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ABSTRACT: That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO3
precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic
polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While
investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by
transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single
crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the
nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long,
has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are
incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit
particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of
Mg2+ on CaCO3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more
polycrystalline, granular structures.
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■ INTRODUCTION

Soluble additives are widely used to control the precipitation of
crystals from solution, generating particles with defined sizes,
morphologies, polymorphs, orientations, or even mechanical
properties.1,2 In selecting or designing suitable additive
molecules for crystal-growth control, the macromolecules
used by nature to control the formation of biominerals such
as bones, teeth, and seashells have frequently been used as
inspiration.3−5 From the earliest studies of the biomacromo-
lecules extracted from CaCO3 biominerals, which are widely
investigated due to their abundance, it is recognized that these
are characteristically highly acidic, being rich in aspartic and
glutamic acid.6−14 Strategies for the control of crystallization
based on the use of small molecules and polymers function-

alized with negatively charged groups have, therefore, been
widely explored and have achieved considerable success.15 For
example, negatively charged Langmuir monolayers16,17 and self
assembled monolayers (SAMs)18,19 have been used to support
the oriented growth of calcite, whereas negatively charged small
molecules,20,21 polymers,22−26 and block copolymers27−29 have
supported the formation of many remarkable morphologies
including calcite microtrumpets, patterned CaCO3 thin films,
porous particles, strontium carbonate flowers,30 and barium
carbonate helices.31
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Some of the most dramatic morphological effects of soluble
additives are seen in the production of thin films and long fibers
of crystals such as calcium carbonate, barium carbonate, and
barium sulfate.31−34 This has principally been achieved using
the polymeric additives poly(aspartic acid) (PAsp), poly(acrylic
acid) (PAA),35−40 or carboxylate-rich copolymers,41−43 where
these molecules bear many similarities to the highly acidic
biomacromolecules implicated in the formation of biominerals.
The activity of these additives has either been related to their
ability to stabilize crystalline precursor particles and then to
direct their oriented assembly31,34 or to stabilize a so-called
PILP (polymer-induced liquid precursor)44 or amorphous
precursor phase.38,40,41 Accumulation of PILP droplets on a
substrate and their subsequent crystallization can generate thin
films, whereas aggregation at active sites has been proposed to
lead to fiber formation.32,33 Based on the knowledge that PILP
formation is due to a phase separation effect,45 which occurs
due to the interaction between the anionic polymer and the
calcium cations, we recently demonstrated that the same
principal could be applied to generate thin films and fibers of
CaCO3 using poly(allyamine hydrochloride) (PAH) as an
additive, where phase separation was now driven by the
interaction between the positively charged amine groups and
the anionic carbonate ions.46 Thus, PAH can have a significant
effect on the precipitation of calcium carbonate, whereas most
cationic small molecules are relatively ineffective in directing
CaCO3 growth, with a number of exceptions.
In this article, we build on these initial results to further

investigate the influence of PAH on calcium carbonate
precipitation, comparing and contrasting with the effects seen
for PAsp and PAA. The focus is placed on the effects of the
solution conditions on thin film and fiber formation, and for the
first time, extensive transmission electron microscopy (TEM)
and electron diffraction (ED) were used to characterize the
structures of the fibers, facilitated by their nanoscale widths.
Our results show that PAH is particularly effective in promoting
the growth of calcite fibers, which often reach lengths of over a
couple of hundred micrometers, and that these fibers typically
show single crystal type patterns under selected area electron
diffraction (SAED). The TEM analysis, in turn, provided
insight into the mechanisms of formation of the fibers,
suggesting a particle-mediated process. Finally, the additional
effects of magnesium ions on CaCO3 precipitation in the
presence of PAH were also studied. As well as generating
thinner and smoother CaCO3 films, addition of magnesium
ions to the PAH/CaCO3 system results in extensive fiber
formation at a significantly lower PAH concentration than in
Mg2+-free solutions, although it happens at the expense of good
single crystallinity.

