 1456(s), 1450(m), 1397(s), 1327(s), 1258(m), 1232(w), 1174(s), 1104(m), 1070(s), 1014(m), 932(w), 867(w), 828(w), 800(s), 770(m), 727(m), 665(m), 620(m), 564(m), 528(m), 487(s), 425(w). MS (ESI): m/z 1408
$\left.{ }_{55}\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{3}\left[1,3-\left(2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{O}\right)-2\right)\right]_{2}\left(\mu_{4}-\right.$ O) $\}^{+}$.

Synthesis of $\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{4}\left[1,3-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\right.\right.$ $\left.\left.t \mathrm{BuC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}$ (2c)

As for 2a, but using 2,6-diformyl-4-t-butyl-phenoxy(2,6${ }_{60}$ dimethylaniline) ($0.42 \mathrm{~g}, 1.0 \mathrm{mmol}$) and copper diacetate (0.37 g , 2.0 mmol) affording 2c as green crystals. Crystals suitable for single crystal X-ray diffraction can be grown from either methanol or acetonitrile. Yield: $0.32 \mathrm{~g}, 48$ \%; elemental analysis calculated for $\mathrm{C}_{64} \mathrm{H}_{74} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{11}$: C, 57.82 ; H, 5.61; N, 4.21 . ${ }_{5}$ Found: C, 57.71; H, 5.69; N, 4.14 \%. IR (nujol null, KBr): 3422(s), 3020(w), 2962(s), 2924(s), 2869(w), 2361(w), 1611(s), 1548(m), 1471(m), 1451(m), 1397(s), 1347(m), 1294(w), 1232(m), 1183(s), 1092(w), 1068(s), 1023(w), 923(w), 891(w), 868(w), 841(w), 797(w), 768(s), 722(w), 667(m), 630(m), 566(m), 510(m), 438(m). MS (ESI): m/z 1247 \{Cu4 (OAc) 2 [1,3-(2,6$\left.\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-t \mathrm{BuC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}^{2+}$.

Synthesis of $\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{4}\left[1,3-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\right.\right.$ $\left.\left.\mathrm{ClC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}(2 d)$

As for 2a, but using 2,6-diformyl-4-chloride-phenoxy(2,6${ }_{75}$ dimethylaniline) ($0.39 \mathrm{~g}, 1.0 \mathrm{mmol}$) and copper diacetate (0.37 g , 2.0 mmol) affording $\mathbf{2 d}$ as green crystals. Yield: 0.37 g , 58 \%; elemental analysis calculated for $\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{11}$: C, 52.30 ; H, 4.39; N, 4.36. Found: C, 52.64; H, 4.51; N, 4.53 \%. IR (nujol null, KBr): 3437(s), 2973(w), 2918(w), 1612(s), 1546(m), 1471(w), 1440(m), 1395(s), 1342(m), 1316(w), 1258(w), 1226(m), 1179(m), 1092(w), 1059(s), 984(w), 924(w), 883(w), 808(m), 766(w), 720(w), 668(m), 627(m), 565(w), 515(w), 438(w). MS (ESI): m/z $1227 \quad\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{3}[1,3-(2,6-\right.$ $\left.\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\mathrm{ClC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}^{2+}$.
${ }_{85}$ Synthesis of $\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{4}\left[1,3-\left(2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\right.\right.$ $\left.\left.\mathrm{ClC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}(2 \mathbf{e})$

As for 2a, but using 2,6-diformyl-4-chloro-phenoxy(2,6diisopropylaniline) ($0.51 \mathrm{~g}, 1.0 \mathrm{mmol}$) and copper diacetate (0.37 $\mathrm{g}, 2.0 \mathrm{mmol}$) affording $\mathbf{2 e}$ as green crystals. Yield: $0.35 \mathrm{~g}, 46 \%$; ${ }_{90}$ elemental analysis calculated for $\mathrm{C}_{72} \mathrm{H}_{88} \mathrm{Cl}_{2} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{11}$: C, 57.25 ; H, 5.87; N, 3.71. Found: C, 57.36; H, 6.02; N, 3.88 \%. IR (nujol null, KBr): 3065(w), 2962(s), 2927(s), 2868(s), 2360(w), 1931(w), 1860(w), 1777(w), 1613(s), 1587(s), 1548(s), 1440(s), 1398(s), 1347(s), 1256(w), 1221(w), 1172(s), 1107(m), 1058(s), 990(w), 932(w), 882(w), 863(w), 791(s), 768(w), 724(s), 667(m), 621(s), 563(m). MS (ESI): ${ }^{\mathrm{m} / \mathrm{z}} 991.5$ ($\mathrm{M}^{+}-\mathrm{L}-\mathrm{O}$).

