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Abstract
Oesophageal adenocarcinoma (OAC) is the sixth most common cause of cancer deaths

worldwide, and the 5-year survival rate for patients diagnosed with the disease is approxi-

mately 17%. The standard of care for locally advanced disease is neoadjuvant chemother-

apy or, more commonly, combined neoadjuvant chemoradiation therapy (neo-CRT) prior to

surgery. Unfortunately, ~60-70% of patients will fail to respond to neo-CRT. Therefore, the

identification of biomarkers indicative of patient response to treatment has significant clinical

implications in the stratification of patient treatment. Furthermore, understanding the molec-

ular mechanisms underpinning tumour response and resistance to neo-CRT will contribute

towards the identification of novel therapeutic targets for enhancing OAC sensitivity to CRT.

MicroRNAs (miRNA/miR) function to regulate gene and protein expression and play a

causal role in cancer development and progression. MiRNAs have also been identified as

modulators of key cellular pathways associated with resistance to CRT. Here, to identify

miRNAs associated with resistance to CRT, pre-treatment diagnostic biopsy specimens

from patients with OAC were analysed using miRNA-profiling arrays. In pre-treatment biop-

sies miR-330-5p was the most downregulated miRNA in patients who subsequently failed

to respond to neo-CRT. The role of miR-330 as a potential modulator of tumour response

and sensitivity to CRT in OAC was further investigated in vitro. Through vector-based over-

expression the E2F1/p-AKT survival pathway, as previously described, was confirmed as a

target of miR-330 regulation. However, miR-330-mediated alterations to the E2F1/p-AKT

pathway were insufficient to significantly alter cellular sensitivity to chemotherapy (cisplatin

and 5-flurouracil). In contrast, silencing of miR-330-5p enhanced, albeit subtly, cellular

resistance to clinically relevant doses of radiation. This study highlights the need for further

investigation into the potential of miR-330-5p as a predictive biomarker of patient sensitivity

to neo-CRT and as a novel therapeutic target for manipulating cellular sensitivity to neo-

CRT in patients with OAC.
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Introduction
Globally, oesophageal adenocarcinoma (OAC) is the sixth most common cause of cancer death
and is an epidemic in the West and developed world [1, 2]. Early diagnosis improves patient
prognosis, however, the disease is relatively asymptomatic in the early stages and the majority
of patients presenting with symptoms are diagnosed with advanced disease. The standard of
care for OAC patients in the UK is currently neoadjuvant chemotherapy followed by surgical
resection [3, 4]. Although surgery is generally successful for early stage disease, and mortality
rates are low, as most patients present with late stage disease surgery alone is not sufficient to
prevent disease recurrence in the long-term [5]. Patients typically receive a combination of
epirubicin, oxaliplatin (or cisplatin) and capecitabine (5-fluorouracil) prior to surgery, to
reduce locoregional recurrence and improve patient outcome [4, 6]. However, recent trials
have highlighted the benefits of neoadjuvant combined chemoradiation therapy (neo-CRT),
which is already the standard of care in most other European countries [4, 7]. Presently, there
are a number of on-going definitive trials directly comparing neoadjuvant chemotherapy ver-
sus combined chemoradiotherapy for OAC, such as the neo-AEGIS trial (clinicaltrials.gov
NCT01726452). This and other trials come as a result of previous reports suggesting that
patients who receive neo-CRT may be up to ten times more likely to achieve a complete patho-
logical response (pCR), compared to patients who receive only neoadjuvant chemotherapy [8,
9]. Of the patients who receive neo-CRT, 18–35% have a pCR, which is a proxy for improved
prognosis and a reported increase in 5-year survival rate up to 50–60% [10, 11]. Ongoing UK
clinical trials are in place to assess the use of neo-CRT as the future standard of care for UK
patients [6, 12].

Unfortunately, however, the majority of patients (~60–70%) do not respond to neo-CRT,
and the 5-year survival rate for OAC patients after treatment is 23% [13]. Consequently, the
patients who fail to respond to neo-CRT are subject to an aggressive treatment regimen from
which they gain little or no benefit. Additionally, in some cases the disease progresses during
the neo-CRT regimen, which reduces the success of surgery and adversely affects patient prog-
nosis [14, 15]. The identification of biomarkers, in a pre-treatment setting, which predict
patient response to neo-CRT could aid treatment stratification for patients at the point of diag-
nosis. Furthermore, novel therapeutics agents, targeting functional regulators associated with
response to treatment, could be exploited to enhance patient response to conventional CRT as
part of multimodal treatment regimens.

MicroRNAs (miRNA/miR) are a family of short non-coding RNA that repress the transla-
tion of mRNA targets [16]. Perfect Watson-Crick binding between the miRNA and its mRNA
target is not essential for regulation, therefore a single miRNA can potentially target thousands
of mRNA [17]. MiRNAs are predicted to regulate 30–60% of protein coding genes and are
essential regulators of normal cellular processes. Approximately 50% of miRNA genes are
located within cancer-associated genomic regions or chromosomal fragile sites, and are suscep-
tible to amplification, translocation or deletion [18]. There is global downregulation of miRNA
expression in cancer tissue compared to normal tissue, and dysregulated miRNA expression
plays a causal role in the development and progression of cancer [10]. Cancer associated miR-
NAs are referred to as ‘oncomirs’, and they may act as tumour suppressors or oncogenes [19].
The link between dysregulated miRNA expression and cancer has potential clinical applica-
tions, as miRNAs are promising cancer biomarkers and novel therapeutic targets. Furthermore,
miRNAs have been identified as predictors and modulators of chemo- and radiotherapy treat-
ment sensitivity in cancer [20, 21]. Advances in miRNA profiling techniques have identified
miRNA signatures predictive of treatment response by screening patient tissue samples [21].
Predictive miRNA signatures are promising clinical biomarkers, however, these miRNAs are
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also potential modulators of treatment response and hold greater promise as therapeutic tar-
gets. Therapeutic replacement or silencing of miRNAs that are known to modulate tumour
response could improve patient response to neo-CRT, and for OAC patients would have a sig-
nificant impact on outcome and survival. In this study the aim was to identify, and investigate,
the role of miRNAs that potentially modulate tumour response and sensitivity to chemo- and
radiotherapy in OAC.