■ EXPERIMENTAL SECTION
Calcium Carbonate Precipitation. Precipitation of

calcium carbonate was carried out in the presence of
poly(allylamine hydrochloride), [−CH2CH(CH2NH2·
HCl)−]n (PAH) (Mw 15 KDa Aldrich) using the ammonium
carbonate diffusion method47 under a wide range of polymer
and calcium concentrations. Solutions were prepared as follows:
PAH was added to a 10 mM or 1.5 mM CaCl2·2H2O solution
to give concentrations of between 1 μg mL−1 and 2 mg mL−1,
and 10 mL aliquots were placed in Petri dishes. Glass slides,
which had been previously cleaned with Piranha solution (70
vol % sulphuric acid, 30 vol % hydrogen peroxide), were used
as substrates and were placed upright in a Petri dish. The Petri

dish was then covered with Parafilm which had been pierced
four times with a needle, and it was placed in a sealed
desiccator. A Petri dish containing 5 g of ammonium carbonate,
covered with Parafilm that had been pierced four times with a
needle, was also placed in the desiccator. Crystallization was
then allowed to proceed over periods ranging from 3 h to 3
weeks. After crystallization, the glass slides were removed from
the reaction solution, washed with ethanol, and blown dry with
air. The influence of Mg2+ on the calcium carbonate
precipitation was also investigated by adding a 150 mM
solution of MgCl2·6H2O to the reaction solution to give a
[Ca2+]:[Mg2+] ratio of 1:1, 1:3, and 1:5. Finally, control
experiments were performed using identical procedures as
described above, but now in the absence of PAH.

Characterization of the Calcium Carbonate Precip-
itates. The calcium carbonate crystals precipitated on the glass
slides were investigated using a range of techniques including
Raman microscopy, field emission gun scanning electron
microscopy (FEG-SEM), transmission electron microscopy
(TEM), and polarized optical microscopy. Optical microscopy
was used to examine the morphologies of the precipitates, and
observation between crossed polarizers provided information
on their single crystal/polycrystalline/amorphous characters.
To provide detailed morphological information, FEG-SEM was
carried out using a LEO 1530 Gemini FEG-SEM operating at
3.00 kV with an in-lens detector. Samples were prepared by
placing the slides on SEM stubs with adhesive carbon pads and
then sputter-coating them with 10 nm Pt/Pd (80/20). Micro-
Raman spectroscopy and electron diffraction allowed determi-
nation of the polymorphs of CaCO3 present. Raman measure-
ments were performed using a Renishaw 2000 inVia-Raman
microscope equipped with a 785 nm diode laser as excitation
source. By focusing the laser onto the sample using a 50
(numerical aperture NA 0.75) objective, it was possible to
determine the structure of individual particles. TEM was used
to investigate the films and fibers at a spatial resolution of better
than 2 Å, and samples were prepared by placing a carbon-
coated, Formvar-covered Ni-grid in the reaction solution and
removing it at different time points. Grids were then washed
with ethanol and were left to dry. TEM was then performed
using a 200 kV FEI Tecnai TF20 FEG-TEM and a 200 kV
JEOL JEM2011 TEM. Diffraction patterns were obtained using
selected area electron diffraction (SAED) and were analyzed
using the JEMS software package.48 Kinematic simulation of
electron diffraction using this software package provided
information about relative lattice rotations as well as the
position of the Laue circle, which visualizes the magnitude and
direction of the lattice orientation changes. The angular spread
of diffraction spots were determined using the angle tool in
ImageJ software. The composition of the films and fibers were
determined using atomic absorption spectroscopy (AAS) and
thermogravimetric analysis (TGA), where crystals were
removed from the glass substrate using a cover slide. Early
stages of the reactions were investigated by isolating the
precipitate formed in a 3 h reaction solution ([Ca2+] = 10 mM,
[Mg2+] = 10 mM, [PAH] = 20 μg mL−1). The precipitate was
subsequently washed with ethanol and reisolated by centrifu-
gation followed by analysis with TGA and AAS. AAS was
carried out using a Perkin-Elmer Atomic Absorption Spec-
trometer, and TGA was performed with a TA Instruments,
SDT Q600 Simultaneous TGA/DSC operating with a 5 °C
min−1 heating rate under air.
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■ RESULTS
Calcium carbonate was precipitated on exposure of a [Ca2+] =
10 mM solution, containing PAH at concentrations between 5
μg mL−1 and 2 mg mL−1, to ammonium carbonate vapor for 1
day. Although the precipitation of calcite rhombohedra in the
presence of 5 μg mL−1 PAH indicated that the polymer had
little effect at this concentration, an increase in the amount of
PAH to 50 and 80 μg mL−1 led to the formation of calcite
particles with rounded surfaces that were capped with small
{104} faces (Figure 1a). Notably, unusual fibrous structures

