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We describe two alternative methods for surface functionalisation of Saccharomyces cerevisiae cells with 5 

cyclodextrin molecules without affecting the cell viability. The first strategy involved using 

epichlorohydrin as a cross-linking agent which binds covalently the cyclodextrin to the glycoproteins on 

the cell wall. The second strategy of interfacing of the cells with CD involved polyelectrolyte mediated 

deposition of cyclodextrin sulphate on the cell surface. We used the formation of host-guest inclusion 

complex of a dye with the grafted cyclodextrins to estimate the average number of CD molecules grafted 10 

per cell which can reach up to hundreds of millions of CD molecules. This indicates more than one 

monolayer of CDs on the cell surface within the surface layer surrounding the yeast cell membrane. 

Fluorescein diacetate was used to check the viability of the cells after functionalisation. Living cells 

functionalised with CDs may find many potential applications as they can be loaded with drugs, 

immunosuppressants and other molecules forming inclusion complexes with their cyclodextrin interface. 15 

Therefore, we foresee such cells being used as novel selective biosorbents in polluted waters, whole cell 

biosensors, drug delivery, cell therapy and cell implants applications.   

Introduction 

Interfacing living cells with nanoparticles and polymers is an 

emerging new field1-4 which brings together microbiology, surface 20 

chemistry, and physical chemistry of colloids. The modified cells 

can perform novel functions due to their different interface with 

the external media. Such “cyborg cells”1a have been created by 

using a variety of living cells species, ranging from microbial cells 

(bacteria,1b algae2 and fungi3,4), multi-cellular organisms5 25 

(nematode) to mammalian cells for a wide range of possible new 

applications. Many native cells bear negative surface charge due to 

dissociation of surface carboxylic groups originating from 

carbohydrates or proteins. This has been utilised in a range of cell 

functionalisation techniques based on the Layer-by-Layer (LbL) 30 

deposition of oppositely multi-charged species such as poly-

electrolytes,6 magnetic particles,7,8 colloidal particles,9 metal 

nanoparticles6,10 and oligonucleotides. Cyborg cells produced 

using the LbL method have been used in whole-cell biosensors, 

toxicity micro-screening devices11 and cell-based therapies12 while 35 

non-viable cells have been used in areas such as biosorbents13,14 

biocatalysts and microelectronics.4 For example, magnetically-

functionalised yeast cells were shown to effectively absorb heavy 

metal ions as well as industrial dyes.15 While cyborg cells 

interfaced with a variety of nanoparticles and polymers1-10 have 40 

already been fabricated, the surface functionalisation of living cells 

with cyclodextrins (CDs) has not yet been reported. Cyclodextrins 

are derived from starch by enzymatic reactions16-19 and are used as 

molecular containers in a range of pharmaceutical formulations20, 

21, drug delivery applications22-25, food26, 27, flavours28, 29 and 45 

consumer personal care products30. Cells functionalised with 

cyclodextrins may find many exciting new applications as living 

drug carriers where the cyclodextrins grafted on the cell surface 

can carry additional payload supplementing the cells own 

functions. For example, cyclodextrin functionalised cyborg cells 50 

can be loaded with immunosuppressants and used as cell implants. 

In addition, such cell can be used as whole cell biosensors and bio 

sorbents. However, grafting cyclodextrins to living cells can be a 

challenge as it requires aggressive reaction conditions which may 

adversely affect the cells viability. 55 

 Here we report for the first time a successful functionalisation 

of living yeast cells with three types of cyclodextrin (α-CD, β-CD 

and γ-CD). We developed two alternative strategies for interfacing 

cells with cyclodextrin. The first one involves using 

epichlorohydrin (EP) as a cross-linking agent as shown 60 

schematically in Scheme 1. This method does not significantly 

impact the cells viability and involves the following stages: (i) The 

cells are incubated in aqueous solution of cyclodextrin. (ii) 

Epichlohydrin is added to the cell dispersion which grafts the 

cyclodextrin molecules to the cells surface. (iii) The cyclodextrin-65 

functionalised cells are filtrated from the solution. The advantage 

of using EP as a cross-linker for CD is that the reaction can be 
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carried out at room temperature at low EP concentration which 

preserves the cells viability. We have applied this method to 

functionalise yeast cells with cyclodextrins as a proof of principle.  