Materials and Methods

Patients, treatment and histology
Ethical approval from the St. James’Hospital/The Adelaide and Meath Hospital Dublin Insti-
tutional Research Ethics Committee (Reference 2011/27/01), and written informed consent
from the patients, were obtained for this study. Pre-treatment diagnostic biopsy specimens
were obtained from patients with an operable oesophageal cancer. The specimens were stored
at -80°C in a biobank whilst the patients received neo-CRT and surgery. The neo-CRT treat-
ment regimen was administered as previously described [22, 23]. Surgical resection was per-
formed within 1 month of completing the neo-CRT regimen. The resected oesophagectomy
specimens were examined by a pathologist and assigned a tumour regression grade (TRG) on a
scale of 1–5, as previously described [24].

Tissue collection
Diagnostic endoscopic biopsies were taken by a qualified endoscopist prior to neo-CRT. Speci-
mens were stored in RNAlater (Ambion, UK) at 4°C for 24 h prior to long term storage at
-80°C in the biobank [22].

MiRNA profiling of patient tumour specimens
Total RNA was extracted from biopsy specimens and global miRNA (742) profiling arrays
were performed using Human mercury LNA Universal RT miRNA arrays (Exiqon, Denmark),
as previously described [22]. Analysis was performed using GenEx 5.0 software (MultiD Analy-
ses, Life Technologies, UK) [22].

Cell lines and cell culture
The OE33 and OE19 cell lines were purchased from the ECACC (Catalogue numbers;
96070808 and 96071721). Cells were cultured in RPMI 1640 (Lonza, Switzerland) medium
supplemented with 10% foetal bovine serum (Bio-Whittaker, Lonza, Switzerland), 1%
penicillin/streptomycin (Lonza, Switzerland) and 1% GlutaMAX (Invitrogen, UK) henceforth
referred to as complete medium. Cells were maintained in a 37°C incubator with 95% humidi-
fied air and 5% CO2.

Irradiation
X-ray irradiation was performed using an RS-2000 Pro biological research irradiator (Rad
Source Technologies, Georgia, USA) at a dose rate of 1.87 Gy/min.

Chemotherapy treatment
Solutions of cis-diamminedichloroplatinum (cisplatin) and 5-flurouracil (Fisher Scientific,
UK) were prepared in phosphate buffered saline (Fisher Scientific, UK) and DMSO (Sigma-
Aldrich, UK), respectively, and aliquoted stock solutions were stored at -20°C. Once thawed
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the stock solution was diluted in complete medium and applied to cells for 24 h. The IC50

doses for cisplatin and 5-FU were determined for the OE33 and OE19 cell lines. For the OE33
cell line 1 μM cisplatin and 12–15 μM 5-FU were used. For the OE19 cell line 3 μM cisplatin
and 20 μM 5-FU were used.

Plasmid transfection
The miRNA precursor plasmid (Catalogue number; PMIRH330PA-1) and miRZip plasmid
(Catalogue number; MZIP-330-5p-PA-1) (System Biosciences, California, USA) were trans-
fected into cells using Lipofectamine 2000 transfection reagent (Invitrogen, UK), as per the
manufacturer’s instructions. These plasmids contained a GFP reporter gene and transfection
efficiency was assessed by fluorescent microscopy (Olympus IX71, Hamburg, Germany) (S1
Fig.), GFPWestern blotting and qPCR analysis (S2 Fig.) of miR-330 expression. The miRZip
plasmids also contained the mammalian puromycin resistance gene, and stable cell lines were
established after treating transfected cells with 3 μg/mL puromycin (Sigma-Aldrich, UK) over
approximately 3 weeks. The miRNA precursor plasmids were employed for transient transfec-
tion, as these plasmids do not encode a mammalian selection marker. Appropriate vector
control plasmids were included in all experiments; these plasmids contained a scrambled non-
targeting sequence (Catalogue numbers; CD511B-1 and MZIP000-PA-1) (System Biosciences,
California, USA).

RNA extraction and quantitative PCR (qPCR)
Total RNA was extracted from cell pellets using an RNeasy mini kit (Qiagen, Netherlands).
RNA was quantified using a NanoDrop ND-1000 (Thermo Scientific, UK). Reverse transcrip-
tion was performed using 1 μg RNA and a QuantiTect RT kit (for mRNA) or a miScript RT kit
(for miRNA) (Qiagen, Netherlands). For the qPCR 20 ng cDNA template was used with a
QuantiTect SYBR Green PCR Kit (Qiagen, Netherlands) and QuantiTect Primer Assays for
E2F1 and B2M (Catalogue numbers; QT00016163 and QT00088935). Thermal cycling was
performed in a StepOnePlus Real Time PCR System (Applied Biosciences, UK) according to
the manufacturer recommendations for QuantiTect Primer Assays (Qiagen, Netherlands). Rel-
ative E2F1 mRNA expression was determined using the 2-ΔΔCt (Livak) method [25].

Western blotting
Protein was extracted from cell pellets using RIPA lysis buffer containing commercially pre-
pared protease and phosphatase inhibitors (Roche, UK). The BCA assay (Pierce, Thermo
Scientific, UK) was used to quantify protein content, and 50 μg of protein was loaded onto a
10 or 12% SDS-PAGE gels. Electrophoretically separated proteins were transferred onto PVDF
(Thermo Scientific, UK) using a wet transfer tank system (BioRad, UK). Following transfer
PVDF membranes were blocked with 5% non-fat milk TBST (0.1% Tween) solution. Blots
were probed for E2F1 (1:1000 dilution, KH95 mouse monoclonal, Santa Cruz Biotechnology,
Texas, USA), turboGFP (1:10000 dilution, mouse monoclonal, Origene, Rockville, Maryland,
USA) and the loading control β-actin (1:10000 dilution, AC-15 mouse monoclonal, Santa Cruz
Biotechnology, Texas, USA). Image Lab 3.0 software (BioRad, UK) was used for densitometric
analysis of western blots.

ELISA
The levels of phosphorylated Akt were measured in protein extracts using the DuoSet p-Akt
ELISA (R and D systems, UK). In a 96 well plate 100 μg protein was loaded per well and the
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samples were run in triplicate, according to the manufactures instructions (R and D Systems,
UK), and in conjunction with a standard curve.