were also seen to originate from the surface of the calcite
particles and propagate along the substrate (Figures 1a and b
and Supporting Information Figure S1). These fibers often
grew parallel to each other close to the parent crystal and then
became highly convoluted as they extended further away;
sudden changes of growth direction were also very common
(Figure 1a). Examination at higher magnification using SEM
suggested a nanoparticulate substructure and a few fibers were
terminated with a bulge/bobble at their tip (arrowed, Figure
1b). TEM analysis of the wires also revealed a nanoparticulate
substructure, and selected area diffraction of thinner fibers
yielded single crystal type patterns (Figure 1c). No preferred
growth direction was identified. Under these conditions, a small
number of crystalline film domains were also observed

(Supporting Information Figure S2a), which comprised a
mixture of single crystalline calcite and polycrystalline vaterite
as identified with Raman spectroscopy (Supporting Informa-
tion Figure S2b).
On increasing the concentration of PAH to 200 μg mL−1, the

rhombohedral shape of the particles was completely lost and
only spherical particles from which fibers grew were observed
(Supporting Information Figure S3). These fibers were much
longer than those that formed at lower PAH concentrations,
frequently resulting in lengths of 60 μm and aspect ratios of
200. A larger number of crystalline film domains were also
obtained under these conditions. A further increase in the PAH
concentration resulted in extensive crystalline thin film
coverage of the glass substrate, and fibers were also occasionally
observed but were often only a couple of micrometer long and
associated with polycrystalline films.46 Finally, at concentrations
of [PAH] = 2 mg mL−1, the polymer itself was deposited on the
glass slide together with small CaCO3 crystals (Supporting
Information Figure S4).
The influence of the Ca2+ concentration on calcium

carbonate precipitation in the presence of PAH was also
investigated. A reduction in the [Ca2+] to 1.5 mM ([PAH] =
0.5 mg mL−1) resulted in extensive fiber formation and virtually
no film formation; only very small domains of crystalline films
formed, which were always very rough and associated with
fibers. The data, therefore, reveals an inverse relationship
between the abundance of the thin films and fibers. Most of
these fibers appeared to originate from a central core (Figure
2a) and achieved typical lengths and aspect ratios of 120 μm
and 400, respectively, (Figure 2b inset). They varied
significantly in diameter along their length, ranging from
typical values of about 5 μm at their bases to a few nanometers
at their tips. This was accompanied by a considerable variation
in their morphologies, with both straight (Figure 2a) and bent
and branched fibers being observed (Figure 2c). A number also
abruptly changed direction, apparently at specific angles with
respect to the long axis of the fiber (Figure 2d), and
intergrowth was sometimes observed when they grew outward
in close proximity to each other (Figure 2a inset and 2c).
Subsequent variation in the PAH concentration at [Ca2+] = 1.5
mM revealed that fibers were present at a much wider range of
polymer concentrations than were at higher calcium levels, such
that distorted rhombohedra were formed at concentrations of
[PAH] = 1 μg mL−1, whereas short fibers were first noted at
[PAH] = 5 μg mL−1. Long fibers were generated at
concentrations of [PAH] = 50 μg mL−1, and polymer-coated
fibers were observed at high concentrations of [PAH] = 2 mg
mL−1.
Though a number of articles have described the formation of

