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Wound healing is a complex, dynamic process supported by a myriad of
cellular events that must be tightly coordinated to efficiently repair damaged
tissue. Derangement in wound-linked cellular behaviours, as occurs with
diabetes and ageing, can lead to healing impairment and the formation of
chronic, non-healing wounds. These wounds are a significant socioeconomic
burden due to their high prevalence and recurrence. Thus, there is an
urgent requirement for the improved biological and clinical understanding of
the mechanisms that underpin wound repair. Here, we review the cellular
basis of tissue repair and discuss how current and emerging understand-
ing of wound pathology could inform future development of efficacious
wound therapies.
1. Introduction
Millennia of evolution have created our skin, a highly adaptive, multifunctional
organ that protects us from a daily onslaught of chemical, physical and ultraviolet
radiation challenge. This harsh external environment often results in injury to the
skin, and it will therefore come as no surprise that our skin possesses sophisti-
cated reparative processes that allow it to heal quickly and efficiently. Despite
considerable innate reparative ability, multiple cellular aspects of an individual’s
injury response can become attenuated, compromising wound closure. This
attenuation is most often a result of pathological systemic changes, such as
those associated with advanced age or uncontrolled diabetes. Indeed, age and
diabetes are primary risk factors for developing a chronic wound (i.e. a wound
that takes longer than 12 weeks to heal). Unfortunately, these chronic wounds
(primarily venous ulcers, pressure sores and diabetic foot ulcers) are a major
area of unmet clinical need, increasing significantly on a global scale [1]. Here,
we discuss the current understanding of skin repair and illustrate impaired cellu-
lar behaviours that underpin chronic wound healing pathology. Application
of emerging research technologies will be essential in further elucidating the
underlying cellular and molecular basis of acute and pathological repair.
2. Cellular aspects of acute wound repair
Our skin is specialized to interface with the external environment and provides a
variety of important homeostatic functions, from regulating thermostability to
sensing extrinsic stimuli. Crucially, the skin acts as a primary defence barrier, pre-
venting desiccation and mechanical, chemical, thermal and photic damage to
internal structures [2]. This defence extends to a sophisticated immune barrier
response that protects against pathogenic infection, while supporting commensal
microorganisms via an elegantly adapted host–microbiota axis [3]. The skin has
also evolved efficient and rapid mechanisms to close breaches to its barrier in a
process collectively known as the wound healing response. Wound repair is clas-
sically simplified into four main phases: haemostasis, inflammation, proliferation
and dermal remodelling [4], which result in architectural and physiological
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Figure 1. The stages of wound repair and their major cellular components. Wound repair begins with haemostasis, where a platelet plug prevents blood loss and a
preliminary fibrin matrix is formed. Inflammation then ensues to remove debris and prevent infection, commencing with neutrophil influx, which is promoted by
histamine release from mast cells. Monocytes arrive later and differentiate into tissue macrophages to clear remaining cell debris and neutrophils. During the
proliferative phase, keratinocytes migrate to close the wound gap, blood vessels reform through angiogenesis, and fibroblasts replace the initial fibrin clot with
granulation tissue. Macrophages and regulatory T cells (Tregs) are also vital for this stage of healing. Finally, the deposited matrix is remodelled further by fibro-
blasts, blood vessels regress and myofibroblasts cause overall wound contraction.
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restoration following damage (figure 1). The following sections
describe these stages in detail.

2.1. Haemostasis
Immediately after injury, damaged blood vessels rapid
contract and a blood clot forms preventing exsanguination
from vascular damage [5]. Platelets, principle contributors
to haemostasis and coagulation, are activated when they
encounter the vascular subendothelial matrix. Platelet recep-
tors (e.g. glycoprotein VI) interact with extracellular matrix
(ECM) proteins (e.g. fibronectin, collagen and von Willebrand
factor), promoting adherence to the blood vessel wall.
Thrombin subsequently triggers platelet activation, inducing
a conformational change, and release of alpha and dense
granules containing bioactive molecules which reinforce
coagulation (reviewed in [6]). An insoluble clot (eschar) of
fibrin, fibronectin, vitronectin and thrombospondin forms [7],
primarily serving to plug the wound and prevent bleeding.
The eschar also fulfils a number of secondary functions,
including shielding against bacterial invasion, providing a
scaffold for incoming immune cells and harbouring a reservoir
of cytokines and growth factors to guide the behaviour of
wound cells in early repair [8].

Platelets are crucial in the recruitment of immune cells to
the injury site, by either directly capturing immune cells in
the eschar, or by releasing a secretome of chemokine
attractants upon degranulation [6]. In fact, the platelet secre-
tome also contains growth factors that stimulate resident skin
cells, including fibroblasts and keratinocytes [9]. As the most
abundant cell type during early repair, platelets play an
active role in the early inhibition of bacterial infection. They
express a number of toll-like receptors (TLRs) [10,11], which
regulate the production of antimicrobial peptides [12]. Once
a sufficient clot has formed, the coagulation process is
switched off, preventing excessive thrombosis. Here, platelet
aggregation is inhibited by prostacylin, thrombin inhibited by
antithrombin III, and coagulation factors V and VII degraded
by activated protein C [13]. At the same time, the injured
vessel wall is repaired by smooth muscle cells and endo-
thelial cells that proliferate in response to released platelet-
derived growth factor (PDGF) [14]. Endothelial progenitors
are also recruited to aid this process as mature endothelial
cells show limited proliferative capacity [15].