Synthesis of $\left\{\mathrm{Cu}_{4}(\mathrm{OAc})_{4}\left[1,3-\left(2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-\right.\right.$ $\left.\left.t \mathrm{BuC}_{6} \mathrm{H}_{2} \mathrm{O}-2\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}(\mathbf{2 f})$

As for 2a, but using 2,6-diformyl-4-t-butyl-phenoxy(2,6diisopropylaniline) ($0.52 \mathrm{~g}, 1.0 \mathrm{mmol}$) and copper diacetate (0.37 ${ }_{5} \mathrm{~g}, 2.0 \mathrm{mmol}$) affording $\mathbf{2 f}$ as green crystals. Yield: $0.52 \mathrm{~g}, 67 \%$; elemental analysis calculated for $\mathrm{C}_{80} \mathrm{H}_{106} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{11}$: $\mathrm{C}, 61.83$; H , 6.88; N, 3.61. Found:C, 61.47; H, 6.96; N, 3.55 \%. IR (nujol null, KBr): 3447(s), 2962(s), 2869(w), 1612(s), 1553(m), 1458(s), 1397(s), 1360(w), 1331(w), 1261(s), 1175(w), 1097(s), 1068(s), ${ }_{10}$ 1023(s), 931(w), 865(w), 804(s), 725(w), 666(w),623(w), 566(w), 530(w); MS (ESI): m/z 1485 \{Cu4(OAc) ${ }_{3}[1,3-(2,6-$ $\left.\left.\left.\left.\left.i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right)_{2}-5-t \mathrm{BuC}_{6} \mathrm{H}_{2} \mathrm{O}\right)-2\right)\right]_{2}\left(\mu_{4}-\mathrm{O}\right)\right\}^{+}$

Synthesis of $\left\{\left[\mathrm{Cu}_{2}(\mathrm{OAc}) 4\right](\mathrm{OAc})\left(\mathrm{HNEt}_{3}\right)(\mathrm{MeCN})\right\}_{\mathrm{n}}(\mathbf{3})$

To 2-hydroxy-5-methyl-isophthaldehyde($0.16 \mathrm{~g}, 1.0 \mathrm{mmol}$) and ${ }_{15}$ copper diacetate ($0.37 \mathrm{~g}, 2.0 \mathrm{mmol}$) was added toluene (30 ml), and the system was stirred at room temperature for 30 min . Triethylamine ($0.31 \mathrm{ml}, 2.2 \mathrm{mmol}$) was then added and the solution brought to reflux for 12 h . The solvent was then removed in-vacuo and the residue extracted in hot acetonitrile (30 ml). ${ }_{20}$ Prolonged standing at ambient temperature afforded $\mathbf{3}$ as green/blue crystals. Yield: $0.56 \mathrm{~g}, 66$ \%; elemental analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}$ - MeCN (sample dried in-vacuo for 2 h): C, 36.64; H, 5.96; N, 2.69. Found: C, 36.83; H, 5.93; N, 2.63 \%. IR (nujol null, KBr): 3478(s), 3375(s), 3272(m), 2942(w), ${ }_{25}$ 2898(w), 1603(s), 1446(s), 1422(m), 1355(w), 1052(w), 1033(w), 692(s), 629(m), 559(m). MS (ESI): m/z 872 \{2x $\left.\left[\mathrm{Cu}_{2}(\mathrm{OAc})_{4}(\mathrm{OAc})\right]\left[\mathrm{Et}_{3} \mathrm{NH}\right] . \mathrm{CH}_{3} \mathrm{CN}\right\}-2 \mathrm{CH}_{3} \mathrm{CN}-3 \mathrm{OAc}$.

Electrochemistry

${ }_{30}$ Electrochemistry was performed in a gas-tighten three-electrode system in which a vitreous carbon disk ($\Phi=1 \mathrm{~mm}$) was used as a working electrode, a carbon strip as counter electrode, and $\mathrm{Ag} /$ AgCl (inner reference solution: $0.45 \mathrm{~mol} \mathrm{~L}^{-1}\left[\mathrm{NtBu}_{4}\right] \mathrm{BF}_{4}+0.05$ mol $\mathrm{L}^{-1}\left[\mathrm{NtBu}_{4}\right] \mathrm{Cl}$ in dichloromethane) against which the ${ }_{35}$ potential of ferrocenium / ferrocene couple is 0.55 V in 0.5 mol $\mathrm{L}^{-1}\left[\mathrm{NtBu}_{4}\right] \mathrm{BF}_{4}$ in $\mathrm{CH}_{3} \mathrm{CN}$. Ferrocene was added as an internal standard, and all potentials are quoted against ferrocenium / ferrocene couple ($\mathrm{Fc}^{+} / \mathrm{Fc}$).