CaCO3 fibers in the presence of polymers,32,41 the fibers
formed have generally been too thick to enable detailed
structural analysis by TEM. With their nanometer-scale
thicknesses, the fibers formed in the presence of PAH are
ideally suited to such a study. Fibers precipitated under the
conditions [Ca2+] = 10 mM and [PAH] = 1 mg mL−1 were
investigated using HR-TEM and selected area diffraction, where
patterns were recorded along the fibers at separations of ≈100
nm. The majority of fibers show continuity in the crystal lattice
and yield single crystal-type diffraction patterns (Figure 3a). No
preferential crystallographic orientation was observed with
respect to their long axes. Some areas are observed, however,
where the fibers comprise well-defined 5−10 nm nanoparticles,

Figure 1. Calcium carbonate precipitated after 3 days from solutions
of composition [Ca2+] = 10 mM and [PAH] = 80 μg mL−1. (a) Calcite
rhombohedron with rounded faces and associated fibers. (b) A higher
magnification image of fibers, where a “bobble” at the end of a fiber is
arrowed. (c) TEM image and corresponding single crystal electron
diffraction pattern of a calcite fiber.
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and diffraction patterns indicate a number of crystal
orientations (Figure 3b).
A typical analysis of a bent fiber that changes its

morphological orientation by more than 30° over a length of
0.6 μm is shown in Figure 4. The red (Laue) circles shown are
the intersection of the Ewald sphere with the reciprocal lattice.
If the lattice (crystal) is rotated off a low-index zone axis, the
Laue circle is also shifted off-center, where the distance between
the Laue circle center and the zero reflection is directly related
to the tilt angle. The tilt angle for the sample can then be
determined by comparison of the experimentally observed and
simulated diffraction patterns, for which a crystal tilt is assumed.
Interestingly, this analysis was used to demonstrate that the
observed morphological distortion does not correspond to a
distortion at the crystallographic level, with diffraction patterns
recorded along the 0.6 μm length rotating by only 2.6° around
an axis parallel to the electron beam. The changes in the
intensity distribution in this set of diffraction patterns indicate

lattice rotations around axes not parallel to the zone axis
direction, although these are again small (≈5°, obtained from
kinematic SAED pattern simulations) as compared to the
physical change in orientation of the fiber. The angular spread
of diffraction spots is found to be in the range of 8−20°, which
is indicative of a high degree of alignment of the nanocrystalline
domains over larger regions. However, dramatic changes of the
nanocrystallite orientation are observed at some positions along
fibers.
A similar example of this behavior is shown by the fiber given

in Supporting Information Figure S5, where the zone axis
changes in orientation from close to [0 1 0] to [−2 8 −1] over
a length of 300 nm, before switching to the original orientation
again. This transition is related to a rotation around an axis
parallel to the normal of the (−1 0 2) plane. The angle between
these two zone axes is over 23°, showing that the crystal lattice
changes its orientation dramatically. Interestingly, the growth
direction of the fiber before and after the [−2 8 −1] section are
identical, as evidenced by the absence of rotation in the
diffraction pattern. Finally, a fiber was analyzed which showed
sharp bends in its morphology (Figure 5). Here, the lattice is
rotating; the (104) reflection and, thus, the orientation of the
{104} planes remain unchanged while all other reflections
change. Hence, the rotation is around an axis parallel to the
normal of the (104) plane. Some change in the scattering
intensity is observed between the points of rapid directional
change, but these are much less than may be expected on the
basis of the morphological distortion.
Further information on the mechanism of formation of the

films and fibers was also obtained from time-dependent TEM
studies, where Ni TEM grids immersed in the reaction solution
were removed at intervals between 3 and 24 h. While small
patches of amorphous film were identified at early reaction
times, extensive coverage of the grid with an amorphous thin

Figure 2. SEM images of calcite fibers precipitated after 3 days from
solutions containing [Ca2+] = 1.5 mM and [PAH] = 0.5 mg mL−1. (a)
Fibers growing from a central core, where the inset shows two fibers
merging and an internal structure based on nanosized particles. (b)
Fibers with aspect ratios of up to 400, (c) a higher magnification image
showing straight and convoluted fibers and the formation of branches
(arrow) and (d) a fiber showing rapid changes in direction.