2.2. Inflammation
Innate inflammation evolved as the primary defence against
pathogenic wound invasion. This immune response is initiated
by injury-induced signals; damage-associated molecular pat-
terns (DAMPs) released by necrotic cells and damaged
tissue, and pathogen-associated molecular patterns (PAMPs)
frombacterial components. These PAMPs andDAMPs activate
resident immune cells, such as mast cells, Langerhans cells,
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T cells and macrophages, by binding pattern recognition
receptors to elicit downstream inflammatory pathways [16].
A subsequent release of pro-inflammatory cytokines and che-
mokines attracts circulating leucocytes to the site of injury
(reviewed in [17]). Pro-inflammatory molecules also stimulate
vasodilatation, which, alongwith the expression of endothelial
cell adhesionmolecules, such as selectins, facilitates neutrophil
andmonocyte adhesion and diapedesis [18]. In fact, the impor-
tance of selectins in immune cell recruitment has been clearly
demonstrated, with genetic [19] and pharmacological [20]
blockade of E- and P-selectin significantly impairing both
immune cell infiltration and wound healing.

Neutrophils, which arrive early after injury, are recruited
into the wound from damaged vessels, attracted by chemoat-
tractants, including interleukin 1 (IL-1), tumour necrosis
factor-alpha (TNF-α) and bacterial endotoxins, such as lipopo-
lysaccharide (LPS) [21]. In response to pro-inflammatory
signals, and activation of inflammatory signalling pathways
(e.g. NF-κB [21]), neutrophils (and other wound cells) release
their own cytokines. Neutrophils remove necrotic tissue
and pathogens via phagocytosis and the release of reactive
oxygen species (ROS), antimicrobial peptides, eicosanoids
andproteolytic enzymes [22]. They also trap and kill pathogens
in an extrudedweb ofDNAcoatedwith antimicrobial peptides
and cytotoxic histones, termed extracellular traps [23].

The inflammatory response is complex, modulated by a
multitude host of intrinsic and extrinsic factors. Uncontrolled
and excessive inflammation promotes tissue injury and
delays healing (as in diabetic mice [24]). However, insufficient
immune cell recruitment, for example in TLR3 knockout mice,
also hinders repair [25]. Thus, immune cell responses must be
situational, increasing to respond appropriately to infection,
yet clearing effectively to allow wound resolution. In the
absence of infection, wound neutrophils decline within a few
days of injury onset [26]. Most neutrophils are extruded from
the wound site as they adhere to the fibrin scab, while others
are removed by innate clearance mechanisms such as macro-
phage efferocytosis [17]. Remaining neutrophils are cleared
by apoptosis, necrosis or phagocytosis, or may leave inflamed
tissue and return to the circulation through reverse transen-
dothelial migration, as observed in zebrafish [27], mice [28]
and human neutrophils in vitro [29].

Circulating monocytes enter the wound tissue where, in
response to the local milieu, they differentiate into macro-
phages. Although it is generally suggested that macrophages
are recruited following neutrophils, an initial wave of mono-
cytes has been observed entering the wound simultaneously
with neutrophils [30]. Macrophages are master effector cells
in tissue repair, displaying both versatility and high plasticity
(reviewed in [31]). They reach peak wound infiltration 72 h
after injury in mice and 7 days post-injury in humans [32].
Like neutrophils, macrophages engulf necrotic cellular
debris and pathogenic material through evolutionarily
conserved receptors, but also exhibit differential behaviours
and morphological changes in response to cytokines [33].

Wound macrophages are traditionally separated into two
main subsets: M1-stimulated and M2-stimulated. However,
this dichotomous classification has become outdated, with
both human [34] and murine [35] macrophages now known to
showdiverse transcriptional andphenotypic responses to differ-
ent stimuli (reviewed in [36]). Hence, themacrophage repertoire
should be viewed as a spectrum of phenotypes governed by
tissue status and environmental signals [37,38]. For simplicity,
we will herein refer to classically activated (pro-inflammatory)
and alternatively activated (anti-inflammatory) groups.