 
Scheme 1 (A) Cross-linking reactions of living cells with cyclodextrins 5 

(CDs) and epichlorohydrin (EP). (B) Fabrication steps of living CD-

functionalised cyborg cells loaded with drugs or immunosuppressant. 

In addition, we employed a second strategy which involves the 

layer-by-layer deposition of cationic polyelectrolyte and β-CD 

sulphate on yeast cells and assessed the effect of the number coats 10 

on the cell viability. With discuss both methods in details below. 

Materials and Methods 

Materials 

Alpha cyclodextrin (α-CD), beta cyclodextrin (β-CD), gamma 

cyclodextrin (γ-CD), β-cyclodextrin sulphate sodium salt, 15 

Epichlorohydrin (EP), Fluorescein Diacetate (FdA31), 

polyallylamine hydrochloride (PAH, MW 58 kDa) all of 98 % 

purity were purchased from Sigma (UK) and were used without 

further purification. Methyl Orange (MO, grade Reag. Ph. Eur.) 

was sourced from Sigma (UK). Deionised water was used in all 20 

experiments, obtained by using a Milli-Q water system. Baker’s 

dry yeast was purchased from TESCO (UK).  

Functionalisation of yeast cells with cyclodextrins using 

epichlohydrin as a cross-linker 

The yeast cells were pre-washed several times with Milli-Q water 25 

prior to their functionalisation. The cross-linking reaction was 

carried out by using a fixed amount of yeast cells (~0.5 g) while 

the concentration of cyclodextrin (α-CD, -CD or -CD, from 

Sigma) in the reaction mixture was varied from 0 to 0.4 % m/v. For 

each particular sample, a fixed amount of CD was dissolved in 5 30 

mL milli-Q water followed by addition of the cells and 

homogenisation with a magnetic stirrer. The CDs were grafted 

onto the cells surface by adding 2 µL of EP to each sample 

including the control one (without CD). After incubation (with 

stirring) in the reaction mixture at room temperature for 24 hrs the 35 

cell samples were centrifuged (3000 rpm for 5 minutes) and 

washed first with milli-Q water and several times with 2 mM 

phosphate buffer solution at pH 7. The functionalisation of yeast 

cells with cyclodextrins using epichlorohydrin as a cross-linker 

was carried out under buffered condition using sodium hydrogen 40 

phosphate buffer solution at pH 7. Hence pH does not change in 

the course of the reaction. Epichlorohydrin is potentially toxic for 

the cells at moderate and high concentrations34 therefore a very 

small amount was used to reduce its cytotoxic effects on the cells 

so that the functionalized cells retained their viability after 45 

functionalisation. This protocol was performed for yeast incubated 

with both -CD, β-CD and γ-CD. To demonstrate the success of 

this procedure in grafting cyclodextrin to the surface of the yeast 

cells, we used the ability of the cyclodextrins to form host-guest 

non-covalent inclusion complexes. A sample of 75 mg of each 50 

batch of CD- functionalised yeast cells was incubated in a stock 

solution of 60 µM Methyl Orange in 2 mM phosphate buffer at pH 

7 for 60 minutes under agitation. Subsequently, the cells were 

centrifuged and the supernatant was collected through 0.2 µm 

Whatman Anotop syringe filter. The MO concentration in the 55 

filtrates was measured spectroscopically by using standard 

calibration curves from a series of MO solutions at the same pH 7 

phosphate buffer concentration. 

UV-Vis spectroscopy  

UV-vis spectroscopy was used to quantitatively analyse the 60 

formation of host-guest complex between MO and the 

cyclodextrins attached covalently to the yeast cell surfaces. A 

series of standard aqueous solutions of MO in 2 mM sodium 

phosphate buffer at pH 7 were prepared in 25 mL volumetric flasks 

and their absorbance spectra from 600 nm to 200 nm were 65 

measured by double beam Perkin Elmer UV-vis spectrometer Bio 

Lambda 40 using UV Winlab software. From these spectra, 

calibration curves were produced by plotting the absorbance at λmax 

=460 nm against the MO concentration of a given standard 

aqueous solution. 2 mM of aqueous solution of sodium phosphate 70 

buffer (pH 7) was used as a base line of the absorbance in the UV-

vis instrument. The absorbance spectra of 60 µM MO filtrates that 

were used to incubate α-CD, β-CD or γ-CD functionalised yeast 

cells were also obtained by scanning the absorbance vs. the 

wavelength to find out how the absorbance at λmax was affected by 75 

the formation of MO-CD inclusion complex on the cells surface. 