Figure 3. TEM image and corresponding electron diffraction pattern
(insets) of calcite fibers precipitated from reaction solutions containing
(a) [Ca2+] = 10 mM and [PAH] = 1 mg mL−1 showing sets of lattice
fringes (directions indicated by parallel lines) and (b) [Ca2+] = 10 mM
and [PAH] = 1 mg mL−1 showing the nanoparticulate substructure.
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film occurred after approximately 8 h (Figure 6a). Sample
extracted after 12 h, in contrast, had crystallized to calcite, and

small protrusions were beginning to be observed (Figure 6b).
With further incubation in solution to 14 h, the protrusions had

Figure 4. Dark field TEM image and electron diffraction patterns (recorded at the indicated positions) of a calcite fiber precipitated from a solution
of [Ca2+] = 10 mM and [PAH] = 1 mg mL−1. The red dots indicate simulated reflections belonging to the stated zone axis (ZA). The angles given in
the diffraction patterns at positions 2, 3, and 4 refer to the amount of tilting of the lattice around an axis of rotation perpendicular to the electron
beam. The magnitude and direction of the slight changes of the lattice orientation are illustrated by the red Laue circles.

Figure 5. Dark field TEM image and electron diffraction patterns (DPs, recorded at the indicated positions) of a calcite fiber precipitated from a
solution of [Ca2+] = 10 mM and [PAH] = 1 mg mL−1. The red dots indicate simulated reflections belonging to the stated zone axis (ZA). The angles
given in the DPs at positions 2−4 refer to the amount of rotation of the lattice around an axis of rotation perpendicular to the electron beam. The
slight deviation of lattice orientation from the zone axis orientation is illustrated by the Laue circle in DP 4.
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evolved into small fibers (Figure 6c), demonstrating that fibers
form after the films. Fully formed fibers were observed after 24
h (Figure 6d).
Previous studies with CaCO3 precipitation in the presence of

poly(aspartic acid) (PAsp) and poly(acrylic acid) (PAA) have
demonstrated that the formation of thin films (but not fibers)
can be promoted through addition of Mg2+ ions to the reaction
solution.49 Magnesium ions are a common component of
biogenic ACC,50,51 and they also retard the crystallization of
synthetic ACC such that thin films can form in the PAsp/
CaCO3 and PAA/CaCO3 systems at lower polymer concen-
trations than in Mg2+-free solutions.49,52 Addition of Mg2+ to
the PAH ([PAH] = 20 μg mL−1)/ CaCl2·2H2O reaction
solution at a concentration of [Ca2+] = [Mg2+] = 10 mM led to
the formation of ≈300 nm thick polycrystalline calcite films
(Figure 7) that covered the entire glass substrate. No fibers
were generated under these conditions. By comparison, [PAH]
= 0.5−1.0 mg mL−1 was required to generate analogous films in
the absence of magnesium. The films formed in the presence of
Mg2+ were also much smoother and thinner than those formed
with PAH alone46 (Figure 7b) and comprised only polycrystal-
line and amorphous domains; no single crystal domains were
observed. Demonstrating the stabilizing effect of magnesium
ions on ACC, these films were still only 30% crystalline after 3
days, as judged by examination with crossed polarizers in an
optical microscope (Figure 7a) and had reached 80%
crystallinity after 6 days.
Increase in the [Mg2+]:[Ca2+] ratio to 3−5 resulted in similar

films being generated at PAH concentrations as low as 2 μg
mL−1. The amorphous phase was also further stabilized under
these conditions such that they were estimated to be ≈10%
crystalline after 3 days under the conditions [Ca2+] = 10 mM,

[Mg2+] = 30 mM, and [PAH] = 2 μg mL−1. The composition
of the films was also investigated using atomic absorption
spectroscopy (AAS) and thermogravimetric analysis (TGA).
Data for a film grown under the conditions [Ca2+] = 10 mM,
[Mg2+] = 10 mM, and [PAH] = 20 μg mL−1 showed that it
comprised 2 wt % Mg2+ and 6.7 wt % of PAH after 3 h reaction
time, whereas after 3 weeks, when the film was approximately
80% crystalline, the composition was 2 wt % Mg2+ and 3.3 wt %
of PAH (Figure 8). Thus, the crystallization process was
accompanied by preservation of the Mg2+ content but a loss of
polymer from the film.
Although no fibers were generated under these conditions,

fiber formation was observed in the presence of Mg2+ when the
metal ion concentrations were reduced to between [Ca2+] =
[Mg2+] = 1.5−7.5 mM (Figure 9). The fibers formed under
these conditions were again calcite and had similar
morphologies to those formed in magnesium-free solutions.
However, analysis by TEM and EDX showed that they now
comprised both polycrystalline and single crystal domains and
that they contained Mg2+ (Figure 9 and Supporting
Information Figure S6).