Classically activated macrophages are induced by pro-
inflammatory stimuli, such as LPS and interferon-gamma
(IFN-γ), and promote inflammation by releasing ROS, inflam-
matory cytokines (e.g. IL-1, IL-6 and TNF-α) and growth
factors (e.g. vascular endothelial growth factor, VEGF and
PDGF). Thesemacrophagesphagocytose apoptotic neutrophils,
replacing them as the main inflammatory mediator [8]. Later
stages of inflammation are characterized by a transition to
alternative activation, which occurs through neo-differentiation
of newly recruited monocytes, or via switching of existing
macrophages in situ to an anti-inflammatory phenotype.
Although not widely characterized, this phenotypic switch
can be stimulated by environmental changes in cytokines [39]
and efferocytosis [40]. It may additionally be driven by
miRNAs [31], transcription factors [41], and modulation of
pro-inflammatory and anti-inflammatory receptors [41,42].

Alternatively activated macrophages express pro-
resolutory cytokines (IL-4, IL-10, IL-13 [43,44]) and
arginase, a key factor for effective wound repair [45]. Anti-
inflammatory macrophages also release a myriad of growth
factors to promote re-epithelialization, fibroplasia [8] and
angiogenesis [46]. More recently, macrophages have been
shown to be crucial in the stabilization and remodelling of
blood vessels in mice and fish [47].

The importance of macrophages is further demonstrated
in selective ablation studies, where Cd11b-specific deletion
of macrophages leads to delayed wound repair and
increased inflammation [48]. Similarly, inducible knockdown
of macrophages during early healing caused delayed
re-epithelialization, angiogenesis and granulation tissue for-
mation, while knockdown of macrophages mid-way
through healing led to endothelial cell damage, severe haem-
orrhage and immature granulation [49]. Thus, the collective
behaviours of macrophages promote scavenging of debris,
bacteria and pro-inflammatory cells, while also stimulating
reparative processes to allow effective wound resolution.

The overwhelming presence of neutrophils and macro-
phages in wounds has potentially masked the importance
of other myeloid cells in wound repair. However, recent
studies have revealed that resident T cells are critical for the
early injury response, while circulating T cells are recruited
to resolve inflammation [50]. Indeed, aged and diabetic
mice show reduced resident dendritic epidermal T cells and
a delayed healing phenotype, whereas subcutaneous admin-
istration of dendritic epidermal T cells can restore healing
[51,52]. Moreover, the removal of anti-inflammatory regulat-
ory T cells delays tissue repair in mice [50]. Mast cells also
play a role in wounds, releasing histamine to aid neutrophil
recruitment during early inflammation [53].

2.3. Proliferation
The proliferative phase of healing is characterized by exten-
sive activation of keratinocytes, fibroblasts, macrophages
and endothelial cells to orchestrate wound closure, matrix
deposition and angiogenesis. As early as 12 h post-injury,
keratinocytes are activated by changes in mechanical tension
and electrical gradients, and exposure to hydrogen peroxide,
pathogens, growth factors and cytokines [54]. This activation
causes keratinocytes at the wound edge to undergo partial
epithelial–mesenchymal transition, where they develop a



royalsocietypublishing.org/journal/rsob
Open

Biol.10:200223

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 J

un
e 

20
21

 

more invasive and migratory phenotype [55]. Front-to-rear
polarity replaces top-to-bottom polarity, allowing the lead-
ing-edge keratinocytes to migrate laterally across the wound
to reform the epidermal layer, a process termed re-epithelializa-
tion [56]. Keratinocytes behind the leading edgemodulate their
cell adhesion via PCKα-mediated changes in desmosome
adhesiveness [57] andEph-mediated changes in adherens junc-
tions [58], allowing them to rearrange their order with the
migrating epithelial sheet [54]. Keratinocytes in the neo-
epidermis release matrix metalloproteinases (MMPs) to aid
their path of migration, while laying down new ECM proteins
to reconstitute the basement membrane [59].

Hair follicle stem cells are induced to proliferate, with
progeny epidermal cells streaming out of the follicle to
meet the cellular demand required to resurface the wound
[60]. These cells sprout from damaged appendages in shallow
wounds, or arrive from the epidermal edge in full-thickness
wounds. Only specific stem cell compartments are activated
or recruited to the re-epithelialization process [61]. For
example, Krt15+ve [62] and Krt19+ve [63] bulge region
stem cells appear dispensable for re-epithelialization, while
Lgr5- and Lgr6-expressing cells from the follicle and inter-
follicular epidermis respond to wound cues, contributing to
re-epithelialization [64]. A key characteristic of full-thickness
wounds in mice is that appendages, including follicles, are
absent from re-formed scar tissue [2]. However, under
specific circumstances wound-induced follicle neo-genesis
can occur, seemingly via re-activation of developmental
Wnt and Shh signalling [60].

Keratinocytes negotiate through debris and necrotic tissue
of the wound bed through their interactions with structural
proteins of the preliminary matrix via integrin receptors [65].
MMPs, particularly MMP-1 andMMP-9, are vital for keratino-
cyte migration as they aid integrin receptor dissociation [56].
The production of other proteases, such as plasmin, further
facilitates keratinocyte migration by degrading the provisional
fibrin-richwound bed [59].When keratinocytes from opposing
edges meet, migration terminates (via an undetermined
mechanism), a thin epithelial layer is established and kera-
tinocytes form new adhesions to the underlying matrix.
Keratinocytes then fully reform the basement membrane and
undergo terminal differentiation, to stratify and regenerate
the epidermis [32].