The amount of MO that formed inclusion complexes with α-CD, 

β-CD or γ-CD molecules was calculated using the calibration 

curve of the absorbance (at 460 nm) of aqueous standard solutions 

of MO. From the MO concentration in the filtrate of solution 80 

exposed to the same mass of CD-functionalised cells and a control 

experiment with non-functionalised yeast cells, the number of 

cyclodextrin per yeast cell was estimated using the equation 
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where nc is the number of β-CD per cell, Cr is the MO residual 85 

concentration (in M) after filtering out the yeast cells (for the β-CD 

non treated) and Cβ is the equivalent concentration of MO after 

filtrating the β-CD-treated cells. The concentration difference in 

Eq.(1) reflects the amount of MO retained in the MO-CD inclusion 

complexes on the cell surface. Here Vs is the volume of the MO 90 

stock solution (60 µM) incubating the sample of cells of mass m, 

NA is Avogadro’s number, ρc is cell density and dc is the average 

cell diameter. 
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Fig. 1 Absorbance of the filtrate of MO solution after incubation with cell 

functionalised with CDs at different concentration in the reaction mixture 

at 5 mM EP. Results are presented with cells functionalised with (A) α-CD, 

(B) β-CD, (C) γ-CD. The graphs also give the absorbance of the filtrate 5 

from the control experiment with cells which were not treated with CD and 

the stock solution of MO. The red arrows show the decrease in MO 

absorbance as CD concentration is increased. 

 

In this estimate, we assume that the cells are spherical and that each 10 

grafted CD molecule on the cells surface captures one MO 

molecule from the stock solution. 

Viability test of the yeast cells 

The viability of the cells after the functionalisation was assessed 

by using fluorescence microscopy. This was done by incubating a 15 

small amount of washed functionalised yeast cells in Fluorescein 

Diacetate (FdA) solution for 10 minutes. The samples were 

covered with aluminium foil to reduce photo-bleaching and after 

10 minutes the samples were washed multiple times with milli-Q 

water and analysed with Olympus BX-51 fluorescence microscope 20 

using mercury vapour lamp as a light source and Olympus Burner 

U-RFL-T-200 for mercury vapour excitation. The yeast cells were 

irradiated with blue light (435 nm) using FITC filters sets. The 

viability test compares the number of fluorescing cells and non-

fluorescing cells in a given sample on the microscope glass slide. 25 

Thus counting of the fluorescing and the non-fluorescing cells was 

done by overlaying images from fluorescence microscopy and 

brightfield optical microscopy of the same field of view of the 

sample on the microscope glass slide and then counting the 

fluorescing cells out of that total number of cells. In Figure 6 we 30 

present the viability percentage calculated for the control and the 

CD-functionalised cells in the overlaid images. 

Influence of the epichlorohydrin on the number of cyclodextrin 
grafted on the yeast cells 

This was investigated using β-CD and carried out by keeping the 35 

mass of yeast cells and mass of cyclodextrins fixed but varying the 

amount of the EP in the reaction mixtures. The influence of varying 

EP concentration on the uptake of methyl orange by the non-

functionalised cells was done by running control experiments 

where the amount of yeast cells was the same but there was no 40 

cyclodextrin in the reaction mixture. EP may cause cell-cell 

binding which would manifest itself as a cell aggregation. 

However, we did not observe significant cell aggregation by 

studying the cells under optical microscope which suggested that 

the reaction was mostly confined to CD-cell surface binding. We 45 

attribute this to the moderately low cell concentration in the 

reaction mixture and the stirring of the solution during the cross-

linking reaction. 