■ DISCUSSION
Our results show that although cationic at the pH values of the
experiments, PAH has very similar effects on CaCO3
mineralization as the anionic PAA and PAsp, promoting the
formation of thin films and fibers, although higher concen-
trations of PAH are typically required to give similar effects. In
all cases, a phase separation occurs in the calcium carbonate
growth solution driven by the association of these polymers
with their oppositely charged counterions (Ca2+ for the anionic
polymers and carbonate for the cationic PAH).45,46,53,54

Droplets rich in polymer, calcium, and carbonate ions therefore
form, and subsequent calcium carbonate precipitation occurs at
a rate dependent on the binding strength of the polymer and
counterions.
A difference between these systems is, however, seen in the

effect of Mg2+ ions. Though very smooth, polycrystalline calcite
films are generated with both PAA/PAsp49 and PAH in the

Figure 6. TEM images and corresponding electron diffraction patterns
of calcium carbonate films and fibers precipitated from a reaction
solution containing [Ca2+] = 10 mM and [PAH] = 1 mg mL−1 after
(a) 8 h, (b) 12 h, (c) 14 h, and (d) 24 h. The film was still amorphous
after 8 h (a), whereas after 12 h, it had crystallized to calcite and small
protrusions were observed (b). These protrusions developed further
after 14 h (c) until fully developed calcite fibers are viewed after 24 h
(d).

Figure 7. Polycrystalline calcite thin films precipitated after 3 days
from a solution of composition [Ca2+] = 10 mM, [Mg2+] = 10 mM,
and [PAH] = 20 μg mL−1. (a) An optical micrograph and (b) SEM
image of a thin film deposited on a glass substrate, where the inset
shows the film to be ≈300 nm thick. The films are only partially
crystalline (≈30%) and show morphologically distinct areas (b).
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presence of Mg2+, compositional analysis showed that those
formed with the PAH comprised only 2% Mg2+, whereas
addition of PAA supported the formation of films containing up
to 26% Mg2+. This is likely to derive from the fact that the
anionic PAA/PAsp will bind strongly to Mg2+ ions, driving their
incorporation in the PILP phase, whereas association of the
cationic PAH with Mg2+ ions is weaker, only occurring due to
carbonate ions present in the phase-separated material.
Notably, fiber formation still occurs when Mg2+ ions are
present in the PAH system, though no fibers form when
magnesium ions are present in the PAA/PAsp system. The
fibers formed in the former system are much more granular in
structure and show more polycrystallinity than those in Mg2+-
free solutions. This may derive from the well-known ability of
Mg2+ ions to poison the growth of calcite crystallites, which
then results in small crystal sizes.55,56

There has been much discussion about the mechanisms
underlying organic additive-directed fiber-formation in in-
organic systems. Microemulsions have proven extremely
effective in promoting the growth of fibers,57−60 and a range
of models have been proposed.61 It has been suggested that the
assembly of crystalline precursor particles may be driven by
preferential adsorption of the surfactant onto specific crystal
faces,60 although nanowires can also form via the assembly of
surfactant-coated amorphous particles. Considering the BaSO4
system, compelling early stage TEM analysis has shown that
although precursor nanoparticles are present adjacent to all
surfaces of the developing nanowires, propagation only occurs
when the amorphous nanoparticles add to the ends.59 This
provides clear evidence that a difference in the surfactant
assembly on the sides as compared with the ends of the
nanowires drives the directed assembly in this system.