${ }_{40}$ Procedure for ROP of ε-caprolactone

Typical polymerization procedures in the presence of one equivalent of benzyl alcohol (Table 1) are as follows. A toluene solution of $2(0.04 \mathrm{mmol})$ and benzyl alcohol (0.04 mmol) were added into a Schlenk tube in the glove box at room temperature.
${ }_{45}$ The solution was stirred for 2 min ., and then ε-caprolactone (10.0 mmol) along with 2 ml toluene was added to the solution. The reaction mixture was then palced into an oil bath pre-heated to the required temperature, and the solution was stirred for the
prescribed time. The polymerization mixture was then quenched ${ }_{50}$ by the addition of excess glacial acetic acid (0.2 ml) and the resultant solution then poured into methanol (200 ml). The resultant polymer was then dried on filter paper was was dried invacuo.

Procedure for oxidation of benzene

${ }_{55}$ Benzene ($0.9 \mathrm{~mL}, 10 \mathrm{mmol}$), acetonitrile (2.5 mL) and catalytic amount of the copper complex (0.02 mmol) were placed into a reaction vessel equipped with cooling condenser and placed in an oil-bath. The reaction was heated at appropriate temperature for a period of time. When the reaction reached the specified ${ }_{60}$ temperature, appropriate amount of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(1.5 \mathrm{~mL}, 30$ wt\%) was slowly and carefully added in one-go. When the reaction was stopped and cooled, the volume of the reaction mixture was calibrated to 10 mL with $\mathrm{CH}_{3} \mathrm{CN}$ in which there was an appropriate amount of toluene as an internal standard. To the 65 calibrated reaction solution was added $\mathrm{MgSO}_{4}(3 \mathrm{~g})$ to remove the water in the reaction before being analyzed by gas chromatography. Quantitative analysis of both benzene and phenol was achieved by establishing their calibration curves with two linear equations under optimized conditions, $\mathrm{A}_{\mathrm{b}}=0.0053$ ${ }_{70} \mathrm{~W}_{\mathrm{b}}+0.1266(\mathrm{R}=0.9986)$ and $\mathrm{A}_{\mathrm{p}}=0.0034 \mathrm{~W}_{\mathrm{p}}-0.1635(\mathrm{R}=$ 0.9943) for benzene and phenol, respectively (Figs. S7 and S8, ESI), where A is the ratio of the peak areas of the analyte (benzene or phenol) and the internal standard toluene, W (mg) is the mass of the analytes, and the subscripts b and p denote 75 benzene and phenol, respectively. The yield of phenol and benzene conversion was calculated as follows: phenol (mmol) / benzene initially used (mmol) $\times 100 \%$ and benzene-reacted (mmol) / benzene initially used (mmol) $\times 100 \%$, respectively.

Crystallography details

${ }_{80}$ Data collection

For 1a: Single crystal X-ray diffraction data were collected using a Bruker SMART 1K CCD diffractometer using ω scans with narrow frames. Crystals were mounted at the end of a glass fibre under and held at 160 K in an Oxford Cryosystems nitrogen gas ${ }_{85}$ Cryostream.

All other samples (except 3): Single crystal X-ray diffraction data were collected at room temperature (293 K) using an Agilent Technologies Xcalibur diffractometer operating with Mo Karadiation and an Eos CCD detector in a series of ω-scans. [20] ${ }_{90}$ Data were integrated using standard procedure using CrysAlisProsoftware (Agilent). Data were corrected for absorption effects using a multi-scan method based on equivalents. In the case of $\mathbf{2 f}$, the crystals appeared to be unstable in the X-ray beam, presumably due to solvent loss. Given this, ${ }_{95}$ data for $2 f$ were collected at 150 K , in contrast to the other structures and were coated in a thin film of perfluoropolyether oil. Furthermore, the structure of $\mathbf{2 f}$ at room temperature appears different to that at 150 K . At room temperature, the structure is
triclinic and centrosymmetric with a single copper cluster in the asymmetric unit. Upon cooling below about 240 K , a larger monoclinic cell of approximately twice the volume emerges. This low temperature form is non-centric and has two unique oxo ${ }_{5}$ clusters in the asymmetric unit.

For 3: Data were collected on a Bruker SMART 1K CCD diffractometer at Daresbury SRS station $9.8(\lambda=0.6710 \AA\}$. [21]

Structure solution and refinement

Structures were solved using automated direct methods within ${ }_{10}$ SHELXS-86 or intrinsic phasing within SHELXT. Structures were refined by full-matrix least squares refinement within SHELXL-2014 using all unique data. Hydrogen atoms were placed using a riding model. Where data were sufficiently good, methyl group orientations were refined. Many of the structures ${ }_{15}$ displayed disorder in the position of methyl groups or in solvent of crystallization. This disorder was modelled using standard techniques. In the case of structure $2 \mathbf{e}$ it was not possible to locate the solvent molecules precisely and electron density in these regions was modelled using the Platon SQUEEZE routine. [22] ${ }_{20}$ For $2 d$ there was some evidence that the true lattice symmetry was primitive rather than C-centred, but it was not possible to obtain stable refinements with a primitive cell. The refinement in $C 2 / c$, which converged with $R_{\mathrm{F}}=0.0734$ and $w R\left(F^{2}\right)=0.1317$ (all data), was therefore retained.
${ }_{25}$ CCDC 1040530 - 1040539 contain the supplementary crystallographic data for this paper.