Fibroblasts are the main cell type responsible for replacing
the provisional fibrin-rich matrix with a more substantial
granulation tissue. Resident and mesenchymally derived
fibroblasts respond to a milieu of signalling molecules from
platelets, endothelial cells and macrophages, including trans-
forming growth factor (TGF-β) and PDGF. These signals
direct fibroblasts to either become pro-fibrotic, laying down
ECM proteins, or differentiate into myofibroblasts which
drive wound contraction [55]. It is important to note that
this is again a simplification, as in reality fibroblasts exhibit
functional diversity, assisting dermal repair in different
ways. In a seminal study Driskell et al. [66] demonstrated
that skin fibroblasts originate from two distinct lineages,
where the upper lineage aids re-epithelialization while the
lower lineage contributes to ECM deposition. Recent findings
have further challenged conventional understanding of
wound fibroblast origin, showing that two-thirds of granula-
tion tissue fibroblasts are actually myeloid derived [67], and
are thus likely to stem from wound macrophages. Fibroblasts
degrade the provisional matrix by producing MMPs and
replace it with a granulation tissue rich in fibronectin, imma-
ture collagens and proteoglycans [68]. This granulation tissue
acts as a scaffold for the migration and differentiation of
wound cells, supporting both the formation of new blood
vessels and the deposition of mature ECM.

New blood vessels are created during the process of
angiogenesis to meet the metabolic demands of the highly pro-
liferative healing tissue. Angiogenesis is triggered by hypoxia,
which in turn drives the expression of hypoxia-inducible
factors (HIFs) and cyclooxygenase 2, and subsequent release
of VEGF and other factors [69]. In response to these changes,
microvascular endothelial cells proliferate and migrate into
the wound bed, sprouting new vessels that fuse with others
to develop stable, tubular networks [70]. VEGF prevents endo-
thelial cell apoptosis by upregulating anti-apoptotic proteins
such as BCL-2 [71], while the fibrin matrix promotes angio-
genesis by triggering phenotypic changes in endothelial cells
to stimulate their migration [72].

Macrophages play a significant role in angiogenesis by
aiding microvascular endothelial cell behaviours. They pro-
duce proteases such as MMPs to degrade the dense fibrin
network and chemotactic factors (e.g. TNF-α, VEGF and
TGF-β) to drive endothelial migration (reviewed in [73]).
Willenborg et al. [74] demonstrated the importance of macro-
phage-derived factors in angiogenesis, where myeloid-specific
deletion of VEGF-A reduced capillary formation in murine
wounds. Macrophages also participate in the remodelling of
new vasculature, by guiding vessel tips together [75], phago-
cytosing superfluous vessels [47,76] and dampening the
angiogenic response to prevent excessive vascularization [77].

The skin houses a dense network of sensory and auton-
omous nerve fibres which allow sensation and movement.
Nerve fibre regeneration is therefore essential following
injury. Despite the principle role of diabetic skin denervation
in wound pathogenesis (reviewed in [78]), wound inner-
vation per se remains an understudied area. Neuropeptides,
such as substance P, are known to be released from sprouting
neurons and immune cells during repair, influencing diverse
cellular processes (e.g. proliferation and angiogenesis [79,80]).
Notably, substance P is reduced in delayed healing in diabetic
wounds, where topical restoration restores healing [81,82]
and contributes to nerve regeneration [83]. Wound-activated
glial cells are also an important component of the repair
response, shown to express factors important for
chemotaxis, while the loss of glial cells delays healing in
wild-type mice [84]. These and other studies suggest that
innervation plays a substantial role in effective repair.

2.4. Matrix remodelling
Remodelling of the ECM spans the entire injury response,
beginning with the initial deposition of a fibrin clot, and
ending several years later with the formation of a mature,
type I collagen-rich scar [55]. Fibroblasts are the major cell
type responsible for wound ECM remodelling, replacing
the initial fibrin clot with hyaluronan, fibronectin and proteo-
glycans, and forming mature collagen fibrils later in repair
[85]. Proteoglycans aid construction of mature, cross-linked
collagen fibrils and act as a conduit for cell migration [86].
The collagen composition of uninjured adult skin is approxi-
mately 80% collagen type I: 10% collagen type III. By
contrast, granulation tissue predominantly comprises of the
embryo-associated collagen type III (approx. 30%), with
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only 10% collagen type I [87]. As healing progresses, collagen
type III is replaced by collagen type I, directly increasing
the tensile strength of the forming scar [88]. The integrity
and architecture of scar ECM never fully returns to that
of unwounded skin. Collagen fibrils in scar dermis adopt
large parallel bundles, while in uninjured skin fibrils adopt
a basket weave orientation. Thus, wound scar tissue confers
only up to 80% of pre-wounding strength post-injury [87,89].