A range of polymers have also been used to generate
inorganic fibers, and again mechanisms based on the assembly
of either crystalline or amorphous nanoparticles have been
suggested.38,61 The formation of helical BaCO3 fibers was
proposed to arise from the directed assembly of polymer
stabilized crystalline precursor particles.31 Here, anionic block
copolymers were proposed to preferentially adsorb onto
specific crystal faces, and the subsequent electrostatic
interaction between the nanoparticles causes 1D assembly.
Looking at the BaSO4 system, a detailed investigation of fiber-
formation in the presence of sodium polyacrylate demonstrated
the presence of amorphous precursor nanoparticles.38,62 It has
been suggested that these aggregate on the substrate prior to
crystallizing. Subsequent growth then occurs by the directed
assembly of crystalline nanoparticles, where this is driven by
preferential adsorption of the polymer to specific faces only.
The mechanisms described above are based on the directed

assembly of amorphous or crystalline nanoparticles. An
alternative mechanism has also been proposed32 on the basis
of the generation of PILP (polymer-induced liquid precursor)

Figure 8. Thermogravimetric analysis (TGA) data of precipitates
formed in a solution of composition [Ca2+] = 10 mM, [Mg2+] = 10,
mM and [PAH] = 20 μg mL−1 after (a) 3 h, when 6.7 wt % of PAH
was present, and (b) 3 weeks, when 3.3 wt % of PAH was present.

Figure 9. Images of CaCO3 thin films and fibers precipitated after 3
days from solutions of composition [Ca2+] = 1.5 mM, [Mg2+] = 1.5
mM, and [PAH] = 0.5 mg mL−1. (a) An optical image recorded under
crossed polarisers and an SEM image (inset) of a calcite film from
which fibers are growing. (b) A TEM image with corresponding
electron diffraction pattern of a calcite fiber, and a corresponding EDX
spectrum showing the presence of Mg2+ within the fibers.
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droplets during precipitation of CaCO3 in the presence of PAA
or PAsp. Here, a SPS (solution precursor solid) mechanism was
proposed, where this is analogous to the vapor−liquid−solid
(VLS) and solution-liquid−solid (SLS) processes responsible
for the catalytic formation of nanowires.63,64 VLS and SLS
processes have been widely used to generate nanowires of
semiconductors and carbon nanotubes, where these rely on
delivery of the reagents from a fluid phase (gaseous, liquid, or
supercritical). Catalytic particles play a key role in nanowire
formation, reducing the activation energy for nucleation of the
product material at the catalyst/nanowire interface, driving axial
growth. Indeed SLS and VLS growth mechanisms are
frequently identified by the presence of a catalytic particle at
either the tip (float-growth mechanism) or base (root-growth
mechanism) of the nanowire.63,64 In the SPS process, PILP
droplets were suggested to provide a flux of reagents to the
fiber, where in the absence of any additional catalytic particles,
this process must be autocatalytic.
The absence of catalytic particles during CaCO3 nanowire

formation casts some doubt on the proposed SPS mechanism.
In subsequent work by the same authors investigating the
formation of SrCO3 and BaCO3 fibers in the presence of PAA,
a combination of aggregation-based and SPS mechanisms was
proposed.33 There, PILP droplets coalesced on a substrate to
form a thin film, and points of high energy were suggested to
provide seeds for fiber growth. PILP droplets could then
continue to preferentially adsorb at these sites, leading to one-
dimensional growth. Under conditions where the tip remains as
a liquid-like droplet, it could follow the SPS mechanism and
lead to more homogeneous fibers, whereas rapid solidification
of the tip could lead to fibers with more granular textures.
Alternative studies have investigated fiber formation in the
presence of PAA40 and a carboxylated block copolymer41 and
also suggested that this proceeds via the attachment of
amorphous/PILP precursor particles to developing fibers,
although these did not invoke an SPS mechanism.
The results presented here and in our previous study with