Clonogenic survival assay
Cells were seeded into 6-well plates and allowed to adhere overnight. Treated cells were seeded
at a density of 1000 cells per well, and mock-treated cells were seeded at a density of 500 cells
per well. Cells were treated with IC50 doses of cisplatin or 5-FU for 24 h, or treated with 2 Gy
X-ray radiation. Post-treatment cells were incubated for 8–14 day to allow colonies to form.
Colonies were fixed and stained with crystal violet (70% methanol, 30% H2O, 0.1% w/v crystal
violet) for 1 h at room temperature, followed by destaining in H2O. Air-dried plates were
imaged and colonies were counted using a GelCount instrument (Oxford Optronics, UK). The
plating efficiencies and surviving fractions were calculated as previously described [26]. Colo-
nies that could not be accurately defined and counted using the GelCount were analysed by sol-
ubilising the crystal violet stain with a 1% SDS solution overnight at 37°C. The absorbance of
the resultant crystal violet solution was measured at 590 nm using a plate reader (Biotech
ELx800, UK).

Statistics
Data are presented as the mean ± standard error of the mean (SEM) and are representative of
at least three independent experiments. Statistical analysis was carried out using GraphPad
InStat v3. Specific statistical tests used are disclosed in the relevant figure legends. Differences
were considered to be statistically significant at p<0.05.

Results

MiR-330-5p expression is downregulated in oesophageal
adenocarcinoma patients who do not respond to neo-CRT
In OAC patients, to identify miRNAs differentially expressed between responders and non-
responders to neo-CRT, miRNA profiling arrays were used to analyse pre-treatment diagnostic
biopsies. Of the 18 biopsy specimens analysed, 8 patients were responders and 10 patients were
non-responders to neo-CRT. Following surgical resection the tissue removed was examined by
a pathologist and assigned a TRG on a scale of 1–5. Patients categorised as TRG 1 (complete
regression with no viable tumour cells evident) or TRG 2 (rare residual cancer cells) repre-
sented responders to CRT and TRG 4 (residual cancer outgrowing fibrosis) or TRG 5 (com-
plete absence of regressive changes) represented non-responders. Patients categorised as TRG
3 were excluded for the purpose of this study. The patient cohort characteristics are outlined in
Table 1. Of the 742 miRNA analysed in the array, 67 miRNAs were differentially expressed
between the biopsy specimens of responders and non-responders. MiR-330-5p was the most
differentially expressed miRNA between responders and non-responders, being significantly
downregulated in the tumours of non-responders (Fig 1A). The expression of miR-330-5p was
further assessed across the TRG groups; there was a significant downregulation in miR-330-5p
expression in the TRG 4 group compared to TRG 2 group (Fig 1B). The downregulated expres-
sion of miR-330-5p in pre-treatment biopsies from non-responders, indicates a potential role
in modulating targets and pathway associated with tumour response and sensitivity to the cyto-
toxic effects of CRT.
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MiR-330 regulates expression of the E2F1 protein and the levels of p-Akt
It has previously been demonstrated in prostate cancer that miR-330 acts as a tumour suppres-
sor by downregulating E2F1 protein expression and the cellular levels of p-Akt, thereby pro-
moting apoptosis of cancer cells [27]. The E2F1/p-Akt pathway has been well established to
promote cell survival by inhibiting pro-apoptotic proteins that induce cell death [27–29]. Fur-
thermore, increased levels of p-Akt are known to be induced in response to chemotherapeutics
and radiation to promote cell survival and evasion of cell death [30, 31]. Based on these previ-
ous observations, it was considered that the downregulated miR-330 expression observed in
the pre-treatment OAC biopsies from non-responders potentially induces the E2F1/p-Akt cell
survival pathway, thereby promoting tumour resistance to CRT.

To manipulate miR-330 expression in vitro, OAC cell lines were transfected with a miRNA
precursor construct encoding the miR-330 precursor sequence (for overexpression) or a plas-
mid encoding an anti-sense miR-330-5p sequence (for silencing). The overexpression plasmid
construct produces both miR-330-3p and miR-330-5p. Therefore, overexpression refers to a
general miR-330 overexpression, as it is not possible to discriminate between the contributions

Table 1. OAC patient cohort characteristics.

Patient demographics miRNA profiling arrays patient cohort (n = 18)

Gender Male 16

Female 2

Age (years)¹ 65 (37–75)

Tumour Differentiation Well 0

Moderate 8

Poor 10

Clinical TNM staging Tis 1

T1 0

T2 1

T3 16

T4 0

N0 7

N1 11

Mx 5

M0 13

Overall clinical TNM stage 0 0

I 0

IIa 6

IIb 2

III 10

IV 0

TRG 1 3

2 5

3 0

4 8

5 2

OAC, oesophageal adenocarcinoma; TNM, tumour-node-metastasis clinical staging classification; Tis,

carcinoma in situ; N0, lymph node negative; N1, lymph node positive; Mx, distant metastasis could not be

evaluated; M0, no distant metastasis; TRG, tumour regression grade.

¹Values are median (range)

doi:10.1371/journal.pone.0134180.t001
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of miR-330-3p and -5p in this model. In line with the previous findings in prostate, overexpres-
sion of miR-330 significantly downregulated E2F1 protein levels (Fig 2A and 2B), and subse-
quently the levels of p-Akt also decreased (Fig 3) [27]. These data also confirmed the biological
activity of the vector. Interestingly, E2F1 mRNA levels did not decrease with the overexpres-
sion of miR-330, suggesting that miR-330 represses post-transcriptional E2F1 mRNA transla-
tion, rather than degradation of the message (S3 Fig). The silencing vector encodes the
complementary antisense sequence to miR-330-5p, which was specifically downregulated in
the patient tumours. The antisense RNA produced by the plasmid binds specifically and irre-
versibly to endogenously expressed miR-330-5p in the cells. Silencing miR-330-5p did not alter
expression of the E2F1 protein (Fig 2C and 2D).

These data indicate that miR-330 regulates, at least partially, E2F1/pAkt in OAC. The over-
expression of miR-330 decreased E2F1 protein expression and p-Akt levels. In line with the
data from patients, this further suggests that miR-330 alterations may confer differential sensi-
tivity to CRT. Clonogenic survival assays were subsequently used to further investigate the role
of miR-330 as a modulator of cellular sensitivity to chemo- and radio-therapy.

MiR-330-5p silencing enhances cellular resistance to radiotherapy but
not chemotherapy
The expression levels of miR-330-5p were downregulated in patient tumours that failed to
respond to CRT. This indicates that miR-330-5p potentially contributes to treatment sensitivity
by modulating signalling pathways associated with response to cytotoxic damage induced by
CRT, such as the E2F1/p-Akt pathway. Therefore it was hypothesised that low miR-330-5p
expression in patient tumours prior to treatment might enhance resistance to CRT.