These sequential changes in the ECM require a fine
balance between collagen degradation and synthesis, achieved
through temporal regulation of keyMMPs. These collagenases,
expressed by anti-inflammatory macrophages, fibroblasts
and keratinocytes, cleave native helical collagens throughout
repair [85]. Elastin, another key dermal ECM component,
must reform elastic fibres to retain skin elasticity. Interestingly,
the degradation of normal dermal matrix causes the release of
elastin fragments, or elastokines, which act as signalling mol-
ecules [90]. Elastin is formed from its precursor, tropoelastin,
and early in healing shows the aberrant arrangement. In fact,
mature elastin fibres are often only apparent in scar tissue
many months after injury [91,92].

Heightened expression of TGF-β and mechanical tension
stimulate myofibroblast differentiation in vivo and in vitro
[93]. Myofibroblasts are characterized by an abundance of
alpha-smooth muscle actin (α-SMA), associated with an abil-
ity to generate strong contractile forces and focal adhesions
[85]. Curiously, mice lacking the gene encoding α-SMA,
Acta2, heal normally with no obvious change in fibroblast
contraction [94]. This apparent redundancy, with compen-
sation by other microfilaments, highlights the importance of
wound contraction. Myofibroblast contraction is facilitated
by pseudopodial extensions that allow cytoplasmic actin to
bind to fibronectin in the matrix scaffold [55]. Myofibroblasts
adhere to one another via desmosomes, binding to matrix
fibrils and drawing the matrix together by a process termed
contracture [95]. The wound healing response abates when
macrophages, endothelial cells and fibroblasts undergo
apoptosis or exit the injury site, leaving a scar [96].
3. When healing fails—factors influencing
chronic wound healing

Acutewound repair is a highly dynamic cascade of cellular sig-
nalling and behavioural events that ensures rapid closure of the
skin barrier. High levels of redundancy and compensatory
mechanisms ensure that small alterations to this response
seldom cause problems in healing wounds [97]. For example,
the ablation of specific subsets of hair follicle stem cells [63],
MMPs [98], fibroblast growth factors [99], TGF-α [100] and
VEGFR2 [101] each individually fail to significantly impair
wound closure. However, like any biological process, sufficient
perturbation to the system leads to aberrations, which in the
case of wounds manifest as excessive scarring at one extreme
or failure to heal entirely at the other. Wounds that fail to
heal (defined as generally remaining unhealed after 12
weeks) are termed chronic wounds. They primarily affect the
elderly and diabetic, are highly prevalent and amajor socioeco-
nomic burden [102,103]. More effective clinical management
would prevent a proportion of these wounds [104], yet many
remain refractory to current treatment, highlighting the need
to better understand the cellular basis of wound pathology in
order to develop therapeutically viable treatments.
Susceptibility to injury remains understudied. We know
that the skin of aged and diabetic mammals is more predis-
posed to injury, as it undergoes atrophy, with altered skin
barrier and reduced hydration [105,106]. Both ageing and
diabetes lead to the gradual loss of dermal matrix, with cor-
responding changes in tissue mechanics, loss of resilience and
increased susceptibility to friction damage [107,108]. Once an
injury occurs, a range of molecular and cellular perturbations
contribute to overall healing impairment. One factor widely
implicated in aged and diabetic wound pathology is cellular
senescence (reviewed in [109]). Mitotic cells become senescent
and non-proliferative in response to a host of intrinsic and
extrinsic factors. Senescent cells acquire a hypersecretory
phenotype, producing a secretome rich in pro-inflammatory
cytokines and tissue-degrading proteases (reviewed in
[110]). The chronic wound environment is the perfect plat-
form for senescent cell induction due to the high levels of
inflammation and oxidative stress [111]. Indeed, we recently
demonstrated that high senescent cell burden contributes to
wound pathology, where blockade of the proposed senes-
cence receptor, CXCR2, dampens macrophage senescence
and improves healing in diabetic mice [112].

A key contributor to wound pathology is excessive
inflammation, which perpetuates chronicity through the
continued destruction of wound tissue. Chronic wounds are
characterized by high numbers of Langerhans cells [113,114],
neutrophils [115], pro-inflammatory macrophages [116,117]
and proteases [118–120], linked to clinical ulcer severity [121].
Alongwith elevated infiltration of specific immune cell subsets
[122], pathological immune cell function is perturbed and col-
lectively contributes to poor healing. Here, neutrophils are
excessively primed to produce neutrophil extracellular traps,
which are cytotoxic [123] and delay wound healing [124]. In
diabetic mice, neutrophils are more resistant to apoptosis,
and less effectively cleared by macrophages [125], furthering
their excessive presence in pathological wounds. Diabetic
macrophages also exhibit defective efferocytosis of apoptotic
cells [126], impaired phagocytosis of bacteria [127,128] and
reduced ability to polarize to an anti-inflammatory state
[129]. Interestingly, even prior to ulceration, the skin of diabetic
humans and mice exhibits higher numbers of mast cells
and macrophages primed to the pro-inflammatory state
[130]. By contrast, T cell receptor diversity [131] and the
number of CD4+ T cells [116,131] are reduced in diabetic foot
ulcers. Together, these aberrant features of chronic wound
immune cells not only prevent the shift from inflammation to
resolution, but greatly increase vulnerability to infection.
Heightened inflammation may also persist due to chronic
wound infection, thus maintaining the wound in a continuous
cycle of infection, inflammation and inadequate repair.