Functionalisation of yeast cells using Layer-by-Layer 
sequential deposition of PAH and β-cyclodextrin sulphate 50 

Yeast cells were first subjected to a cycle of washing with milli-Q 

water/centrifugation (4 times) to remove any impurities. The 

functionalisation was carried out by sequential deposition of PAH 

and β-CD sulphate. In this procedure, as sample of 0.4 g of yeast 

cells dispersed in 3 mL of milli-Q water was first delivered by a 55 

SP100i syringe pump (Flow rate 6 mL/h) to a stirred (250 rpm) 3 

mL of 1 mg/mL aqueous solution of PAH. The excess PAH after 

the deposition step was rinsed 4 times with milli-Q water through 

a cycle of centrifugation (3000 rpm for 5 min) and decanting the 

supernatant. Then, the PAH pre-coated yeast cells were re-60 

dispersed in 3 mL milli-Q water and this then was delivered by a 

SP100i syringe pump (Flow rate 6 mL/h) to a stirred (250 rpm) 3 

mL of 1 mg/mL aqueous solution of β-cyclodextrin sulphate. The 

excess β-cyclodextrin sulphate after adsorption step was rinsed 4 

times with milli-Q-water through a cycle of centrifugation (3000 65 

rpm for 5 min) and decanting the supernatant) leaving a second 

layer of negatively charged β-CD sulphate on the yeast surface. 

The above procedure was repeated up to until 4 layers of PAH--

CD sulphate were produced. Some variations in the concentrations 

of both PAH and β-CD sulphate were introduced (2 and 3 mg/mL) 70 

while keeping all other parameters constant. The aqueous phase 

was modified by using 1M NaCl. 
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Fig. 2 (a) Number of CD molecules grafted per cell as a function of the 

concentration of CD (α,  and γ) in the reaction mixture at fixed EP 

concentration (5 mM). (b) Effect of the EP concentration on the number of 

CDs grafted per cell at fixed CD concentration (0.4% m/v β-CD). 5 

Determination of the yeast cells average cell diameter 

The yeast cells size distribution was measured by laser diffraction 

using Malvern Mastersizer 2000 coupled to Hydro 2000sm 

dispersion unit. The instrument covered a particle size range of 20 

nm to 2000 µm. The background was set by running the 10 

measurement in milli-Q water without the sample. The samples 

were then added manually to a dispersion tank filled with milli-Q-

water and stirred at 330 rpm. The diluted samples were then 

pumped into the measurement cell of the Mastersizer. The cell size 

distribution was calculated from Fraunhofer’s model using water 15 

as a dispersant with refractive index of 1.33. The average of ten 

runs was taken as a representation of measured particle size 

distribution. 

Zeta potential measurements 

The functionalisation of yeast cells by consecutive deposition of 20 

PAH and β-CD sulphate was monitored by measuring the cells zeta 

potential. After each deposition, cells were washed by a cycle of 

centrifugation thrice and subsequently dispersed in milli-Q-water 

to dilute them. The zeta potential of the dispersed cells was 

measured using Malvern Zeta 3000HS with a flow-through sample 25 

cell. The average of 10 measurements was taken to represent the 

measured potential. 

 
Fig. 3 Cell viability test with fluorescein diacetate showing the cell 

fluorescence after functionalisation with β-CDs. (a) and (b) are the control 30 

sample (non-treated) in bright field and fluorescence microscopy with a 

FITC filter set. (c) and (d) are yeast cells functionalised with 0.1% m/v β-

CD in bright field and fluorescence microscopy, respectively while (e) and 

(f) show the yeast cells functionalised with 0.4% m/v β-CD. The 

concentration of the EP cross-linker used in both experiments was 0.6 mM. 35 

(g) Overlay of image E and F showing that above 80% of the cells retain 

their viability. 

Results and Discussion 

In this study, we have established two methods of functionalising 

living yeast cells with cyclodextrins molecules which allow active 40 

components to be encapsulated on the cell surface. The protocols 

involved in both cases are simple, preserve the cell viability and do 

not involve expensive equipment or chemicals.  