The overexpression of miR-330 (both -3p and -5p) did not enhance cellular sensitivity to
cisplatin or 5-FU at the selected time points and doses (Fig 4). Although alterations in E2F1

Fig 1. miR-330-5p expression in pre-treatment diagnostic OAC tumour biopsies from responders vs.
non-responders to neo-CRT. (A) MiR-330-5p expression is significantly lower in patients who do not
respond to neo-CRT (TRG 4 and 5) when compared with responders (TRG 1 and 2). The two outlier values in
the responder data set came from the two patients who were not clinical stage TNM T3. These two outlier
values were biopsy specimens derived from tumours graded Tis and T2. Analysis was performed using the
MannWhitney U-test; **p<0.01. (B) MiR-330-5p expression is significantly lower in patients with TRG 4
(non-responders) compared to patients with TRG 1 and 2 (responders). Analysis was performed using the
MannWhitney U-test; *p < 0.05. Data are presented as the mean ± SEM.

doi:10.1371/journal.pone.0134180.g001
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and p-Akt levels were observed with miR-330 overexpression, the negative regulation of this
pathway was not sufficient to alter chemosensitivity. The silencing of miR-330-5p is a more rel-
evant model of the downregulated expression observed in the non-responder patient biopsies,
and in the OE33 cell line and a second line, OE19, miR-330-5p silencing also did not alter cel-
lular sensitivity to cisplatin or 5-FU under the conditions tested (Fig 5A and 5B). While in the
OE19 cell line miR-330-5p silencing did not enhance radioresistance (Fig 5B), the OE33 cell
line was significantly more radioresistant with miR-330-5p silencing albeit marginally (OE33
miRZIP-VC 0.67 ± 0.05 vs. OE33 miRZIP-330-5p 0.74 ± 0.04 p = 0.02) (Fig 5A).

Discussion
Currently the standard of care for OAC patients involves neo-CRT followed by surgical resec-
tion. Unfortunately, the majority of patients do not respond to treatment and the pCR rate is

Fig 2. Alterations in E2F1 protein expression with miR-330 overexpression and silencing. Transient miR-330 overexpression (A andB) significantly
decreased E2F1 protein expression when compared to the miR-VC (vector control). Densitometry was used to analyse western blot images. Analysis was
performed using the one sample t-test; miR-VC 72 h vs. miR-330 72 h ***p < 0.001. Silencing miR-330-5p (miRZIP-330-5p) (C andD) did not alter E2F1
protein expression when compared to the miRZIP-VC (vector control). Data are presented as the mean ± SEM.

doi:10.1371/journal.pone.0134180.g002
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relatively low (25–30%) [10, 15]. The identification of biomarkers indicative of patient
response to neo-CRT could aid treatment stratification in the clinic. Pre-treatment biomarkers
indicative of likely therapeutic response could prevent patients who are unlikely to respond to
neo-CRT receiving intensive treatment regimens, from which they will gain no benefit [15].
This approach would be particularly beneficial to those patients whose disease progresses
throughout the neo-CRT regimen and for whom the delay to surgery adversely affects their
prognosis. Furthermore, understanding the molecular biology of CRT resistance will help
identify novel therapeutic targets as potential biological response modifiers altering tumour
response to neo-CRT.

Fig 3. MiR-330 overexpression induces a downregulation in the levels of p-Akt. Transient miR-330
overexpression induced a decrease in the levels of p-Akt, 72 h post-transfection, in concordance with a
decrease in E2F1 protein expression. Analysis was performed using one-way ANOVA and Tukey post-test;
*p < 0.05. Data are presented as the mean ± SEM.

doi:10.1371/journal.pone.0134180.g003

Fig 4. miR-330 overexpression does not alter chemosensitivity. The clonogenic survival assay was used
to assess alterations in cellular sensitivity to cisplatin and 5-FU with miR-330 overexpression. The
approximate IC50 doses of cisplatin and 5-FU were used to treat the cells for 24 h. The overexpression of
miR-330 did not significantly alter cellular sensitivity to cisplatin or 5-FU. Analysis was performed using paired
t-test. Data are presented as the mean ± SEM.

doi:10.1371/journal.pone.0134180.g004
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Numerous studies have identified miRNAs as potential cancer biomarkers for the purposes
of diagnosis, prognosis and predicting response to treatment [20, 21]. Aside from identifying
miRNA biomarkers, an understanding of the molecular biology and the functional roles of
individual miRNAs is necessary for the development of novel miRNA-based therapeutics. In
oesophageal cancer, specific miRNAs have been identified as potential clinical biomarkers [20,
32]. Of particular interest, in relation to this study, are those miRNAs reported to be predictive
biomarkers of neo-CRT response in OAC patients [32]. Four miRNAs (miR-505-5p, miR-99b-
3p, miR-451 and miR-145-3p) constitute a validated signature used to predict the response of
OAC patients treated with neo-CRT [15]. The expression of these four miRNAs was used to
establish a miRNA expression profile (MEP) score, which was tested in pre-treatment biopsy

Fig 5. Alterations in chemo- and radiotherapy sensitivity with miR-330-5p silencing. (A) Silencing miR-
330-5p (miRZIP-330-5p) in the OE33 cell line did not significantly alter cellular sensitivity to cisplatin or 5-FU
compared to the control (miRZIP-VC). However, there was a significant increase in resistance to radiotherapy
with miR-330 silencing. Analysis was performed using paired t-test; *p < 0.05. (B) Silencing miR-330-5p in
the OE19 cell line did not significantly alter cellular sensitivity to cisplatin, 5-FU or radiation. Analysis was
performed using paired t-test. Data are presented as the mean ± SEM.

doi:10.1371/journal.pone.0134180.g005
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specimens to predict pCR in patients who received neo-CRT. The likelihood of pCR increased
in a near-linear relationship with the MEP score, and identified groups of patients with high
probability (�80%) and low probability (�10%) of pCR following neo-CRT [15]. Predictive
miRNAs such as these have the potential to identify patients who are likely to respond and ben-
efit from neo-CRT, as well as those patients who are unlikely to respond and would benefit
from alternative therapies or immediate surgery. Furthermore, understanding the biological
relevance of these miRNAs in the context of patient outcome, and response to neo-CRT pro-
vides an opportunity to develop novel therapeutics that could enhance sensitivity to conven-
tional CRT, in line with our study. In previous work, using the same patient cohort and
miRNA profiling presented here, miR-31 was shown to modulate tumour sensitivity to radia-
tion [22]. Investigations into the molecular mechanism of miR-31 in OAC identified an
increase in the expression of several DNA repair genes in tumours with reduced miR-31
expression [22]. The downregulated expression of miR-31 and the increase in the efficiency of
the DNA repair mechanism(s) potentially contributes to resistance to radiotherapy.