Cellular impairment is not only restricted to inflamma-
tion, but also extends to re-epithelialization and dermal
remodelling. Non-healing diabetic foot ulcers are typically
characterized by an epidermal wound edge that is hyper-
keratotic and parakeratotic [132]. Keratinocytes at the chronic
wound edge show abnormal nuclear presence of β-catenin
and elevated c-myc, which directly delays migration in vitro
[132] and prevents healing in mice [133]. Ulcer wound edge
epidermis additionally displays the misexpression of a
number of cell cycle, differentiation and desmosomal markers
[134], impaired growth factor receptor signalling [135],
and lacks hair follicles [136]. This aberrant activation pheno-
type, with seemingly uncontrolled wound edge proliferation,
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is thought to directly inhibit keratinocyte-mediated chronic
wound closure.

At the same time, dermal reconstitution is significantly
inhibited by the high wound protease levels, which not only
break down dermal ECM components, but also degrade
growth factors (e.g. VEGF and TGF-β [137,138]) and cytokines
(e.g. TNF-α [139]). Chronic wound fibroblasts are highly senes-
cent, further compromising ECMdeposition [140–142], and are
unresponsive to ECM-stimulating factors such as TGF-β
[143,144]. Interestingly, we recently demonstrated
that deficiency in wound iron may underpin reduced ECM
deposition in diabetic mice, as iron loading of fibroblasts
directly stimulates ECM deposition and remodelling [145].
Macrophages are key to this reparative response, where iron
sequestration causes alternatively activated macrophages to
produce ECM-stimulating factors [146]. Note that disparities
exist in the reported role(s) of iron in wound repair. Sindrilaru
et al. [117] suggest that iron deposition caused delayed healing
in diabetic foot ulcers, promoting an unrestrained M1-
like macrophage phenotype, increased oxidative stress
and senescence. Similarly, others have shown that the iron
chelator, deferoxamine, improves wound healing in pressure
ulcers of diabetic [147] and aged [148] mice. Thus, the cellular
effects of iron are probably context-dependent and wound-
type-specific, exacerbating tissue damage in an already
pro-inflammatory environment, while promoting alternati-
vely activated macrophage- and fibroblast-mediated wound
resolution in late-stage repair.

Sustained hyperglycaemia in diabetes directly contributes
to defective healing, compromising leucocyte function [149],
inducing cellular senescence [150] and causing non-enzymatic
glycation of ECMand the formation of advanced glycation end
products (AGEs) [151]. AGEs not only alter the dermal struc-
tural architecture, but also trigger inflammation and ROS via
their receptor, RAGE [152]. These effects impair neovasculari-
zation, in part by preventing HIF-1α transactivation and
subsequent upregulation of VEGF and stromal-derived factor
1 (SDF-1) [153,154]. At the macroscopic level, uncontrolled dia-
betes causes long-term damage to the microvasculature, which
results in local tissue hypoxia, arterial vasculopathy and/or
lower limb neuropathy—all extreme risk factors for chronic
wound development [155].

In diabetes, stem cell populations that would usually
participate in vascularization are depleted (e.g. bone marrow
[156]) or show impaired neovascular potential (in adipose
tissue [157]). A reduction in SDF-1, which aids recruitment of
endothelial progenitor cells to wounds, is also observed,
while topical administration of SDF-1 accelerates diabetic
wound repair [158]. Slowing AGE formation in diabetic mice
improves the neovascular potential of bone marrow progeni-
tors [159], confirming functional relevance and further
demonstrating the important contribution of uncontrolled
diabetes in wound pathology.

It is crucial to note that the causes of delayed healing,
while simplified above, are often multifactorial and complex.
Wound chronicity is influenced by local and systemic defects
[160], along with imbalances in hormones, cytokines
and growth factors (e.g. reduced PDGF [161]). However, in
recent years, the presence and persistence of wound infection
has been widely discussed as a major contributor to chroni-
city [162]. Indeed, high abundance of common wound
pathogens, such as Staphyloccoccus aureus and Pseudomonas
aeruginosa, is reported in chronic wounds [163,164], with a
wound’s microbial profile strongly linked to healing outcome
[165]. These pathogens often develop into polymicrobial
aggregates (biofilms) encapsulated in a protective matrix of
extracellular polymeric substances that confers resistant to
traditional antibiotics and host defences (reviewed in [166]).