Functionalisation of living yeast cells with CDs using 
epichlorohydrin as cross-linker 45 

Scheme 1 shows only two of the possible reaction of cross-linking 

of CDs to the surface of cells. However, the opening of the epoxy 

ring of EP can also produce other side reactions of conjugation of 

CD in complex polymers.32  

Figure 1 shows the absorbance of the MO solution filtrates after 50 

incubation with a fixed amount of cells functionalised at constant 

amount of EP but varying concentration of various CDs in the 

reaction mixture.  
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Scheme 2 Schematic illustrating the sequential deposition of cationic polyelectrolyte (PAH) and β-CD sulphate to functionalise the cell surface with CD. 

 

One sees that the functionalisation of the cell with CD consistently 5 

lowered the peak absorbance of MO with the increase of the CD 

concentration in the reaction mixture. Note that the control sample 

(cells treated with EP without CDs) also lowered the peak 

absorbance of MO but to lower extent compared to cell samples 

cross-linked with CDs. This is related to the non-specific 10 

adsorption of MO on the cell surface layer. Since the binding 

constant of this type of dyes in the inclusion CD complex is very 

large17 and the MO concentration in the stock solution is high we 

can assume that all CD molecules on the cell surface host a MO 

molecule upon incubation. The binding constant of MO-α-CD is 15 

7300 mol-1dm3 while MO-β-CD has a value of 2700 mol-1dm3 for 

1:1 complexes according to studies done by Hamai and Handa.33 

From the material balance of the specifically adsorbed MO on the 

CDs grafted on the cell surface we estimated the number of CD 

molecules per cell using the Eq.(1). The average diameter of the 20 

yeast cells was 6 ±1 μm from the Mastersizer measurement. Note 

that the absorbance of MO in the filtrates varies for a series of cell 

samples functionalised with 

CD (-CD, -CD and -CD) at different concentrations in the 

reaction mixture and fixed concentration of EP. As expected, the 25 

depletion of the MO from the stock solution depends on the type 

of CD used for the cells functionalisation. This was not surprising 

because CDs have different cavity volumes which determined 

whether the incoming dye guest molecule formed a perfect fit, 

loose fit or it was too big to fit in the CD cavity. As seen in Figure 30 

1, comparing the cells functionalised with the same highest amount 

of CDs (~0.4 % g/mL) and incubated in MO at the same 

concentration, β-CD functionalised cells showed the lowest 

maximum absorbance. We observed a consistent increase in the 

number of CDs per cell with the increase of the CD concentration 35 

upon grafting (Figure 2a). This was consistent with our 

expectations since we were relying on the absorbance of the dyes 

i.e. the dye which “disappeared” from the solution must be trapped 

in the CD cavity hence as more and more dye molecules were 

trapped by CDs grafted on the cell few were left in the filtrate 40 

therefore giving low absorbance maximum. However, we found 

that the extent at which the maximum absorbance was lowered 

depended on the type of CD used. In Figure 2a, the number of CD 

molecules grafted per cell is not linearly dependent on CD 

concentration, especially at the γ-CD concentration of 0.2 % (m/v). 45 

There are two possible factors which may contribute to this non-

linearity of the attached -CD per cell and the -CD concentration: 

(i) The number of CD molecules grafted per cell was estimated 

using host-guest interactions between CD hydrophobic cavity and 

the methyl orange. These interactions are formed through non-50 

covalent bonds and depend on the perfect fit between the host and 

the guest molecules. Therefore there is a different dynamic 

equilibrium between the complex and free molecules, which could 

explain this observed non-linearity especially for γ-CD with the 

largest cavity which forms the least stable complex with methyl 55 

orange. (ii) The reactivity of the 6’-OH groups of the -CD can be 

different than those of -CD and -CD due to the higher 

conformational flexibility of the -CD molecule. 