While in our study time to surgery post neoadjuvant CRT was approximately 5 weeks, a
recent study by the CROSS group demonstrated that increasing the time to surgery for opera-
ble OAC in neo-CRT patients from 4–6 weeks up to 12 weeks significantly improved the odds
of achieving a pCR [33]. This was associated with only a slightly increased risk of postoperative
complications. Based on these findings it is possible that tumours classified as non-responsive
at 5 weeks may continue to regress if given additional time to surgery. Tumours classified as
TRG3, which are classified as non-responsive and display histological evidence of comparable
amounts of tumour and fibrotic tissue, reside on the border between the responder and non-
responder classification groups. These tumours are most likely to be those re-classified with
increased time to surgery, and as such were not used in our analysis.

Here, miR-330-5p downregulation was associated with poor response to neo-CRT, and a
functional role of miR-330-5p as a modulator of sensitivity to CRT was investigated. For miR-
330 it is not known which strand of the miRNA duplex, the -3p or -5p, is the functional mature
strand, and neither strand is currently denoted as the passenger [34]. Current literature regard-
ing miR-330 mostly reports on miR-330-3p. Reported targets of miR-330-3p in various cancer
types include Sp1, CDC42 and E2F1 [27, 35, 36]. Indeed, bioinformatics identifies credible
binding sites for miR-330-5p, as well as miR-330-3p, in the E2F1 mRNA sequence [37]. In
prostate cancer miR-330-3p acts as a tumour suppressor by repressing the translation of E2F1
and Sp1. The downregulation of E2F1 protein levels has a downstream effect of decreasing the
levels of p-Akt and induces pro-apoptotic pathways, whilst the downregulation of Sp1 protein
levels has an anti-metastatic effect [27, 35]. In colorectal cancer miR-330-3p is also reported as
a tumour suppressor by repressing the translation of CDC42 and negatively regulating prolifer-
ation [36]. Conversely, miR-330-3p acts an oncogenic factor in glioblastoma by enhancing
proliferation, invasion and inhibiting apoptosis through activation of ERK and PI3K/AKT
pathways [38, 39]. This dichotomy in the biological activities and roles of miRNAs between dif-
ferent cell types is well documented. To date there are no validated targets of miR-330-5p.
However, a recent publication identified upregulated miR-330-5p in senescent mesenchymal
stem cells; miRNAs associated with senescence have been shown to suppress regulators of the
cell cycle and proliferation [40].It has previously been reported that the E2F1/p-Akt pathway
promotes cell survival in response to cytotoxic insult induced by both chemotherapeutics and
radiation. In prostate cancer biopsy specimens and in vitro culture, miR-330-3p expression
was inversely correlated with expression of the E2F1 protein. The trend of miR-330-3p expres-
sion indicated a downregulation in the non-responders, although the data did not reach statis-
tical significance.
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Here, the overexpression of miR-330 downregulated E2F1 protein and the levels of p-Akt in
the OE33 cell line, in line with previous literature. Silencing miR-330-5p in vitro was used as a
model to represent the downregulated miR-330-5p expression observed in the non-responder
biopsies. Silencing miR-330-5p did not alter E2F1 protein expression. To assess alterations in
cellular sensitivity to chemo- and radiotherapy with miR-330 modulation, the clonogenic sur-
vival assay was employed. The clonogenic survival assay is regarded as the ‘gold standard’ for
assessing cellular sensitivity to drugs and radiotherapy. While we identified no alteration in
sensitivity to chemotherapeutics there was a statistically significant increase in radioresistance
in the OE33 cell line with miR-330-5p silencing. The radiation dose selected for the clonogenic
survival assay is clinically relevant, as part of the neo-CRT regimen patients receive radiother-
apy in fractionated doses of 2–2.67 Gy [26]. Alteration in radiosensitivity was not observed in
the OE19 cell line at the dose tested, and may be linked with the OE19 cell line being inherently
more radioresistant than OE33 [22]. The increase in radioresistance as a result of miR-330-5p
silencing in vitro suggests downregulated miR-330-5p in patient tumours may alter response
and sensitivity to radiotherapy. Further work is needed to clarify the molecular mechanisms
by which miR-330-5p modulates sensitivity to radiotherapy. Additionally, considering that
patients receive daily fractioned doses of radiation, cumulatively reaching as high as 40–60 Gy,
it is difficult to know how this radiosensitivity change would be represented under more trans-
lationally relevant conditions, i.e. in vivo.

The data presented here suggest miR-330-5p is a potential biomarker of CRT response, in a
pre-treatment setting. The inclusion of miR-330-5p as part of a predictive miRNA biomarker
signature could have a clinical application in stratifying treatment for OAC patients. This
study is ongoing to establish the biological impact of miR-330-5p downregulation in OAC
patients who do not respond to neo-CRT. It is important to recognise that miR-330-5p down-
regulation was originally identified in pathologically verified patient biopsies, which contain
stromal-vascular cells, extracellular matrix, immune cells and regions of altered oxygen tension
and vascularity. These tumour-associated compartments have been established in a variety of
other models as playing an integral part in tumour biology and consequent therapeutic sensi-
tivity. As such, the effects of miR-330-5p on tumour cell sensitivity to CRT cannot be fully
explored using an in vitro system in the absence of other more complex aspects of the tumour
microenvironment.