PAH show that amorphous/PILP particles coalesce on the
substrate to form a thin film, which then crystallizes with time.
Fibers grow from this film at later stages of the reaction, again
fed by a supply of amorphous particles. As shown by our early
stage studies (Figure 6), the fibers form at active sites on the
substrate and initially grow as wide-base spines. This may be
driven by the intrinsic concentration gradients generated
around them, where the tip experiences a higher concentration
of reagents than the base.65 The growth then continues to give
high aspect ratio, narrow fibers. As the precursor particles are
amorphous and, therefore, isotropic in morphology and
physicochemical properties, simple aggregation would not be
expected to lead to a high anisotropic morphology. Instead, the
strong anisotropy of the fiber morphology must derive from the
fiber itself, such that the precursor particles can combine with
the fiber at its tip, but not at the sides. Such a mechanism was
observed for the formation of BaSO4 nanowires in micro-
emulsions59 and may derive from differences in the polymer
coating between the walls and tip.
Our detailed electron microscopy studies also provide insight

into the possible mechanisms of formation of the fibers. Fiber
surfaces vary from rough to smooth, depending on their size
and the reaction conditions, where the rough surfaces suggest a
particle-mediated growth mechanism. Although fibers primarily
diffract as single crystals (Figure 3a), detailed analysis using
selected area electron diffraction reveals imperfections. Further,

the platelet-type substructure observed by dark-field TEM
(Figure 4) indicates a competition between crystal growth and
defect formation. The dramatic bending and distortions
exhibited by the calcite nanofibers studied here is also indicative
of the presence of structural and surface defects, where these
can not only affect crystal growth rates but also have a
significant impact on the overall morphology of a nanostruc-
ture. Indeed, stacking faults were shown to be the primary
source of the bending and buckling observed in nanowires of
II−VI and GaN semiconductors,66−68 where in common with
our calcite nanofibers, these morphological changes occur
without a change in the orientation of the crystal lattice. The
beam sensitivity of the calcite crystals and the overall
convoluted structure of the fibers rendered it impossible to
study the atomic structure of the observed defects. However,
the diffraction pattern analyses clearly support the suggestion
that the changes in fiber orientation are most likely due to the
introduction of planar defects such as stacking faults.
Finally, some regions of polycrystallinity are often observed

in the calcite nanofibers, where these frequently occur in
combination with a well-defined nanoparticulate substructure
(Figure 3b). At 5−10 nm in size, these calcite nanoparticles are
far smaller than any that can be isolated from solution
precipitation, suggesting that they may develop during
crystallization of an amorphous phase. That the original
orientation of a fiber is often regained after a zone of
polycrystallinity also demonstrates transfer of structural
information through this area. These variations in structure
may occur due to local differences in the amounts of polymer
extruded from the mineral during crystallization, which may
even generate local areas of amorphous calcium carbonate that
are too rich in polymer to crystallize.69

■ CONCLUSIONS
These experiments demonstrate that poly(allylamine hydro-
chloride) (PAH) is extremely effective in directing the
formation of CaCO3 thin films and fibers, where the extent
of fiber formation depends on the reaction conditions. That
such dramatic changes in crystal morphologies and structures
can be achieved with a positively charged additive runs counter
to the wealth of literature that focuses on the use of negatively
charged additives to control CaCO3 crystallization.1,46 How-
ever, it is stressed that the effect of PAH is due to a carbonate
ion induced phase separation of PAH, rather than direct
interaction with the growing crystal. Analysis of the structures
of the fibers and their formation mechanisms suggests that they
form by a particle-mediated aggregation mechanism, where
amorphous, polymer-stabilized particles add to the tips of
developing fibers and subsequently crystallize. The integration
of new material uniquely at the fiber tips indicates a significant
difference in structure between the fiber walls and tips and may
derive from a polymer coating on the fiber walls. These
suggestions are also supported by structural analyses of the
fibers, which show that although these often exhibit highly
convoluted morphologies, the physical distortions are not
paralleled by changes in the lattice. Finally, we demonstrate that
magnesium ions can be used to further tune the formation of
CaCO3 in the presence of PAH, generating smoother and
thinner thin films and fibers with a more granular and
polycrystalline texture. In summary, although templating
methods can be used to generate single crystal CaCO3
fibers70−72such that the morphology and size is precisely
defined by the templatethe use of additives offers many
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advantages such as experimental simplicity and facile scale-up.
The ultimate exploitation of these to control structure and
morphology in a predictable fashion, therefore, requires greater
understanding of the mechanisms by which additives such as
PAH control crystal nucleation and growth.
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