The microbiome profiles of aged and diabetic skin differ
considerably from their young and non-diabetic counter-
parts, in each case displaying reduced α-diversity [167,168].
Although critical wound colonization occurs as a result of
inadequate immune cell function, poor perfusion and the
presence of a persistent open wound, it is likely (though yet
to be proven) that aged and diabetic skin is intrinsically pre-
disposed to infection by an altered microbiome. Diabetic
wounds also show altered expression of pattern recognition
receptors responsible for eliciting a host response, which
may link to poor healing [169]. Interestingly, knockout of
the pattern recognition receptor, Nod2, impaired wound
closure [170] and altered the skin microbiome [171] of mice.
Curiously, wild-type mice cross-fostered into Nod2−/− lit-
ters adopted an altered microbiome and acquired a delayed
healing phenotype [171], therefore directly demonstrating
the impact of skin microbiota dysbiosis on repair. Key factors
in chronic wound pathology are summarized in figure 2.
4. Translational techniques to enhance
clinical understanding of wounds

Our knowledge of the mechanisms underlying chronic wound
healing is constantly improving, largely due to the develop-
ment and refinement of wound models and diagnostic tools.
For example, until the advent of sequencing technologies,
wound bacterial profiling was restricted to simple culture
methods, limiting speciation to only organisms capable of
expansion in culture. Further analysis was then required to
gather complete diagnostic information about a clinical isolate
(reviewed in [172]). The emergence of short-read 16S sequen-
cing provided new insight into clinical bacterial communities,
but bacterial identification was limited to genus level based
on inference from sequence homology [173], with little infor-
mation about their virulence or clinical significance. Novel
genomic technologies are nowemerging to allow rapidmolecu-
lar identification of microorganisms to the sub-species level.
Simultaneous characterization of antibiotic resistance and viru-
lence profiles [173,174] provides unprecedented insight into
the role of bacterial, fungal and viral ecosystems in wound
pathology. Combining these techniques with host genomic,
metabolomic and proteomic approaches promises to deliver
in depth understanding of the myriad of factors influencing
wound repair, while ultimately facilitating a true ‘personalised
medicine’ approach to clinical wound management.

Historically, wound studies have relied on the use of in vivo
models to address the complexity of the multifactorial wound
response. However, it is widely accepted that between-species
differences have hindered translational wound research efforts.
We are now moving towards the development of more
dynamic in vitro approaches, such as three-dimensional skin
equivalents [175], allowing closer modelling of native human
cell behaviours, and moving away from artificial single-cell
monolayer culture. While cultured three-dimensional skin
equivalents still lack many skin features, such as glands,
immune cells and blood vessels, current research is beginning
to address this deficit [176,177]. The development of
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three-dimensional-printed skin equivalents is particularly
exciting, offering profound implications in translational
research. Indeed, a recently developed vascularized three-
dimensional-printed skin model reflected many aspects of
native skin, including tissue maturation, and epidermal strati-
fication and stemness [178].

Porcine and human ex vivo models are also gaining
traction, with the advantage that they provide native skin
tissue architecture and the full gamut of resident skin cells to
recapitulate important aspects of the human chronic wound
healing response [179,180]. Ex vivo models are not without
their caveats, lacking immune cell infiltration and maintaining
viability for a limited time-frame [181]. It is likely that novel
culture methods, such as microfluidics [182], will extend
tissue viability and allow skin perfusion with biologically rel-
evant factors (and immune cells) to increase the relevance of
ex vivo wound models.

In vivomodels are still widely used, with mice favoured for
mechanistic studies [183]. The multitude of available trans-
genic mouse lines (including reporter lines) allows temporal
and spatial investigation of the molecular basis of in vivo
wound healing. Nevertheless, strain- and species-specific
differences must be considered, especially when extrapolating
conclusions for translational research purposes. Pigs, though
used far less frequently, provide a useful translational model
with skin that closely resembles that of humans. Wounding
in mice involves full-thickness incisions or excisions, yet varia-
bility can be introduced between laboratories by the methods
used to apply wounds, the analgesics and anaesthetics used,
and how the wounds are treated (e.g. splinted, occluded or
left to heal by secondary intention [184,185]). Continued efforts
to standardize in vivomethodologywill be essential to increase
experimental validity and progress current and future wound
research.

An array of pre-clinical delayed healing models are used
to better recapitulate human chronic wounds, from pressure
ulcers in mice using magnets [186], to infected wounds in
pigs [187]. As those primarily at risk of developing chronic
wounds are elderly or diabetic, it follows that the most
widely used chronic healing models involve aged and diabetic
rodents [188]. Type I and type II diabetes mellitus (T1DM and
T2DM) can be modelled in mice. T1DM-mediated delayed
healing is commonly stimulated through streptozocin injection
[189,190], where timing post-injection is critical to the delayed
healing phenotype [192]. Genetically altered mice are used to
mimic T2DM through leptin or leptin receptor deficiency.
These mice are morbidly obese by 6–8 weeks of age, go on
to show hallmarks of T2DM (reviewed in [193]), and display
substantially delayed healing versus their non-diabetic,
heterozygous littermates [194]. There remains some contro-
versy as to whether delayed healing in diabetic mice is a
result of hyperglycaemia, leptin deficiency or obesity [184].