Supporting Information
S1 Fig. OE33 cells were transfected with the miR-330 overexpression plasmid or the
miR-VC plasmid. Fluorescent microscopy shows a time course of miR-VC and miR-330 plas-
mid expression in OE33 cells. The plasmids contain the GFP reporter sequence. The fluores-
cein isothiocyanate (FITC) channel was used to acquire GFP expression images. BF, bright
field; GFP, green fluorescent protein.
(TIFF)

S2 Fig. qPCR validation of miR-330 overexpression relative to scrambled vector control.
The graph depicts relative expression of miR-330-3p and miR-330-5p at 24 h, 48 h and 72 h
post transfection. The dashed line is set a 1, and represents relative expression in the vector
control at each specific time point.
(TIFF)

S3 Fig. The overexpression of miR-330 does not significantly alter E2F1 mRNA levels, 72 h
post-transfection. Despite a decrease in the E2F1 protein after 72 h of miR-330 overexpression
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the mRNA levels of E2F1 remain unchanged.
(TIFF)

Acknowledgments
We thank Dr. Elena Rosca, University of Hull, for assistance with statistics and Dr Cian Mul-
doon for pathological grading. We thank all of the patients who contributed to this work.

Author Contributions
Conceived and designed the experiments: BASB SGM. Performed the experiments: BASB
SGM. Analyzed the data: BASB SGM. Contributed reagents/materials/analysis tools: SGM
JVR. Wrote the paper: BASB SGM. Performed patient surgeries and facilitated patient consent
and biopsy acquisition: JVR.

References
1. Edgren G, Adami HO, Weiderpass E, Nyren O. A global assessment of the oesophageal adenocarci-

noma epidemic. Gut. 2013. Epub 2012/08/25. gutjnl-2012-302412 [pii] doi: 10.1136/gutjnl-2012-
302412 PMID: 22917659.

2. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histologi-
cal subtype in 2012. Gut. 2015; 64(3):381–7. Epub 2014/10/17. doi: 10.1136/gutjnl-2014-308124
PMID: 25320104.

3. Girling DJ, Stewart LA, Parmar MK. Preoperative radiotherapy in the treatment of cancer of the oesoph-
agus. The Medical Research Council Oesophageal Cancer Working Party. Eur J Cancer. 1992; 28A(4–
5):1003–4. Epub 1992/01/01. PMID: 1524883.

4. Gwynne S, Wijnhoven BP, Hulshof M, Bateman A. Role of chemoradiotherapy in oesophageal cancer
—adjuvant and neoadjuvant therapy. Clin Oncol (R Coll Radiol). 2014; 26(9):522–32. Epub 2014/06/
21. doi: 10.1016/j.clon.2014.05.015 PMID: 24947234.

5. Urschel JD, Vasan H. A meta-analysis of randomized controlled trials that compared neoadjuvant che-
moradiation and surgery to surgery alone for resectable esophageal cancer. American journal of sur-
gery. 2003; 185(6):538–43. Epub 2003/06/05. PMID: 12781882.

6. Gwynne S, Falk S, Gollins S, Wills L, Bateman A, Cummins S, et al. Oesophageal Chemoradiotherapy
in the UK—current practice and future directions. Clin Oncol (R Coll Radiol). 2013; 25(6):368–77. Epub
2013/03/16. doi: 10.1016/j.clon.2013.01.006 PMID: 23489868.

7. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven
BP, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. The New England jour-
nal of medicine. 2012; 366(22):2074–84. Epub 2012/06/01. doi: 10.1056/NEJMoa1112088 PMID:
22646630.

8. Reynolds JV, Muldoon C, Hollywood D, Ravi N, Rowley S, O'Byrne K, et al. Long-term outcomes follow-
ing neoadjuvant chemoradiotherapy for esophageal cancer. Ann Surg. 2007; 245(5):707–16. Epub
2007/04/26. doi: 10.1097/01.sla.0000254367.15810.38 PMID: 17457163; PubMed Central PMCID:
PMCPMC1877071.

9. CunninghamD, AllumWH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Periopera-
tive chemotherapy versus surgery alone for resectable gastroesophageal cancer. The New England
journal of medicine. 2006; 355(1):11–20. Epub 2006/07/11. doi: 10.1056/NEJMoa055531 PMID:
16822992.

10. Hotte GJ, Linam-Lennon N, Reynolds JV, Maher SG. Radiation sensitivity of esophageal adenocarci-
noma: the contribution of the RNA-binding protein RNPC1 and p21-mediated cell cycle arrest to radio-
resistance. Radiation research. 2012; 177(3):272–9. Epub 2012/01/05. PMID: 22214381.

11. Stahl M, Walz MK, Stuschke M, Lehmann N, Meyer HJ, Riera-Knorrenschild J, et al. Phase III compari-
son of preoperative chemotherapy compared with chemoradiotherapy in patients with locally advanced
adenocarcinoma of the esophagogastric junction. Journal of clinical oncology: official journal of the
American Society of Clinical Oncology. 2009; 27(6):851–6. Epub 2009/01/14. doi: 10.1200/jco.2008.
17.0506 PMID: 19139439.

12. Mukherjee S, Hurt CN, Gwynne S, Bateman A, Gollins S, Radhakrishna G, et al. NEOSCOPE: a rando-
mised Phase II study of induction chemotherapy followed by either oxaliplatin/capecitabine or pacli-
taxel/carboplatin based chemoradiation as pre-operative regimen for resectable oesophageal

MiR-330-5p Is Downregulated in Chemoradiation Resistant OAC Patients

PLOS ONE | DOI:10.1371/journal.pone.0134180 July 29, 2015 13 / 15

http://dx.doi.org/10.1136/gutjnl-2012-302412
http://dx.doi.org/10.1136/gutjnl-2012-302412
http://www.ncbi.nlm.nih.gov/pubmed/22917659
http://dx.doi.org/10.1136/gutjnl-2014-308124
http://www.ncbi.nlm.nih.gov/pubmed/25320104
http://www.ncbi.nlm.nih.gov/pubmed/1524883
http://dx.doi.org/10.1016/j.clon.2014.05.015
http://www.ncbi.nlm.nih.gov/pubmed/24947234
http://www.ncbi.nlm.nih.gov/pubmed/12781882
http://dx.doi.org/10.1016/j.clon.2013.01.006
http://www.ncbi.nlm.nih.gov/pubmed/23489868
http://dx.doi.org/10.1056/NEJMoa1112088
http://www.ncbi.nlm.nih.gov/pubmed/22646630
http://dx.doi.org/10.1097/01.sla.0000254367.15810.38
http://www.ncbi.nlm.nih.gov/pubmed/17457163
http://dx.doi.org/10.1056/NEJMoa055531
http://www.ncbi.nlm.nih.gov/pubmed/16822992
http://www.ncbi.nlm.nih.gov/pubmed/22214381
http://dx.doi.org/10.1200/jco.2008.17.0506
http://dx.doi.org/10.1200/jco.2008.17.0506
http://www.ncbi.nlm.nih.gov/pubmed/19139439


adenocarcinoma. BMC cancer. 2015; 15:48. Epub 2015/04/17. doi: 10.1186/s12885-015-1062-y
PMID: 25880814; PubMed Central PMCID: PMCPMC4329217.