Acknowledgements

Sichuan Normal University and the National Natural Science ${ }_{30}$ Foundation of China (grants 51443004 and 51273133) are thanked for financial support. The CCLRC is thanked for the award of beam-time at SRS Daresbury Laboratory (Station 9.8), and Dr. Simon J. Teat is thanked for scientific support.

Notes and references

$3_{5}{ }^{a}$ College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
${ }^{b}$ Chemistry Department, Loughborough University, Loughborough,
Leicestershire, LE11 3TU, U.K.
${ }^{\text {c Department of Chemistry, The University of Hull, Cottingham Rd, }}$
${ }_{40}$ Hull, HU6 7RX, U.K. Email: C.Redshaw@hull.ac.uk
${ }^{d}$ College of Biological, Chemical Sciences and Engineering, Jiaxing
University, Jiaxing 314001, China.
${ }^{e}$ EaStCHEM School of Chemistry, University of Edinburgh,
David Brewster Road, Edinburgh, EH9 3FJ, Scotland.

45 † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/
I. Bratko and M. Gómez, Dalton Trans. 2013, 42, 10664 and references therein.
C.K. Williams, N.R. Brooks, M.A. Hillmyer and W.B. Tolman, Chem. Commun. 2002, 2132.
A. Arbaoui, C. Redshaw, N.M. Sanchez-Ballester, M.R.J. Elsegood and D.L. Hughes, Inorg. Chimica Acta 2011, 365, 96.
L. Wang, W.-H. Sun, L. Han, Z. Li, Y. Hu, C. He and C. Yan, J. Organomet. Chem. 2002, 650, 59.
C.-Y. Tsai, B.-H. Huang, M.-W. Hsiao, C.-C. Lin and B.-T. Ko, Inorg. Chem. 2014, 53, 5109.
(a) S. Teipel, K. Griesar, W. Haase and B. Krebs, Inorg. Chem.1994,33, 456. (b) J. Reim, K. Griesar, W. Haase and B. Krebs, J. Chem. Soc. Dalton Trans. 1995, 2649.
S. Mukherjee, T. Weyhermüller, E. Bothe, K. Wieghardt and P. Chaudhuri, Eur. J. Inorg. Chem. 2003, 863.
P. Roy and M. Manassero, Dalton Trans. 2010, 39, 1539.
T. Ghosh, J. Adhikary, P. Chakraborty, P.K. Sukul, M. Sekhar Jana, T. K. Mondal, E. Zangrando and D. Das, Dalton Trans. 2014, 43, 841.
A. Kumar, R. Pandey, R.K. Gupta, M. Dubey and D.S. Pandey, Dalton Trans. 2014, 43, 13169.
J. T Guy Jr., J.C. Cooper, R.D. Gilardi and J.L. FlippenAnderson, Inorg Chem. 1988, 27, 635. (b) A.R. Paital, P.K. Nanda, S. Das, G. Aromi and D. Ray, Inorg Chem. 2006, 45, 505.
F.-F. Jian, P.-S. Zhao, H.-X. Wang and L.D. Wu, Bull. Korean Chem. Soc. 2004, 25, 673.
(a) P. Mukherjee, M.G.B. Drew and A. Figuerola, Polyhedron 2008, 27, 3343. (b) H Karabiyuk, O. Erdem and M.Aygun, J. Inorg. Organomet. Polym. 2010, 20, 142. (c) L. Mouni, M. Akkurt and S.O. Yildirm, J. Chem. Crystallogr. 2010, 40, 169. (d) A. Kumar, M. Dubey, R.Pandey, R.K. Gupta, A. Kumar, A.C. Kalita and D. S. Pandey, Inorg. Chem. 2014, 53, 4944. *The values in square brackets are for a system exhibiting significant tautomerism. [13b]
[14] (a) N.A. Bailey, D.E. Fenton, J. Lay, P.B. Roberts, J.-M. Latour and D. Limosin, J. Chem., Soc. Dalton Trans. 1986, 2681. (b) N.E. Borisova, M.D. Reshetova, T.V. Magdesieva, V.N. Khrustalev, G.G. Aleksandrov, M. Kuznetsov, R.S. Skazov, A.V. Dolganov, V.N. Ikorskiy, V.M. Novotortsev, I.L. Eremenko, I.I. Moiseev and Y.A. Ustynyuk, Inorg. Chimica Acta 2008, 361, 2032. (c) M.-F. Zaltariov, M. Alexandru, M. Cazacu, S. Shova, G. Novitchi, C. Train, A. Dobrov, M.V. Kirillova, E.C.B.A. Alegria, A.J.L. Pombeiro and V.B. Arion, Eur. J. Inorg. Chem. 2014, 4946. (d) M. Pait, M. Shatruk, J. Lengyel, S. Gómez-Coca, A. Bauzá, A. Frontera, V. Bertolasi and D. Ray, Dalton Trans. 2015, in-press. Doi: 10.1039/C5DT90077H.
L. Han, Y. Cui, Y. Li, W.-H. Sun, J. Du and J. Li, J. Chem. Res. 2003, 157.
(a) V. McKee and S.S. Tandon, J. Chem. Soc., Dalton Trans. 1991, 221. (b) W.-X. Zhang, C.-Q. Ma, X.-N.Wang, Z.-G. Yu, Q.-J. Lin and D. -H. Jiang, Chin. J. Chem. 1995, 13, 497. (c) R. Shakya, P.H. Keyes, M.J. Heeg, A. Moussawel, P.A. Heiney and C.N. Verani, Inorg. Chem. 2006, 45, 7587. (d) R. Shakya, S.S. Hindo, L. Wu, S. Ni, M. Allard, M.J. Heeg,S.R.P. da Rocha, G.T. Yee, H.P. Hratchian and C.N. Verani, Chem. Eur. J. 2007, 13, 9948. (e) S.S. Hindo, R. Shakya,R. Shanmugam, M.J. Heeg and C.N. Verani, Eur. J. Inorg. Chem. 2009, 4686. (f) P. Roy, M. Nandi, M. Manassero, M. Ricco, M. Mazzani, A. Bhaumik and P.Banerjee, Dalton Trans. 2009, 9543. (g) M.Sarkar, R.