To mimic age-associated healing pathology, mice are
wounded at 18 plus months of age (reviewed in [195]).
Young ovariectomized mice provide an alternative accelerated
ageing model, where surgical removal of the ovaries mimics
the human menopause [196]. Here, the loss of circulating sex
hormones, particularly 17β-estradiol, produces a delayed heal-
ing phenotype that is largely comparable to that of aged mice
(reviewed in [197]). Unlike diabeticmodels, limited to compari-
son against diabetic wounds, aged models have the advantage
that they emulate a more generalized underlying risk factor for
all chronic wounds, advanced age [198].
5. Current therapies and future
opportunities

Wound management begins with an assessment of wound
aetiology and a patient-centric approach to managing sys-
temic and lifestyle factors. In the case of diabetic foot
ulcers, local management often starts with debridement, the
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removal of necrotic, infected or hyperkeratotic tissue via sur-
gical or less invasive modalities [5,199]. Extracting the chronic
tissue back to less affected epidermis, while triggering an
acute injury response, is thought to kick-start normal repara-
tive healing pathways [200]. Wounds are then irrigated with
saline or antibacterial solution and a tailored dressing is
applied [201]. Contemporary dressings contain a myriad of
material properties to aid tissue repair and incorporate sub-
stances with known pro-healing or antimicrobial effects
[202,203]. More advanced solutions are available, including
the continually evolving negative pressure wound therapy
modality [204]. Despite numerous available treatments, cur-
rent best practice wound management is almost exclusively
aimed at addressing secondary causes of chronicity, while
also relying heavily on patient compliance. These two factors
result in up to 40% of chronic wounds persisting for many
months or years despite extensive treatment [102]. There
remains a clinical unmet need to address this shortfall with
novel therapies that are financially, physiologically and
practically viable for the wound care setting.

A major contributor to chronic wound recalcitrance is
persistent, antibiotic-resistant biofilm infection. It is therefore
unsurprising that a large proportion of recent wound research
has focused on the development of novel antimicrobial and
anti-biofilm therapies. Traditional non-antibiotic antimicro-
bials, such as silver salts, alleviate bacterial burden but are
cytotoxic to the host, whilemodern formulations (e.g. nanopar-
ticles) have lower cytotoxicity and may also promote wound
healing (reviewed in [205]). Emerging antimicrobial treatments
that may also show beneficial roles in tissue repair include cold
atmospheric plasma [206,207] and bioactive glass [179,208].

Most antimicrobials display broad effects and are not
targeted to specific pathogenic species and strains. This is
important, as commensal bacteria have a positive role in skin
maintenance and wound repair (reviewed in [209]), and
unlike their pathogenic counterparts, commensal biofilms do
not cause persistent delayed healing in diabetic wounds [166].
As a result, more directed treatments for pathogenic bacteria,
such as phage therapy [210] or pharmacological inhibition of
bacterial virulence mechanisms such as quorum sensing [211],
may confer higher specificity and efficacy.Moreover,most treat-
ments focus on the bacterial component of infection, but the
fungal diversity of wounds is also linked to healing outcome
[212]. Thus, to elucidate the role of host–microorganism inter-
actions in pathological repair, prospective research should
acknowledge the wound ecosystem in its entirety.

Experimental studies are providing new insight into the
underlying molecular and cellular correlates to chronic
wound pathology. This in turn offers exciting new avenues
for future therapeutic prevention and intervention. For
example, chronic wounds are burdened by high levels of cel-
lular senescence [141,142]. Senolytic drugs such as quercetin
target senescent cells, and have already shown promise in
reducing senescent cell burden in pathology [213,214] and
ameliorating symptoms of diabetes, including inflammation
and hyperglycaemia (reviewed in [215]). Further, blockade
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of the senescence-linked receptor, CXCR2, directly accelerates
diabetic wound repair in vivo [112]. Repurposing these exist-
ing treatments (a number of senolytics drugs and CXCR2
antagonists have been tested in clinical trials [216,217])
offers an attractive approach for wound management.
Other cell-targeted strategies include the administration of
stem cells (reviewed in [218]), growth factors (reviewed in
[219]) and gene therapies (reviewed in [220]). The major
reparative effects of emerging and potential chronic wound
therapies are outlined in figure 3.
rnal/rsob
Open

Biol.
6. Conclusion
The high cellular diversity, complexity and plasticity of wound
healing provide a considerable challenge to comprehensively
elucidate. While this remains a perplexing goal, it is essential
that we continue to strive to more fully understand the mech-
anisms that underpin both normal and pathological healing.
While not without their limitations, emerging wound models
provide an unprecedented opportunity to further explore the
molecular and cellular features of wound repair. Combining
these approaches with novel tissue, cell and molecular
‘omics’ technologies will considerably advance our under-
standing of wound pathology. Indeed, the future holds great
promise for the development of innovative new therapeutic
strategies for advanced wound care.
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