13. AllumWH, Stenning SP, Bancewicz J, Clark PI, Langley RE. Long-term results of a randomized trial of
surgery with or without preoperative chemotherapy in esophageal cancer. Journal of clinical oncology:
official journal of the American Society of Clinical Oncology. 2009; 27(30):5062–7. Epub 2009/09/23.
doi: 10.1200/jco.2009.22.2083 PMID: 19770374.

14. Kelsen DP. Multimodality therapy of esophageal cancer: an update. Cancer journal (Sudbury, Mass).
2000; 6 Suppl 2:S177–81. Epub 2000/05/10. PMID: 10803833.

15. Skinner HD, Lee JH, Bhutani MS, Weston B, Hofstetter W, Komaki R, et al. A validated miRNA profile
predicts response to therapy in esophageal adenocarcinoma. Cancer. 2014; 120(23):3635–41. Epub
2014/08/06. doi: 10.1002/cncr.28911 PMID: 25091571; PubMed Central PMCID: PMCPMC4239178.

16. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2):281–97.
Epub 2004/01/28. PMID: 14744438.

17. Peter ME. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene. 2010; 29(15):2161–4.
Epub 2010/03/02. doi: 10.1038/onc.2010.59 PMID: 20190803.

18. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes
are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the
National Academy of Sciences of the United States of America. 2004; 101(9):2999–3004. Epub 2004/
02/20. doi: 10.1073/pnas.0307323101 PMID: 14973191; PubMed Central PMCID: PMCPMC365734.

19. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nature reviews Cancer.
2006; 6(4):259–69. Epub 2006/03/25. doi: 10.1038/nrc1840 PMID: 16557279.

20. Sakai NS, Samia-Aly E, Barbera M, Fitzgerald RC. A review of the current understanding and clinical
utility of miRNAs in esophageal cancer. Seminars in cancer biology. 2013; 23(6 Pt B):512–21. Epub
2013/09/10. doi: 10.1016/j.semcancer.2013.08.005 PMID: 24013023.

21. Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in dif-
ferent tumour types. Eur J Cancer. 2010; 46(2):298–311. Epub 2009/12/02. doi: 10.1016/j.ejca.2009.
10.027 PMID: 19948396.

22. Lynam-Lennon N, Reynolds JV, Marignol L, Sheils OM, Pidgeon GP, Maher SG. MicroRNA-31 modu-
lates tumour sensitivity to radiation in oesophageal adenocarcinoma. Journal of molecular medicine
(Berlin, Germany). 2012; 90(12):1449–58. Epub 2012/06/19. doi: 10.1007/s00109-012-0924-x PMID:
22706599.

23. Maher SG, Gillham CM, Duggan SP, Smyth PC, Miller N, Muldoon C, et al. Gene expression analysis
of diagnostic biopsies predicts pathological response to neoadjuvant chemoradiotherapy of esoph-
ageal cancer. Ann Surg. 2009; 250(5):729–37. Epub 2009/10/06. doi: 10.1097/SLA.
0b013e3181bce7e1 PMID: 19801928.

24. Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, et al. Pathologic assess-
ment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopath-
ologic correlations. Cancer. 1994; 73(11):2680–6. Epub 1994/06/01. PMID: 8194005.

25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR
and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402–8. Epub 2002/02/16. doi: 10.1006/
meth.2001.1262 PMID: 11846609.

26. Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG. Alterations in DNA
repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiation
research. 2010; 174(6):703–11. Epub 2010/12/07. doi: 10.1667/rr2295.1 PMID: 21128793.

27. Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG, et al. MicroRNA-330 acts as tumor suppressor
and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphory-
lation. Oncogene. 2009; 28(38):3360–70. Epub 2009/07/15. doi: 10.1038/onc.2009.192 onc2009192
[pii]. PMID: 19597470.

28. Chaussepied M, Ginsberg D. Transcriptional regulation of AKT activation by E2F. Molecular cell. 2004;
16(5):831–7. Epub 2004/12/03. S1097276504006768 [pii] doi: 10.1016/j.molcel.2004.11.003 PMID:
15574337.

29. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in humanmalignancy. Cellu-
lar signalling. 2002; 14(5):381–95. Epub 2002/03/08. PMID: 11882383.

30. Winograd-Katz SE, Levitzki A. Cisplatin induces PKB/Akt activation and p38(MAPK) phosphorylation
of the EGF receptor. Oncogene. 2006; 25(56):7381–90. Epub 2006/06/21. doi: 10.1038/sj.onc.
1209737 PMID: 16785992.

31. Toulany M, Baumann M, Rodemann HP. Stimulated PI3K-AKT signaling mediated through ligand or
radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Mol Cancer
Res. 2007; 5(8):863–72. Epub 2007/08/19. doi: 10.1158/1541-7786.mcr-06-0297 PMID: 17699110.