 We studied the effect of the EP cross-linker concentration on the 

average number of CD molecules per cell by using a fixed amount 60 

(0.5 g) of yeast cells and β-CD at ~0.4 % g/mL while varying the 

EP concentration in the reaction mixture. Figure 2b shows that for 

β-CD functionalised cells, the increasing of the EP concentration 

lead to a sharp increase in the average number of CD molecules 

grafted per cell and a plateau was reached above 12 mM EP which 65 

was an indication of saturation of the binding sites for EP on the 

cell surface layer. However, it has been reported that the presence 

of EP in the solution may have cytotoxic effect on the exposed cells 

even at low and moderate EP concentration for a range of 

mammalian cells.34 70 

 We tested the viability of the CD-functionalised yeast cells by 

using Fluorescein Diacetate (FdA31). FdA is a non-ionic dye which 

diffuses through the cell membrane and can undergo hydrolysis by 

non-specific esterase to produce fluorescein molecule which 

accumulates inside the cells which can be detected by fluorescence 75 

microscopy.18 Upon treatment with FdA the yeast cells turn 

fluorescent if their cell membranes are intact and the enzymes in 

the cell interior are active. Our FdA test results show that most of 

the yeast cells exhibit green fluorescence which indicates that the 

cells retained their viability after functionalisation with CD in the 80 

presence of EP (Figure 3).  

Functionalisation of yeast cells by LbL deposition of PAH and 
β-cyclodextrin sulphate 

In addition to grafting CD molecules to the yeast cells using EP as 

a cross-linking agent, we exploited the availability of the negative 85 

surface charges present on the native yeast cells due to the 

ionization of polysaccharides making the cell wall. We used the 

negative charges of the yeast cells to anchor cationic 

polyelectrolyte (PAH) and deposit anionic β-CD sulphated sodium 

salt by LbL deposition. Scheme 2 shows the schematic for the LbL 90 
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functionalisation of yeast cells with β-CD sulphate. After 

deposition of each PAH/-CD sulphate layer on the yeast cells, the 

dispersion was washed by a cycle of re-dispersing in milli-Q water 

and centrifugation at 3000 rpm for 5 minutes (four times) to 

remove the excess polyelectrolyte. The presence of each deposited 5 

thin layer was assessed by measuring the zeta potential of the 

functionalised cells after washing and re-dispersing in milli-Q 

water. We also varied the concentrations of the polyelectrolytes 

from 1 mg/mL to 3 mg/mL. As can be seen from Figure 4, the 

success of the sequential build-up of the coatings from PAH and 10 

β-cyclodextrin sulphate was reflected in oscillation of the zeta 

potential of the coated cells. When PAH was the outer coat, the 

zeta potential increased (positive) compared to the non-coated 

yeast cells (negative). The PAH does not get internalised by the 

yeast cells due to the relatively thick (about 200 nm) cell wall 15 

consisting of glycoproteins and carbohydrates which surrounds the 

lipid membrane. The PAH coated cells were stable since the cells 

were washed by centrifugation and when observed under optical 

microscope, the cells still maintained their integrity and the zeta 

potential measurement showed that the PAH was on their surface 20 

as the potential was positive (+40 mV) while the non-coated 

cells are negatively charged (-20 mV). Note that when the β-CD 

sulphate was the outer layer, the measured zeta potential was more 

negative than the non-coated yeast cells. The reversal of zeta 

potential in the LbL deposition has been reported in many articles 25 

to confirm the deposition of oppositely charged polyelectrolytes 

(e.g. see Ref.2) For example, Hillberg and Tabrizian have shown 

the charge alternation with successive deposition of chitosan 

(polycation) and alginate (polyanion) to encapsulate E.coli.12 This 

result therefore was a confirmation of the functionalisation of yeast 30 

cells with modified β-CD. We observed that as the number of 

layers was increased, the zeta potential became slightly more 

negative as well as become more positive with increasing the 

layering. This shows that the cell’s surface becomes more charged 

with the increase the number of deposited layers and this trend was 35 

observed for all concentrations up to 4 layers. As indicated above 

epichlorohydrin is cytotoxic34 therefore the functionalisation of 

cells using epichlorohydrin as a cross-linker may be an issue for 

very sensitive cell cultures and invivo applications. This is why we 

also used the layer-by-layer method as alternative method for this 40 

situation. In addition the PAH in this procedure may also be 

replaced with more biocompatible polycations such as chitosan or 

branched polyethyleneimine (PEI 1.8k) for CD-functionalisation 

of more sensitive cell cultures and for safer invivo applications of 

the functionalised cells.  45 

The best results of LbL deposition were achieved at 2 mg/mL 

polyelectrolyte and 2 mg/mL β-CD sulphate concentrations. The 

thickness, strength and morphology of polyelectrolyte layers can 

be further tailored by altering the pH, the ionic strength and the 

poly-ion materials.35 We investigated the effect of the ionic 50 

strength by depositing the polyelectrolytes from solution of 1 mM 

NaCl. As can be seen in Figure 4, the sequential deposition of PAH 

and β-CD sulphate in the presence of 1 mM NaCl reduced very 

slightly the magnitude of the zeta potential which is attributed to 

the electrostatic screening. 55 

 
Fig. 4 Zeta potential change with the sequential deposition of PAH 

(polycation) and β-CD sulphate on the surface of viable yeast cells.  