Clerac, C. Mathoniere, N.G.R. Hearns, V. Bertolasi and D. Ray, Inorg. Chem. 2010, 49, 6575. (h) M. Sarkar, R. Clerac, C. Mathoniere, N.G.R. Hearns, V. Bertolasi and D. Ray, Inorg. Chem. 2011, 50, 3922. (i) D. Das, A. Guha, S. Das, P. Chakraborty, T.K. Mondal, S. Goswami and E. Zangrando, Inorg. Chem. Commun. 2012, 23, 113. (j) M.S.Jana, S. Dey, J.L. Priego, R. Jimemez-Aparicio, Polyhedron 2013, 59, 101. (k) A.K. Ghosh and D. Ray, Polyhedron 2013, 52, 370. (l) S. Halder, S. Dey, C. Rizzoli and P. Roy, Polyhedron 2014, 78, 85. (m) S. Das, L. Sorace, A. Guha, R. Sanyal, H. Kara, A. Caneschi, E. Zangrando and D. Das, Eur. J. Inorg. Chem. 2014, 2753. (n) M. Pait, E. Colacio and D. Ray, Polyhedron 2015, 88, 90.
(a) M. Labet and W. Thielemans, Chem. Soc. Rev. 2009, 38, 3484. (b) A. Arbaoui and C. Redshaw, Polym. Chem. 2010, 1,
801. (c) X. Rong and C. Chunxia, Prog. Chem. 2012, 24, 1519.
[18] N. Ikpo, C. Hoffmann, L.N. Dawe and F.M. Kerton, Dalton Trans. 2012, 41, 6631.
(a) B. Xu, W. Zhong, Z. Wei, H. Wang, J. Liu, L. Wu, Y. Feng and X. Liu, Dalton Trans., 2014, 43, 15337. (b) X. You, Z. Wei, H. Wang, D. Li, J. Liu, B. Xu and X. Liu, RSC Adv., 2014, 4, 61790. (c) L. Wu, W. Zhong, B. Xu, Z. Wei, X. Liu, Dalton Trans., 2015, 44, 8013.

CrysAlisPro Softwarefor CCD diffractometers, Agilent Technologies,2012.
SAINT and SMART software for CCD diffractometers, Bruker AXS Inc.,Madison, USA, 2000.
A. L. Spek, Acta Crystallogr. Sect. A. Fundam. Crystallogr. 1990, 46, C34.

Table 2: Crystal data for the monomeric complexes 1a, 1b and polymeric 3.