MiR-330-5p Is Downregulated in Chemoradiation Resistant OAC Patients

PLOS ONE | DOI:10.1371/journal.pone.0134180 July 29, 2015 14 / 15

http://dx.doi.org/10.1186/s12885-015-1062-y
http://www.ncbi.nlm.nih.gov/pubmed/25880814
http://dx.doi.org/10.1200/jco.2009.22.2083
http://www.ncbi.nlm.nih.gov/pubmed/19770374
http://www.ncbi.nlm.nih.gov/pubmed/10803833
http://dx.doi.org/10.1002/cncr.28911
http://www.ncbi.nlm.nih.gov/pubmed/25091571
http://www.ncbi.nlm.nih.gov/pubmed/14744438
http://dx.doi.org/10.1038/onc.2010.59
http://www.ncbi.nlm.nih.gov/pubmed/20190803
http://dx.doi.org/10.1073/pnas.0307323101
http://www.ncbi.nlm.nih.gov/pubmed/14973191
http://dx.doi.org/10.1038/nrc1840
http://www.ncbi.nlm.nih.gov/pubmed/16557279
http://dx.doi.org/10.1016/j.semcancer.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24013023
http://dx.doi.org/10.1016/j.ejca.2009.10.027
http://dx.doi.org/10.1016/j.ejca.2009.10.027
http://www.ncbi.nlm.nih.gov/pubmed/19948396
http://dx.doi.org/10.1007/s00109-012-0924-x
http://www.ncbi.nlm.nih.gov/pubmed/22706599
http://dx.doi.org/10.1097/SLA.0b013e3181bce7e1
http://dx.doi.org/10.1097/SLA.0b013e3181bce7e1
http://www.ncbi.nlm.nih.gov/pubmed/19801928
http://www.ncbi.nlm.nih.gov/pubmed/8194005
http://dx.doi.org/10.1006/meth.2001.1262
http://dx.doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1667/rr2295.1
http://www.ncbi.nlm.nih.gov/pubmed/21128793
http://dx.doi.org/10.1038/onc.2009.192
http://www.ncbi.nlm.nih.gov/pubmed/19597470
http://dx.doi.org/10.1016/j.molcel.2004.11.003
http://www.ncbi.nlm.nih.gov/pubmed/15574337
http://www.ncbi.nlm.nih.gov/pubmed/11882383
http://dx.doi.org/10.1038/sj.onc.1209737
http://dx.doi.org/10.1038/sj.onc.1209737
http://www.ncbi.nlm.nih.gov/pubmed/16785992
http://dx.doi.org/10.1158/1541-7786.mcr-06-0297
http://www.ncbi.nlm.nih.gov/pubmed/17699110


32. Amin M, Lam AK. Current perspectives of mi-RNA in oesophageal adenocarcinoma: Roles in predicting
carcinogenesis, progression and values in clinical management. Experimental and molecular pathol-
ogy. 2015. Epub 2015/03/10. doi: 10.1016/j.yexmp.2015.03.002 PMID: 25746664.

33. Shapiro J, van Hagen P, Lingsma HF, Wijnhoven BP, Biermann K, ten Kate FJ, et al. Prolonged time to
surgery after neoadjuvant chemoradiotherapy increases histopathological response without affecting
survival in patients with esophageal or junctional cancer. Ann Surg. 2014; 260(5):807–13; discussion
13–4. Epub 2014/11/08. doi: 10.1097/sla.0000000000000966 PMID: 25379852.

34. Griffiths-Jones S. miRBase: microRNA sequences and annotation. Current protocols in bioinformatics /
editoral board, Andreas D Baxevanis [et al]. 2010;Chapter 12:Unit 12 9 1–0. Epub 2010/03/06. doi: 10.
1002/0471250953.bi1209s29 PMID: 20205188.

35. Mao Y, Chen H, Lin Y, Xu X, Hu Z, Zhu Y, et al. microRNA-330 inhibits cell motility by downregulating
Sp1 in prostate cancer cells. Oncol Rep. 2013; 30(1):327–33. Epub 2013/05/15. doi: 10.3892/or.2013.
2452 PMID: 23670210.

36. Li Y, Zhu X, XuW, Wang D, Yan J. miR-330 regulates the proliferation of colorectal cancer cells by tar-
geting Cdc42. Biochem Biophys Res Commun. 2013; 431(3):560–5. Epub 2013/01/23. doi: 10.1016/j.
bbrc.2013.01.016 S0006-291X(13)00052-1 [pii]. PMID: 23337504.

37. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expres-
sion. Nucleic acids research. 2008; 36(Database issue):D149–53. Epub 2007/12/26. doi: 10.1093/nar/
gkm995 PMID: 18158296; PubMed Central PMCID: PMCPMC2238905.

38. Qu S, Yao Y, Shang C, Xue Y, Ma J, Li Z, et al. MicroRNA-330 is an oncogenic factor in glioblastoma
cells by regulating SH3GL2 gene. PloS one. 2012; 7(9):e46010. Epub 2012/10/03. doi: 10.1371/
journal.pone.0046010 PMID: 23029364; PubMed Central PMCID: PMCPMC3448729.

39. Yao Y, Xue Y, Ma J, Shang C, Wang P, Liu L, et al. MiR-330-mediated regulation of SH3GL2 expres-
sion enhances malignant behaviors of glioblastoma stem cells by activating ERK and PI3K/AKT signal-
ing pathways. PloS one. 2014; 9(4):e95060. Epub 2014/04/17. doi: 10.1371/journal.pone.0095060
PMID: 24736727; PubMed Central PMCID: PMCPMC3988141.

40. Yoo JK, Kim CH, Jung HY, Lee DR, Kim JK. Discovery and characterization of miRNA during cellular
senescence in bone marrow-derived human mesenchymal stem cells. Experimental gerontology.
2014; 58:139–45. Epub 2014/08/05. doi: 10.1016/j.exger.2014.07.020 PMID: 25087724.

MiR-330-5p Is Downregulated in Chemoradiation Resistant OAC Patients

PLOS ONE | DOI:10.1371/journal.pone.0134180 July 29, 2015 15 / 15

http://dx.doi.org/10.1016/j.yexmp.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25746664
http://dx.doi.org/10.1097/sla.0000000000000966
http://www.ncbi.nlm.nih.gov/pubmed/25379852
http://dx.doi.org/10.1002/0471250953.bi1209s29
http://dx.doi.org/10.1002/0471250953.bi1209s29
http://www.ncbi.nlm.nih.gov/pubmed/20205188
http://dx.doi.org/10.3892/or.2013.2452
http://dx.doi.org/10.3892/or.2013.2452
http://www.ncbi.nlm.nih.gov/pubmed/23670210
http://dx.doi.org/10.1016/j.bbrc.2013.01.016
http://dx.doi.org/10.1016/j.bbrc.2013.01.016
http://www.ncbi.nlm.nih.gov/pubmed/23337504
http://dx.doi.org/10.1093/nar/gkm995
http://dx.doi.org/10.1093/nar/gkm995
http://www.ncbi.nlm.nih.gov/pubmed/18158296
http://dx.doi.org/10.1371/journal.pone.0046010
http://dx.doi.org/10.1371/journal.pone.0046010
http://www.ncbi.nlm.nih.gov/pubmed/23029364
http://dx.doi.org/10.1371/journal.pone.0095060
http://www.ncbi.nlm.nih.gov/pubmed/24736727
http://dx.doi.org/10.1016/j.exger.2014.07.020
http://www.ncbi.nlm.nih.gov/pubmed/25087724