 

 60 

Fig. 5 Micrographs showing the viability of yeast cells testes with FdA. 

Transmitted light for bare yeast cells (a) and (b) fluorescence micrographs 

for bare yeast cells while (c) and (d) show transmitted and fluorescence 

micrographs after the deposition of four consecutive layers of PAH and -

CD sulphate. 65 

The calculation of the number of CDs deposited on the cell surface 

by layer-by-layer assembly is challenging due to the presence of 

PAH between the CD layers as it also adsorbs methyl orange 

molecules electrostatically in addition to the ones bond to the CDs. 

However, we have shown using zeta potential measurement that 70 

the -CD sulphate molecules were deposited on the surface of the 

cells as shown by the cell surface charge reversal (see Figure 4). 

Cell viability of CD-functionalised cells by the LbL method 

 We monitored the viability of the cells after each deposition 

using FdA. Samples taken after each layer deposition were 75 

incubated in a solution by adding a drop of FdA solution (5 

mg/mL) dissolved in acetone. We observed that with the increase 

of the number of PAH/-CD sulphate layers, the fluorescence 

intensity of the cells decreased. After the fourth layer, the viability 

as tested with FdA visibly worsened and hence we only applied 80 

this LbL procedure up to four layers. One possible explanation for 

this result could be that the build up of CD molecules on the cell 

surface depletes the FdA which can lead to lower penetration in the 

cell interior. We also observed some partial aggregation in CD-

functionalised cells compared to the native ones. This was 85 

dependent on the way of introducing the cell into the 

polyelectrolyte solution and could be subject of further 
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optimisation to avoid formation of large aggregates. Figure 5 

shows the micrographs of the bare yeast cells and after the 

deposition of the fourth layer.  

 In practical applications, it could be a good idea to check the 

stability of the CD/PAH/cells in the presence of a serum. We will 5 

make such tests in future publications of results with CD-

functionalised cells for particular applications. However, even the 

present results indicate that the CD/PAH-coated cells are stable 

upon further coating with oppositely charged polyelectrolytes as 

presented in Figure 4. Thus, further treatment with PAH and -CD 10 

sulphate does not incur cell aggregation provided that the 

polyelectrolyte is in excess with respect to the cells. However, 

adding of small amount of polyelectrolyte of opposite charge to the 

cell suspension causes cell aggregation rather than charge reversal. 

Conclusions 15 

In summary, we produced a new type of living cyborg cells 

functionalised with three different types of CDs using 

epichlorohydrin as a cross-linking agent without affecting the cells 

viability. We used the formation of host-guest inclusion complex 

of Methyl Orange dye with the grafted CD to estimate the average 20 

number of CD molecules cross-linked per cell which can reach up 

to tens of millions. In addition, we employed the Layer-by-Layer 

deposition to functionalise living yeast cells with cationic 

polyelectrolyte and β-CD sulphate. Living cells functionalised 

with CDs may find many potential applications as they can be 25 

loaded with drugs, immunosuppressants and other molecules 

forming inclusion complexes with their cyclodextrin interface. 

Therefore, we foresee such cells being used as novel selective 

biosorbents in polluted waters, whole cell biosensors, drug 

delivery, cell therapy and cell implants applications. The 30 

cyclodextrin functionalized cells are not limited to having drugs on 

their surfaces. Such cells can also be used as biosorbents14 in 

polluted waters where they use cyclodextrins on their surfaces to 

extract the pollutants molecules of the right size from water 

depending on the cyclodextrin used. All other potential 35 

applications of these cells are based on utilizing the CDs on the cell 

surface as encapsulating sites. 
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