Identification code	1a	1b	3
Empirical formula	$\mathrm{C}_{66} \mathrm{H}_{82} \mathrm{CuN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{76} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}$
Formula weight	1026.89	1067.72	565.55
Temperature	160(2) K	293(2) K	293(2) K
Wavelength	0.71073 A	0.71073 A	0.71073 A
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{C}$	$P 2{ }_{1} / \mathrm{c}$	$P 2{ }_{1} / n$
Unit cell dimensions	$\begin{array}{ll} a=9.8597(6) \AA & \alpha=90^{\circ} . \\ b=12.1852(8) \AA & \beta=97.5566(13)^{\circ} . \\ c=24.1112(16) \AA & \gamma=90^{\circ} . \end{array}$	$\begin{array}{ll} \hline a=10.0099(2) \AA & \alpha=90^{\circ} . \\ b=12.1157(2) \AA & \beta=97.487(2)^{\circ} . \\ c=24.5154(5) \AA & \gamma=90^{\circ} . \end{array}$	$\begin{array}{ll} a=12.2105(4) \AA & \alpha=90^{\circ} . \\ b=11.5458(4) \AA & \beta=101.407(3)^{\circ} . \\ c=17.7582(5) \AA & \gamma=90^{\circ} . \end{array}$
Volume	2871.6(3) \AA^{3}	2947.80(10) \AA^{3}	2454.10(14) \AA^{3}
Z	2	2	4
Density (calculated)	$1.188 \mathrm{Mg} / \mathrm{m}^{3}$	$1.203 \mathrm{Mg} / \mathrm{m}^{3}$	$1.531 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.427 \mathrm{~mm}^{-1}$	$0.506 \mathrm{~mm}^{-1}$	$1.785 \mathrm{~mm}^{-1}$
$F(000)$	1102	1134	1176
Crystal size	$0.64 \times 0.05 \times 0.02 \mathrm{~mm}^{3}$	$0.25 \times 0.25 \times 0.20 \mathrm{~mm}^{3}$	$0.25 \times 0.20 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	1.704 to $25.998{ }^{\circ}$.	2.862 to 28.938°.	2.931 to 28.942°.
Index ranges	$\begin{aligned} & -11 \leq \mathrm{h} \leq 12,-15 \leq \mathrm{k} \leq 14,-29 \leq \mathrm{l} \leq \\ & 28 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 12,-15 \leq \mathrm{k} \leq 13,-33 \leq 1 \leq \\ & 20 \end{aligned}$	$-12 \leq \mathrm{h} \leq 15,-15 \leq \mathrm{k} \leq 9,-21 \leq \mathrm{l} \leq 24$
Reflections collected	16148	14090	11719
Independent reflections	$5606[R($ int $)=0.0835]$	6775 [R (int) $=0.0246$]	5625 [R (int) $=0.0257]$

10|Journal Name, [year], [vol], oo-oo

Completeness (to $2 \theta=25.242$	99.6%	99.8%	99.8%
Absorption correction	Empirical	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.992 and 0.772	1.000 and 0.958	1.000 and 0.835
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$5606 / 0 / 340$	$6775 / 7 / 331$	$5625 / 1 / 301$
Goodness-of-fit on F^{2}	1.000	1.024	1.038
Final R indices [I>2б(I)]	$R 1=0.0528, w R 2=0.1035$	$R 1=0.0502, w R 2=0.1125$	$R 1=0.0359, w R 2=0.0771$
R indices (all data)	$R 1=0.1074, w R 2=0.1247$	$R 1=0.0801, w R 2=0.1270$	$R 1=0.0517, w R 2=0.0853$
Largest diff. peak and hole	0.465 and -0.581 e. \AA^{-3}	0.348 and -0.306 e. \AA^{-3}	0.374 and -0.499 e. \AA^{-3}

Table 3: Crystal data for $\mathrm{Cu}_{4} \mathrm{OL}_{2}(\mathrm{OAc})_{4}$ complexes.

Identification code	2a	2b	2c	2c•MeCN
Empirical formula	$\mathrm{C}_{66} \mathrm{H}_{86} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{15}$	$\mathrm{C}_{76} \mathrm{H}_{94} \mathrm{Cu}_{4} \mathrm{~N}_{5} \mathrm{O}_{11}$	$\mathrm{C}_{70.67} \mathrm{H}_{88} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{14.33}$	$\mathrm{C}_{72} \mathrm{H}_{86} \mathrm{Cu}_{4} \mathrm{~N}_{8} \mathrm{O}_{11}$
Formula weight	1429.54	1507.72	1477.00	1493.64
Temperature	293(2) K	293(2) K	293(2) K	293(2) K
Wavelength	0.71073 A	0.71073 A	0.71073 A	0.71073 A
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	C2/c	$P 2_{1} / n$	$\overline{P \overline{1}}$	$P 2_{1} / \mathrm{c}$
Unit cell dimensions	$\begin{aligned} & a=24.5344(10) \AA \\ & b=13.0252(4) \AA \\ & c=22.7527(8) \AA \\ & \alpha=90^{\circ} \\ & \beta=104.984(4)^{\circ} \\ & \gamma=90^{\circ} . \end{aligned}$	$\begin{aligned} & a=20.028(11) \AA \\ & b=15.1113(5) \AA \\ & c=25.249(4) \AA \\ & \alpha=90^{\circ} \\ & \beta=98.68(4)^{\circ} \\ & \gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & a=14.1438(9) \AA \\ & b=14.8853(5) \AA \\ & c=20.3062(5) \AA \\ & \alpha=82.021(2)^{\circ} \\ & \beta=88.299(3)^{\circ} \\ & \gamma=64.613(5)^{\circ} \end{aligned}$	$\begin{aligned} & a=23.6777(5) \AA \\ & b=12.2318(3) \AA \\ & c=27.2068(6) \AA \\ & \alpha=90^{\circ} \\ & \beta=113.205(2)^{\circ} \\ & \gamma=90^{\circ} \end{aligned}$
Volume	7023.7(5) \AA^{3}	7554(5) \AA^{3}	3822.8(3) \AA^{3}	$7242.2(3) \AA^{3}$
Z	4	4	2	4
Density (calculated)	$1.352 \mathrm{Mg} / \mathrm{m}^{3}$	$1.326 \mathrm{Mg} / \mathrm{m}^{3}$	$1.284 \mathrm{Mg} / \mathrm{m}^{3}$	$1.370 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.259 \mathrm{~mm}^{-1}$	$1.171 \mathrm{~mm}^{-1}$	$1.158 \mathrm{~mm}^{-1}$	$1.222 \mathrm{~mm}^{-1}$

$F(000)$	2984	3156	1541.3	3112
Crystal size	$\begin{aligned} & 0.25 \times 0.20 \times 0.20 \\ & \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} & 0.40 \times 0.35 \times 0.20 \\ & \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} & 0.35 \times 0.25 \times 0.25 \\ & \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} & 0.35 \times 0.25 \times 0.20 \\ & \mathrm{~mm}^{3} \end{aligned}$
Theta range for data collection	2.953 to 28.956°.	2.956 to 28.991°.	2.923 to 29.028°.	2.854 to 29.127°.
Index ranges	$\begin{aligned} & -19 \leq \mathrm{h} \leq 33,-10 \leq \\ & \mathrm{k} \leq 17,-30 \leq 1 \leq \\ & 30 \end{aligned}$	$\begin{aligned} & -25 \leq \mathrm{h} \leq 27,-19 \leq \\ & \mathrm{k} \leq 8,-32 \leq \mathrm{l} \leq 24 \end{aligned}$	$\begin{aligned} & -18 \leq \mathrm{h} \leq 19,-20 \leq \mathrm{k} \leq \\ & 20,-27 \leq 1 \leq 26 \end{aligned}$	$\begin{aligned} & -23 \leq \mathrm{h} \leq 32,-15 \\ & \leq \mathrm{k} \leq 16,-36 \leq \mathrm{l} \leq \\ & 29 \end{aligned}$
Reflections collected	16990	43429	33076	41758
Independent reflections	$\begin{aligned} & 8067[R(\mathrm{int})= \\ & 0.0270] \end{aligned}$	$\begin{aligned} & 17557[R(\text { int })= \\ & 0.0311] \end{aligned}$	17406 [$R(\mathrm{int}$) $=0.0463$]	$\begin{aligned} & 16766[R(\text { int })= \\ & 0.0283] \end{aligned}$
Completeness (to $2 \theta=25.242^{\circ}$)	99.9 \%	99.8 \%	99.8 \%	99.6 \%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.787	1.000 and 0.840	1.000 and 0.843	1.000 and 0.881
Refinement method	Full-matrix leastsquares on F^{2}			
Data / restraints / parameters	8067 / 6 / 386	17557 / 4 / 859	17406 / 12 / 838	16766 / 10 / 880
Goodness-of-fit on F^{2}	1.022	1.033	1.072	1.037
Final R indices [$I>2 \sigma(\mathrm{I})$]	$\begin{aligned} & R 1=0.0547, w R 2 \\ & =0.1321 \end{aligned}$	$\begin{aligned} & R 1=0.0426, w R 2 \\ & =0.0935 \end{aligned}$	$\begin{aligned} & R 1=0.0736, w R 2= \\ & 0.1908 \end{aligned}$	$\begin{aligned} & R 1=0.0388, w R 2 \\ & =0.0837 \end{aligned}$
$\begin{aligned} & R \text { indices (all } \\ & \text { data) } \end{aligned}$	$\begin{aligned} & R 1=0.0898, w R 2 \\ & =0.1537 \end{aligned}$	$\begin{aligned} & R 1=0.0727, w R 2 \\ & =0.1075 \end{aligned}$	$\begin{aligned} & R 1=0.1248, w R 2= \\ & 0.2288 \end{aligned}$	$\begin{aligned} & R 1=0.0547, w R 2 \\ & =0.0914 \end{aligned}$
Largest diff. peak and hole	$\begin{aligned} & 0.849 \text { and }-0.658 \\ & \text { e. } \AA^{-3} \end{aligned}$	0.468 and -0.381 e. \AA^{-3}	1.099 and -0.605 e. \AA^{-3}	0.728 and -0.463 e. \AA^{-3}

...Table 3 (cont).

Identification code	2d	2e	2f
Empirical formula	$\mathrm{C}_{178} \mathrm{H}_{183} \mathrm{Cl}_{6} \mathrm{Cu}_{12} \mathrm{~N}_{17} \mathrm{O}_{33}$	$\mathrm{C}_{72} \mathrm{H}_{88} \mathrm{Cl}_{2} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{11}$	$\mathrm{C}_{350} \mathrm{H}_{183} \mathrm{Cu}_{16} \mathrm{~N}_{31} \mathrm{O}_{44}$
Formula weight	4063.58	1510.52	6764.65
Temperature	$293(2) \mathrm{K}$	$293(2) \mathrm{K}$	$150(2) \mathrm{K}$
Wavelength	$0.71073 \AA$	$0.71073 \AA$	$0.71073 \AA$

12|Journal Name, [year], [vol], oo-oo

Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C2/c	$P 2_{1}$
Unit cell dimensions	$\begin{aligned} & a=65.736(3) \AA \\ & b=13.0482(4) \AA \\ & c=22.1089(5) \AA \\ & \alpha=90^{\circ} \\ & \beta=98.395(2)^{\circ} \\ & \gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & a=28.827(2) \AA \\ & b=28.771(3) \AA \\ & c=22.942(2) \AA \\ & \alpha=90^{\circ} . \\ & \beta=120.445(11)^{\circ} . \\ & \gamma=90^{\circ} . \end{aligned}$	$\begin{aligned} & a=14.2390(6) \AA \\ & b=51.092(2) \AA \\ & c=14.3358(5) \AA \\ & \alpha=90^{\circ} \\ & \beta=118.806(3) \\ & \gamma=90^{\circ} \end{aligned}$
Volume	18760.4(11) \AA^{3}	16405(3) \AA^{3}	9138.7(7) \AA^{3}
Z	4	8	1
Density (calculated)	$1.439 \mathrm{Mg} / \mathrm{m}^{3}$	$1.223 \mathrm{Mg} / \mathrm{m}^{3}$	$1.229 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.488 \mathrm{~mm}^{-1}$	$1.141 \mathrm{~mm}^{-1}$	$0.976 \mathrm{~mm}^{-1}$
$F(000)$	8336	6288	3536
Crystal size	$0.35 \times 0.30 \times 0.25 \mathrm{~mm}^{3}$	$0.20 \times 0.15 \times 0.15 \mathrm{~mm}^{3}$	$0.42 \times 0.38 \times 0.32 \mathrm{~mm}^{3}$
Theta range for data collection	2.896 to 29.172°.	3.009 to 25.601°.	1.594 to 25.285°.
Index ranges	$\begin{aligned} & -55 \leq \mathrm{h} \leq 87,-16 \leq \mathrm{k} \leq \\ & 16,-27 \leq 1 \leq 25 \end{aligned}$	$\begin{aligned} & -35 \leq \mathrm{h} \leq 34,-34 \leq \mathrm{k} \leq 31, \\ & -27 \leq 1 \leq 24 \end{aligned}$	$\begin{aligned} & -17 \leq \mathrm{h} \leq 17,-58 \leq \mathrm{k} \leq 61,- \\ & 15 \leq \mathrm{l} \leq 17 \end{aligned}$
Reflections collected	50651	35204	48175
Independent reflections	20415 [R (int) = 0.0369]	15360 [R (int) = 0.0497]	27844 [$R(\mathrm{int}$) $=0.1154]$
$\begin{aligned} & \text { Completeness (to } 2 \theta= \\ & 25.242^{\circ} \text {) } \end{aligned}$	98.7 \% (25.242 ${ }^{\circ}$)	99.5 \%	98.9 \% (25.242 ${ }^{\circ}$)
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Empirical
Max. and min. transmission	1.000 and 0.628	1.000 and 0.404	1.000 and 0.721
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	20415 / 27 / 1126	15360 / 0 / 838	27844 / 36 / 1980
Goodness-of-fit on F^{2}	1.050	1.038	0.874
Final R indices [$I>2 \sigma(\mathrm{I})$]	$\begin{aligned} & R 1=0.0497, w R 2= \\ & 0.1175 \end{aligned}$	$\begin{aligned} & R 1=0.0643, w R 2= \\ & 0.1577 \end{aligned}$	$R 1=0.0777, w R 2=0.1991$
R indices (all data)	$\begin{aligned} & R 1=0.0734, w R 2= \\ & 0.1317 \end{aligned}$	$\begin{aligned} & R 1=0.1204, w R 2= \\ & 0.1951 \end{aligned}$	$R 1=0.1362, w R 2=0.2448$

Largest diff. peak and hole	0.918 and $-0.632 \mathrm{e} . \AA^{-3}$	0.681 and -0.580 e. \AA^{-3}	0.611 and $-1.187 \mathrm{e} . \AA^{-3}$

